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Thebault circles of the triangle in an isotropic plane
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1 Faculty of Teacher Education, University of Osijek, Lorenza Jägera 9, HR-31 000
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Abstract. In this paper the existence of three circles, which touch the circumscribed circle
and Euler circle of an allowable triangle in an isotropic plane, is proved. Some relations
between these three circles and elements of a triangle are investigated. Formulae for their
radii are also given.
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In [6] V. Thébault considered the following figure in Euclidean geometry.
Let ABC be any triangle and Am, Bm, Cm the midpoints of its sides BC,

CA, AB. If the medians AAm, BBm, CCm of that triangle meet its Euler circle
Ke = AmBmCm (or the nine–point circle, i.e., the circle through the feet of the three
altitudes, the midpoints of the three sides, and the midpoints of the segments from
the three vertices to the orthocenter [2]) again at the points L, M , N , then there
exist three circles D, E , F , which touch the circumscribed circle Ko = ABC of the
triangle ABC at the points A, B, C, and they touch the Euler circle Ke successively
at the points L, M , N . Radii of these circles are d, e, f , respectively, where for
example

d =
R

2

(
1− BC2

CA2 + AB2

)
=

2R4 cotA

CA2 + AB2
,

while R denotes the radius of the circumscribed circle and 4 the area of the triangle
ABC. It is shown that the equation

1
R− d

+
1

R− e
+

1
R− f

=
4
R

holds.
Besides the circles D, E , F , there are three more circles D′, E ′, F ′, which touch

the circumscribed circle Ko at the points A, B, C, and they touch Euler circle Ke
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at the feet Ah, Bh, Ch of the altitudes of the triangle ABC.

Figure 1. Thebault circles of the triangle in Euclidean plane

In this paper we shall investigate an analogous figure in an isotropic plane. Let
P2(R) be a real projective plane, f a real line in P2, and A2 = P2 \ f the associated
affine plane. The isotropic plane I2(R) is a real affine plane A2 where the metric is
introduced with a real line f ⊂ P2 and a real point F incidental with it. All straight
lines through the point F are called isotropic lines. Isotropic circle in an isotropic
plane is a conic which touches the absolute line f at the absolute point F .

Each allowable triangle in an isotropic plane can be set, by a suitable choice
of coordinates, in the so-called standard position, i.e., that its circumscribed circle
has the equation y = x2, and its vertices are of the form A = (a, a2), B = (b, b2),
C = (c, c2), where a + b + c = 0. With the labels p = abc, q = bc + ca + ab it can be
shown that the equality a2 = bc− q holds.

If Ah is the foot of the isotropic altitude through A, then A and Ah always lie
on the same isotropic line, and a circle meets any isotropic line at only one proper
point, it immediately follows that there are no analogous circles to the circles D′,
E ′, F ′ from the introduction.



Thebault circles of the triangle in an isotropic plane 439

In [3] it is shown that the median AAm of the standard triangle ABC has the
equation

y =
3bc− q

3a
x− 2q

3
,

and in [1] it is obtained that Euler circle Ke of that triangle has the equation
y = −2x2 − q. The point

L =
(
− q

3a
,−2q2

9a2
− q

)
(1)

obviously lies on the circle Ke, and because of

3bc− q

3a
·
(
− q

3a

)
− 2q

3
=

(3a2 + 2q)(−q)
9a2

− 2q

3
= −2q2

9a2
− q,

it also lies on the median AAm.
Let us consider the circle D with the equation

(q + 3a2)y = (3a2 − 2q)x2 + 6aqx− 3a2q. (2)

From this equation and the equation y = x2 of circumscribed circle Ko of the
triangle ABC it follows that for the abscissas of their intersection the equation

(q + 3a2)x2 = (3a2 − 2q)x2 + 6aqx− 3a2q

holds, i.e., the equation 3q(x2 − 2ax + a2) = 0 with the double solution x = a, so
the circles Ko and D touch each other at the point A.

From equation (2) and the equation y = −2x2 − q of the circle Ke there follows
the equation

(q + 3a2)(−2x2 − q) = (3a2 − 2q)x2 + 6aqx− 3a2q,

i.e., the equation 9a2x2 +6aqx+ q2 = 0 with the double solution x = − q
3a . It means

the circles D and Ke touch each other at the point L. So, we have proved

Theorem 1. If medians of the allowable triangle ABC in an isotropic plane meet
its Euler circle again (except midpoints of the sides BC, CA, AB) at the points L,
M , N , then there are three circles D, E, F , which touch the circumscribed circle
of the triangle ABC successively at the points A, B, C, and its Euler circle at the
points L, M , N .

The circle with the equation of the form 2ρy = x2 + ux + v has the radius ρ.
Because of that, in the standard triangle ABC the circumscribed circle Ko with the
equation y = x2 has the radius R = 1

2 , and circle D with equation (2) has the radius

d =
1
2
· q + 3a2

3a2 − 2q
=

q + 3a2

3a2 − 2q
R.

From this it follows
R− d =

3q

2q − 3a2
R
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and with analogous equalities for the radii e and f of the circles E and F we get

1
R− d

+
1

R− e
+

1
R− f

=
1

3qR
(6q − 3a2 − 3b2 − 3c2) =

12q

3qR
=

4
R

.

Now we have:

Theorem 2. For the radii d, e, f of the circles D, E, F from Theorem 1 there
follows the equality

1
R− d

+
1

R− e
+

1
R− f

=
4
R

,

where R is the radius of the circumscribed circle of the triangle ABC.

In [5] it is shown that the power of the point (x, y) with respect to the circle with
the equation 2ρy = x2 + ux + v, has the value x2 + ux + v − 2ρy. In [4] it is shown
that the standard triangle ABC has the centroid G =

(
0,− 2q

3

)
. The power Π of

that centroid with respect to the circle D with equation (2) is given by the formula

(3a2 − 2q)Π = −3a2q − (q + 3a2) ·
(
−2q

3

)
=

q

3
(2q − 3a2),

so Π = − q
3 . The point G also has the same power with respect to the circles E and

F . The point whose powers with respect to the three circles are all equal is called
the potential center for these three circles. So we get:

Theorem 3. The centroid of the triangle ABC is the potential center for the circles
D, E, F from Theorem 1.

The points M and N given by the equalities

M =
(
− q

3b
, −2q2

9b2
− q

)
, N =

(
− q

3c
, −2q2

9c2
− q

)

are analogous to the point L from (1). The points L, M , N lie on the medians AG,
BG, CG of the triangle ABC, i.e., the triangles ABC and LMN are homologic,
and the center of this homology is the centroid G of the triangle ABC. What is the
axis of this homology?

The line

L . . . y = −2aq

3bc
x− q +

2q2

9bc
(3)

passes through the points M and N since, for example, for the first of them we get

−2aq

3bc
·
(
− q

3b

)
− q +

2q2

9bc
=

2q2

9b2c
(a + b)− q = −2q2

9b2
− q.

Because of that L is the line MN . In [4] it is shown that the line BC has the
equation y = −ax − bc. If we set −ax = y + bc in (3), then for ordinate y of the
intersection D = BC ∩MN we get the equation

y =
2q

3bc
(y + bc)− q +

2q2

9bc
,
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i.e.,

1
3bc

(3bc− 2q)y = −q

3
+

2q2

9bc
=

q

9bc
(2q − 3bc),

whence y = − q
3 . The corresponding sides of the triangle ABC and its orthic triangle

AhBhCh intersect at three points which lie on the same line. This line is called, by
analogy with the Euclidean case, an orthic line of the observed triangle. In [4] it is
shown that the orthic line H of the standard triangle ABC has the equation y = − q

3 .
So the point D lies on that orthic line, and the same thing is valid for the points
E = CA ∩NL and F = AB ∩ LM . So we have proved the statement.

Theorem 4. With the labels from Theorem 1, the axis of homology of the triangles
ABC and LMN is the orthic line of the triangle ABC.

Figure 2. Thebault circles of the triangle in an isotropic plane
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