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Abstract. Suppose 1, p2, ... , un are Laplacian eigenvalues of a graph G. The Laplacian
energy of G is defined as LE(G) = >_7_, |ui — 2m/n|. In this paper, some new bounds for
the Laplacian eigenvalues and Laplacian energy of some special types of the subgraphs of
K, are presented.
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1. Introduction and preliminaries

Let G be a graph of order n with the vertex set V(G) = {v1, v, -+ ,v,} and edge set
E(Q). The first Zagreb index M;(G) is defined as the sum of squares of degrees in
G. It is well known that M:(G) = }_._,,cp()[d(u) + d(v)]. The adjacency matrix
A(G) = [a;j] of G is a square matrix of order n whose (i, j)-entry is equal to the
number of edges between the vertices v; and v;.

In the case that G is a simple graph, the adjacency matrix A(G) will be a (0,1)-
matrix. The spectrum of G is defined as the set of eigenvalues of A(G), together
with their multiplicities. Let Ay < Ag--- < A, be the eigenvalues of G. The energy
of G is the sum of absolute values of eigenvalues of G. This quantity, introduced by
Ivan Gutman, has noteworthy chemical applications; see [6 — 9, 11] for details.

Let D(G) = [d;;] be a diagonal matrix associated with the graph G, where
di; = deg(v;) and d;; = 0 if i # j. Define L(G) = D(G) — A(G). L(G) is called
the Laplacian matrix of G. The Laplacian polynomial of G is the characteristic
polynomial of its Laplacian matrix, ¢(G,u) = det(pul, — L(G)). Let p1 < pg <
-+« < uy, be the Laplacian eigenvalues of G, i. e., the roots of ¢(G,u). It is well
known that p; = 0 and that the multiplicity of 0 equals the number of connected
components of G.

The Laplacian energy of G is a very recently defined graph invariant [10], defined
as LE(G) = Y"1, |wi — 2m/n|, where n and m are the number of vertices and edges
of G, respectively. LFE is a proper extension of the graph-energy concept. An
interested reader should consult the papers [1,2,5,16 — 18,20 — 22] for the main
properties of the Laplacian energy of graphs.

*Corresponding author. Email addresses:  fathtabar@kashanu.ac.ir (G.H.Fath-Tabar),
ashrafi@kashanu.ac.ir (A.R. Ashrafi)

http://www.mathos.hr/mc (©2010 Department of Mathematics, University of Osijek



444 G. H. FATH-TABAR AND A.R. ASHRAFI

The complement of a graph G is denoted by G, where e € E(G) if and only if
e ¢ E(G). Suppose G and H are two graphs with disjoint vertex and edge sets.
The disjoint union of G and H is a graph T such that V(T) = V(G)|JV(H) and

E(T) = E(G)N E(H).
For the sake of completeness, we mention below some results which are important
throughout the paper.

Theorem A [Polya-Szego Inequality, [15]]. Suppose a; and b;, 1 < i < n, are
positive real numbers. Then

>t Lt = 30+ i
where

M1 = maXj<;<n ds, M2 =maXj<i<n bi; my = minlgign a; and mo = min1§i§n bi.

Theorem B [Ozeki’s Inequality, [14]]. If a; and b;, 1 <i < n, are nonnegative real
numbers, then

ia?ilﬁ Zalz S%M1M2—m1m2) )

i=1  i=1
where M; and m; are defined similarly to Theorem A.

Theorem C [Mohar, [13]]. Let G be a graph and e € E(G). Then
(G =€) < p1(G) < pa(G =€) < pa(G) < -+ < pn(G =€) < pn(G).

Theorem D [Biggs, [3]]. Suppose \; and p;, 1 < i < n, are eigenvalues and
Laplacian eigenvalues of G, respectively. Then

Z)\i:Q Z)@:Qm7 Zui:2m and ZM?ZQm—FMl(G)-

Throughout this paper C,, P, and K, denote the cycle, path and complete
graphs on n vertices. The complete bipartite graph with a partition by m and n
vertices is denoted by K, ,. A graph G is called r—regular, if for any vertex z,
deg(z) = r. Our other notations are standard and taken mainly from [3, 4, 12].

2. The Laplacian eigenvalues of some subgraphs of complete
graphs

A matching or edge-independent set of a graph G is a set of edges without common
vertices in G. In this section, the Laplacian eigenvalues and Laplacian energy of
some subgraphs of K, are investigated.

Lemma 1. If G is a subgraph of K, with n' < n wvertices, then the Laplacian
eigenvalues of K, — E(G) are as follows:

07TL—/141(G),"',77/—/J%/(G), Nyeeeyn
—_——

n—n’'—1 times
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Proof. Suppose G, = GU{V(K,) — V(G)}. Then K, — E(G) = G, and by [4,
2.6], ¢(Gl,x) = (—1)" - ¢(G1,,n — ). We now apply [4, 2.4] to prove ¢(G],,x) =
(G, x)x"’”'. Therefore,

T

(Gl ) = (—1)" d(G,n—x)(n — x)"_"/ = (-1)"z¢(G,n — z)(n — x)n—n'—l

xT—n
and a direct calculation implies the theorem. O

Corollary 1. Suppose E; C E(K,,) is a matching with i elements. Then the Lapla-
cian eigenvalues of K, — E; are as follows:

0on—2,---,n—2, n,---,n
~—_——— ——
i times n—i—1 times

Proof. The complement of K,, — E; consists of i copies of K5 and n — 2¢ copies of
K. Thus its spectrum is 0 (n — ¢ times) and 2 (¢ times). So the result follows from
the Lemma 1 and [4, 2.6]. O

Corollary 2. If Gos is a Cocktail-Party graph with 2s vertices, then the Laplacian

etgenvalues of Gag are 0,2s —2,--+ ;258 —2,2s,--- ,2s.
———

s times s—1 times

Corollary 3. LE(K,, — E;))=2(n—i—1) — (4i/n)(i + 1).

Lemma 2. The Laplacian eigenvalues of K, ,, — e are computed as follows:

3n—2—vVn?2+4n—-14 3n—24+vVn?2+4n—14
n.o. n .
2 b) ) b b 2

n—3 times

0,

Therefore, LE(K, , —e) =n+2—4/n++vn? +4n — 4.

Proof. We know that
0,n,n,---,n,2n
—_———

n—2 times

are the Laplacian eigenvalues of K, ,, [3]. By Theorem C, the Laplacian eigenvalues
of K, — e satisfy the following inequalities:

O=pw Spe<pus=n=--= lopn—1 < lon.

Since
Yo =2m, > pf =2m+ Mi(G), p2 + poy, = 3n — 2 and p3 + p3, = 5n? — 4n,
popton = 2(n — 1)2. This concludes that

3n—2—+vn?2+4n—4
Mo = and pa,

_ 3n—-24+vn?+4n—4
5 = .

2

For the second part, we notice that LE(K,,,, —e) = 222:1 lpi—n+1/n|=n+2-

4/n 4+ v/n? + 4n — 4, proving the result. O
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Theorem 1. Suppose G is a graph. Then |LE(G —¢e) — LE(G)| < 4 and 4 is the
best possible bound.

Proof. Define p; = p;(G — €). By Theorem C, p; — p; > 0 and > . [u; — pf] = 2.
So, there exists i, 1 < ¢ <mn, such that y; > p}. This implies that

n

>

i=1

n

2 2
Ni_/ig_n‘<2{|ﬂi—ﬂ;|+n]

i=1

and we have:

ILE(G — ¢) — LE(G)|

- m m—1
S =2~ 2"
i=1 n n

n

m m—1
> [l 221 i =2 |

i=1

n
<2
i=1

m m—1
=22 = = 2

- 2
S; Mz'—/i/i—;

- 2
<Z[Iuiﬂél+n]

«
Il
-

I

2
|:Mi_/’42+:| = 4.
n

i=1

To complete the argument we construct a sequence {G,},>2 of graphs such that
|LE(G, — €) — LE(G,)| — 4. Define G,, = K,, + e. Then LE(G,) =4 — 2 and
LE(G, —e€) =0 and so |[LE(G,, —e) — LE(G,)| =4 — 2 — 4. This completes the
argument. O

3. Bounds on the Laplacian eigenvalues and the Laplacian en-
ergy of graphs

In this section, a variety of upper and lower bounds for the Laplacian eigenvalues
of a graph G and its Laplacian energy are presented. At first, we apply Ozeki’s
theorem to obtain a simple inequality on the energy of graphs. By Theorem B,

2
E(G) > \/an - T (an —ar)?,

where a; and a,, are minimum and maximum values of the set {|A\;| | 1 <i < n}.
Theorem 2. Suppose zero is not an eigenvalue of G. Then

2V 2mn+/aia,

E >
(G) - a1+ ap

9



SOME REMARKS ON LAPLACIAN EIGENVALUES AND LAPLACIAN ENERGY OF GRAPHS 447

where a1 and a,, are minimum and mazimum of the absolute value of \;s. In par-
ticular, if G is k—regular, then

LE(G) = E(G) > 2nky2a,
ar + k

Proof. Suppose \;, 1 < ¢ < n, are the eigenvalues of G. We also assume that

a; = |\, where a1 < as <--- <a, and b; =1, 1 < ¢ < n. Apply Theorem A to
show that

2
- - L]l Al - 2
> Y 1P< o + O D%
i=1 i=1 4 Al [An] i=1

Therefore, by Y1, |A;|* = 2m and a simple calculation,

2V 2mn./aia,

ay + ap

E(G) >

To prove the second part, it is enough to notice that a, = k and 2m = nk for
k—regular graphs. O

Theorem 3. Let G be a connected graph with the smallest and largest positive
Laplacian eigenvalues pa and i, respectively. Then

Vi bz + v p2/in > (Vi =1/m)y/2m + My (G).

In particular, if G is an n—vertez tree, then \/n/pa++/p2/tn > /(61 —8)/(n — 1).

Proof. Suppose a; =1 and b; = p;, 2 <i <n. Apply Theorem B to show that,

n n 2 n
Syt (e /2)
=2 =2 =2

Since

Youi=2m+M(G), Viun/nz + a2/ = (V= 1/m)y/2m + Mi(G).

i=2
When G is a tree with at least three vertices, d(u)+d(v) > 3 and so M1(G) > 3(n—1),
as desired. 0

Corollary 4. With notation of Theorem 3, i /p2 + pa/pin > “2(2 4 47’”) —2. In
particular, when G is an n—vertex tree, i, /s + po/pn > 4 — 2.

- n

Theorem 4. Suppose G is a graph without isolated vertices. Then

o= 12 > = (= D+ My (G)) — 4]
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Proof. Suppose a; =1 and b; = p;, 2 <i < n. Apply Theorem B to show that

<n—1§i EZM e o,

Since

Do =2mA M(G), o o > (0 = DEm o+ MY(G)) — ),

2
=2 1)

which proves the theorem. O

We now prove some new bounds for the energy and Laplacian energy of graphs.

Theorem 5. Suppose G is a graph. Then

Y42 (LE(G) — 2

n

\/"\1/ 2[M, +2m — (n+1)4 ]+2<n21>7 ¢(G27m)2,(1)

with equality if and only if G is an empty graph. In particular, if G is a non-empty
graph, then

LE(G)>27T+\/2m—ZT;+2(n;1> 47:;2q5( %m)"’. 2)
Moreover, if T is an n—vertex tree, n > 3, then
LE(T) > 2=
n
+\/M1(T> +(n—-1)(6 - %) + (= 1)7571 2. 4(n71 02 ®3)

Proof. By a well-known theorem of algebraic graph theory, u; = 0 and so,

=Zm~—h—+2m——| (@)
i=1
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Ifo=>",|w— 277"\, then by the arithmetic-geometric mean inequality,

9 " 2m o 2m 2m
z :Z|Mz‘—7| +2 Z ‘Ni_7||ﬂj_7|
i=2 i#§,,j=2,3,+n
4m?  4m? 2m 2m
:M1+2m———F+2 Z |Mz'—7\|/ij_7|

1#5,5,J=2,3,-n

4m?  4m? -1 2
> My +2m — am % + 2(71 )(H?_ﬂ#i _ 7m|2(n72))l/(n71)(n72)
n n 2 n

4m?  4m? n—1 n 2m .9 /(n—1
_M1+2mnnz+2( 9 )(Hi_2(ﬂin)) /=D

4m? n—1\ ._./ n? 2m . »

Equation (1) is a direct consequence of (4) and (5) with equality if and only if
| — 2m/n||u; — 2m/n| = |p — 2m/n||ps — 2m/n|,2 < i,5 <n,2 <r,s <n. We

claim that these equalities hold if and only if o = pug = -+ - = u, = 2m/n. To prove
this, we assume that one of p; is equal to 2m/n.
Then by a simple calculation, ps = pug = -+ = p, = 2m/n. Otherwise, p; #

2m/n,2 < i < n. If g, p; > 2m/n or pi,p; < 2m/n, then p; = p;. Otherwise,
i + p1; = 4m/n. Thus Laplacian eigenvalues of G are

07/1'17"' y 15 2,00y U2,

ky1 times ko times

where ki + ks =n—1 and py + po = 4m/n. Since Y"1 | p1; = 2m, kypi1 + kapo = 2m.
Thus

2k1 —n+2
le —n+ 1

ki —ko+3
k1 —ko+2

_2m

2m
H1 = =

( ) (

Since (k1 — k2 +3)/(k1 — k2 +2) > 1, u1 > 2m/n, a contradiction. Thus, in
Equation (1) equality holds if and only if us = pg = -+ = pn, = 2m/n if and only if
G is an empty graph.

It is a well-known fact that M; > %. Equation (2) is now derived from
Equation (1) by this inequality.

To prove (3), suppose ¢(G, %) = 0. Thus 2m/n is a Laplacian eigenvalue and
S0 it is an algebraic integer. So, by a well-known result in algebraic number theory
QT’" is an integer. But for tree QTm = M, a contradiction. Thus ¢(G, 27’”) # 0.

n

Suppose ¢(G,z) = 2" + b, 12" 1 +--- + byz. Then

m = )

2m 2m 2m 2m
86,20 = b (Pt 20
n n n n
This implies that n™|¢(G, 2Tm)| is an integer and so |¢(G, 2Tm)| > 7%" This completes
the third part of the theorem. O
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Suppose G is an n—vertex tree. Since {/n — 1 and for any positive constant c,
{/c — 1, one can see that for large n,

e s 2= +\/(n—1)(n2+4) L =Dn-2)

n n? 2n

Corollary 5. If 27"1 ¢ Z, then

2

LE(G)>TT+\/M1+2m_(n+1) (n—]_)(’l’L—Q) n

n—1

n+ n 4m

4m?
2 2

In particular, for large n, the Laplacian energy of G is greater than or equal to

2 4m? —1)(n—-2
20y o 2 =D =2)
n n 2n
Proof. Apply part (2) of Theorem 5 and this fact that |¢(G, 22)| > L. O

Corollary 6. If G is tree, then

LE(G)

Y

Q(n; b \/Ml L 2An- 17122 —n?)  (n- 131(717 2) 4(n7—l -
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