
MATHEMATICAL COMMUNICATIONS 443
Math. Commun., Vol. 15, No. 2, pp. 443-451 (2010)

Some remarks on Laplacian eigenvalues and Laplacian energy
of graphs

Gholam Hossein Fath-Tabar1 and Ali Reza Ashrafi1,∗

1 Department of Mathematics, Faculty of Science, University of Kashan, Kashan
87317-51167, Iran

Received August 24, 2009; accepted April 7, 2010

Abstract. Suppose µ1, µ2, ... , µn are Laplacian eigenvalues of a graph G. The Laplacian
energy of G is defined as LE(G) =

∑n
i=1 |µi − 2m/n|. In this paper, some new bounds for

the Laplacian eigenvalues and Laplacian energy of some special types of the subgraphs of
Kn are presented.
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1. Introduction and preliminaries

Let G be a graph of order n with the vertex set V (G) = {v1, v2, · · · , vn} and edge set
E(G). The first Zagreb index M1(G) is defined as the sum of squares of degrees in
G. It is well known that M1(G) =

∑
e=uv∈E(G)[d(u) + d(v)]. The adjacency matrix

A(G) = [aij ] of G is a square matrix of order n whose (i, j)-entry is equal to the
number of edges between the vertices vi and vj .

In the case that G is a simple graph, the adjacency matrix A(G) will be a (0,1)-
matrix. The spectrum of G is defined as the set of eigenvalues of A(G), together
with their multiplicities. Let λ1 ≤ λ2 · · · ≤ λn be the eigenvalues of G. The energy
of G is the sum of absolute values of eigenvalues of G. This quantity, introduced by
Ivan Gutman, has noteworthy chemical applications; see [6− 9, 11] for details.

Let D(G) = [dij ] be a diagonal matrix associated with the graph G, where
dii = deg(vi) and dij = 0 if i 6= j. Define L(G) = D(G) − A(G). L(G) is called
the Laplacian matrix of G. The Laplacian polynomial of G is the characteristic
polynomial of its Laplacian matrix, φ(G,µ) = det(µIn − L(G)). Let µ1 ≤ µ2 ≤
· · · ≤ µn be the Laplacian eigenvalues of G, i. e., the roots of φ(G,µ). It is well
known that µ1 = 0 and that the multiplicity of 0 equals the number of connected
components of G.

The Laplacian energy of G is a very recently defined graph invariant [10], defined
as LE(G) =

∑n
i=1 |µi−2m/n|, where n and m are the number of vertices and edges

of G, respectively. LE is a proper extension of the graph-energy concept. An
interested reader should consult the papers [1, 2, 5, 16 − 18, 20 − 22] for the main
properties of the Laplacian energy of graphs.
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The complement of a graph G is denoted by Ḡ, where e ∈ E(G) if and only if
e 6∈ E(Ḡ). Suppose G and H are two graphs with disjoint vertex and edge sets.
The disjoint union of G and H is a graph T such that V (T ) = V (G)

⋃
V (H) and

E(T ) = E(G)
⋂

E(H).
For the sake of completeness, we mention below some results which are important

throughout the paper.

Theorem A [Polya-Szego Inequality, [15]]. Suppose ai and bi, 1 ≤ i ≤ n, are
positive real numbers. Then

n∑

i=1

a2
i

n∑

i=1

b2
i ≤

1
4
(
√

M1M2

m1m2
+

√
m1m2

M1M2
)2(

n∑

i=1

aibi)2,

where
M1 = max1≤i≤n ai, M2 = max1≤i≤n bi, m1 = min1≤i≤n ai and m2 = min1≤i≤n bi.

Theorem B [Ozeki’s Inequality, [14]]. If ai and bi, 1 ≤ i ≤ n, are nonnegative real
numbers, then

n∑

i=1

a2
i

n∑

i=1

b2
i − (

n∑

i=1

aibi)2 ≤ n2

4
(M1M2 −m1m2)2,

where Mi and mi are defined similarly to Theorem A.

Theorem C [Mohar, [13]]. Let G be a graph and e ∈ E(G). Then

µ1(G− e) ≤ µ1(G) ≤ µ2(G− e) ≤ µ2(G) ≤ · · · ≤ µn(G− e) ≤ µn(G).

Theorem D [Biggs, [3]]. Suppose λi and µi, 1 ≤ i ≤ n, are eigenvalues and
Laplacian eigenvalues of G, respectively. Then

∑
λi = 0,

∑
λ2

i = 2m,
∑

µi = 2m and
∑

µ2
i = 2m + M1(G).

Throughout this paper Cn, Pn and Kn denote the cycle, path and complete
graphs on n vertices. The complete bipartite graph with a partition by m and n
vertices is denoted by Km,n. A graph G is called r−regular, if for any vertex x,
deg(x) = r. Our other notations are standard and taken mainly from [3, 4, 12].

2. The Laplacian eigenvalues of some subgraphs of complete
graphs

A matching or edge-independent set of a graph G is a set of edges without common
vertices in G. In this section, the Laplacian eigenvalues and Laplacian energy of
some subgraphs of Kn are investigated.

Lemma 1. If G is a subgraph of Kn with n′ < n vertices, then the Laplacian
eigenvalues of Kn − E(G) are as follows:

0, n− µ1(G), · · · , n− µn′(G), n, · · · , n︸ ︷︷ ︸
n−n′−1 times

.
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Proof. Suppose G′n = G ∪ {V (Kn) − V (G)}. Then Kn − E(G) = Ḡ′n and by [4,
2.6], φ(Ḡ′n, x) = (−1)n x

x−nφ(G′n, n− x). We now apply [4, 2.4] to prove φ(G′n, x) =
φ(G, x)xn−n′ . Therefore,

φ(Ḡ′n, x) = (−1)n x

x− n
φ(G,n− x)(n− x)n−n′ = (−1)nxφ(G,n− x)(n− x)n−n′−1

and a direct calculation implies the theorem.

Corollary 1. Suppose Ei ⊆ E(Kn) is a matching with i elements. Then the Lapla-
cian eigenvalues of Kn − Ei are as follows:

0, n− 2, · · · , n− 2︸ ︷︷ ︸
i times

, n, · · · , n︸ ︷︷ ︸
n−i−1 times

.

Proof. The complement of Kn − Ei consists of i copies of K2 and n− 2i copies of
K1. Thus its spectrum is 0 (n− i times) and 2 (i times). So the result follows from
the Lemma 1 and [4, 2.6].

Corollary 2. If G2s is a Cocktail-Party graph with 2s vertices, then the Laplacian
eigenvalues of G2s are 0, 2s− 2, · · · , 2s− 2︸ ︷︷ ︸

s times

, 2s, · · · , 2s︸ ︷︷ ︸
s−1 times

.

Corollary 3. LE(Kn − Ei) = 2(n− i− 1)− (4i/n)(i + 1).

Lemma 2. The Laplacian eigenvalues of Kn,n − e are computed as follows:

0,
3n− 2−√n2 + 4n− 4

2
, n, · · · , n︸ ︷︷ ︸
n−3 times

,
3n− 2 +

√
n2 + 4n− 4
2

.

Therefore, LE(Kn,n − e) = n + 2− 4/n +
√

n2 + 4n− 4.

Proof. We know that
0, n, n, · · · , n︸ ︷︷ ︸

n−2 times

, 2n

are the Laplacian eigenvalues of Kn,n [3]. By Theorem C, the Laplacian eigenvalues
of Kn,n − e satisfy the following inequalities:

0 = µ1 ≤ µ2 ≤ µ3 = n = · · · = µ2n−1 ≤ µ2n.

Since∑
µi = 2m,

∑
µ2

i = 2m + M1(G), µ2 + µ2n = 3n− 2 and µ2
2 + µ2

2n = 5n2 − 4n,
µ2µ2n = 2(n− 1)2. This concludes that

µ2 =
3n− 2−√n2 + 4n− 4

2
and µ2n =

3n− 2 +
√

n2 + 4n− 4
2

.

For the second part, we notice that LE(Kn,n − e) =
∑2n

i=1 |µi − n + 1/n| = n + 2−
4/n +

√
n2 + 4n− 4, proving the result.
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Theorem 1. Suppose G is a graph. Then |LE(G − e) − LE(G)| < 4 and 4 is the
best possible bound.

Proof. Define µ′i = µi(G− e). By Theorem C, µi − µ′i ≥ 0 and
∑n

i=1[µi − µ′i] = 2.
So, there exists i, 1 ≤ i ≤ n, such that µi > µ′i. This implies that

n∑

i=1

∣∣∣∣µi − µ′i −
2
n

∣∣∣∣ <

n∑

i=1

[
|µi − µ′i|+

2
n

]

and we have:

|LE(G− e)− LE(G)| =

∣∣∣∣∣
n∑

i=1

|µi − 2
m

n
| − |µ′i − 2

m− 1
n

|
∣∣∣∣∣

=

∣∣∣∣∣
n∑

i=1

[
|µi − 2

m

n
| − |µ′i − 2

m− 1
n

|
]∣∣∣∣∣

≤
n∑

i=1

∣∣∣∣|µi − 2
m

n
| − |µ′i − 2

m− 1
n

|
∣∣∣∣

≤
n∑

i=1

∣∣∣∣µi − µ′i −
2
n

∣∣∣∣

<

n∑

i=1

[
|µi − µ′i|+

2
n

]

=
n∑

i=1

[
µi − µ′i +

2
n

]
= 4.

To complete the argument we construct a sequence {Gn}n≥2 of graphs such that
|LE(Gn − e) − LE(Gn)| −→ 4. Define Gn = K̄n + e. Then LE(Gn) = 4 − 4

n and
LE(Gn − e) = 0 and so |LE(Gn − e)−LE(Gn)| = 4− 4

n −→ 4. This completes the
argument.

3. Bounds on the Laplacian eigenvalues and the Laplacian en-
ergy of graphs

In this section, a variety of upper and lower bounds for the Laplacian eigenvalues
of a graph G and its Laplacian energy are presented. At first, we apply Ozeki’s
theorem to obtain a simple inequality on the energy of graphs. By Theorem B,

E(G) ≥
√

2mn− n2

4
(an − a1)2,

where a1 and an are minimum and maximum values of the set {|λi| | 1 ≤ i ≤ n}.
Theorem 2. Suppose zero is not an eigenvalue of G. Then

E(G) ≥ 2
√

2mn
√

a1an

a1 + an
,



Some remarks on Laplacian eigenvalues and Laplacian energy of graphs 447

where a1 and an are minimum and maximum of the absolute value of λ,
is. In par-

ticular, if G is k−regular, then

LE(G) = E(G) ≥ 2nk
√

2a1

a1 + k
.

Proof. Suppose λi, 1 ≤ i ≤ n, are the eigenvalues of G. We also assume that
ai = |λi|, where a1 ≤ a2 ≤ · · · ≤ an and bi = 1, 1 ≤ i ≤ n. Apply Theorem A to
show that

n∑

i=1

|λi|2
n∑

i=1

12 ≤ 1
4

(√
|λn|
|λ1| +

√
|λ1|
|λn|

)2

(
n∑

i=1

|λi|)2.

Therefore, by
∑n

i=1 |λi|2 = 2m and a simple calculation,

E(G) ≥ 2
√

2mn
√

a1an

a1 + an
.

To prove the second part, it is enough to notice that an = k and 2m = nk for
k−regular graphs.

Theorem 3. Let G be a connected graph with the smallest and largest positive
Laplacian eigenvalues µ2 and µn, respectively. Then

√
µn/µ2 +

√
µ2/µn ≥ (

√
n− 1/m)

√
2m + M1(G).

In particular, if G is an n−vertex tree, then
√

µn/µ2+
√

µ2/µn ≥
√

(6n− 8)/(n− 1).

Proof. Suppose ai = 1 and bi = µi, 2 ≤ i ≤ n. Apply Theorem B to show that,

n∑

i=2

12
n∑

i=2

µ2
i ≤

1
4

(√
µn

µ2
+

√
µ2

µn

)2

(
n∑

i=2

µi)2.

Since

n∑

i=2

µ2
i = 2m + M1(G),

√
µn/µ2 +

√
µ2/µn ≥ (

√
n− 1/m)

√
2m + M1(G).

When G is a tree with at least three vertices, d(u)+d(v) ≥ 3 and so M1(G) ≥ 3(n−1),
as desired.

Corollary 4. With notation of Theorem 3, µn/µ2 + µ2/µn ≥ n−1
m (2 + 4m

n )− 2. In
particular, when G is an n−vertex tree, µn/µ2 + µ2/µn ≥ 4− 4

n .

Theorem 4. Suppose G is a graph without isolated vertices. Then

µn − µ2 ≥ 4
(n− 1)2

[(n− 1)(2m + M1(G))− 4m2].
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Proof. Suppose ai = 1 and bi = µi, 2 ≤ i ≤ n. Apply Theorem B to show that

(n− 1)
n∑

i=2

µ2
i − (

n∑

i=2

µi)2 ≤ (n− 1)2

4
(µn − µ2)2.

Since

n∑

i=2

µ2
i = 2m + M1(G), µn − µ2 ≥ 4

(n− 1)2
[(n− 1)(2m + M1(G))− 4m2],

which proves the theorem.

We now prove some new bounds for the energy and Laplacian energy of graphs.

Theorem 5. Suppose G is a graph. Then

2(n−1)
√

4m2[LE(G)− 2m

n
]

≥
√

n−1
√

4m2[M1 + 2m− (n + 1)
4m2

n2
] + 2

(
n− 1

2

)
n−1

√
n2φ(G,

2m

n
)
2
, (1)

with equality if and only if G is an empty graph. In particular, if G is a non-empty
graph, then

LE(G) >
2m

n
+

√
2m− 4m2

n2
+ 2

(
n− 1

2

)
n−1

√
n2

4m2
φ(G,

2m

n
)
2
. (2)

Moreover, if T is an n−vertex tree, n ≥ 3, then

LE(T ) >
2(n− 1)

n

+

√
M1(T ) + (n− 1)(6− 4

n2
) +

(n− 1)(n− 2)
n

n−1

√
n

4(n− 1)2
. (3)

Proof. By a well-known theorem of algebraic graph theory, µ1 = 0 and so,

LE(G) =
n∑

i=1

|µi − 2m

n
| = 2m

n
+

n∑

i=2

|µi − 2m

n
|. (4)
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If x =
∑n

i=2 |µi − 2m
n |, then by the arithmetic-geometric mean inequality,

x2 =
n∑

i=2

|µi − 2m

n
|2 + 2

∑

i 6=j,i,j=2,3,···n
|µi − 2m

n
||µj − 2m

n
|

= M1 + 2m− 4m2

n
− 4m2

n2
+ 2

∑

i6=j,i,j=2,3,···n
|µi − 2m

n
||µj − 2m

n
|

≥ M1 + 2m− 4m2

n
− 4m2

n2
+ 2

(
n− 1

2

)
(Πn

i=2|µi − 2m

n
|2(n−2))1/(n−1)(n−2)

= M1 + 2m− 4m2

n
− 4m2

n2
+ 2

(
n− 1

2

)
(Πn

i=2(µi − 2m

n
))2/(n−1)

= M1 + 2m− (n + 1)
4m2

n2
+ 2

(
n− 1

2

)
n−1

√
n2

4m2
φ(G,

2m

n
)
2
. (5)

Equation (1) is a direct consequence of (4) and (5) with equality if and only if
|µi − 2m/n||µj − 2m/n| = |µr − 2m/n||µs − 2m/n|, 2 ≤ i, j ≤ n, 2 ≤ r, s ≤ n. We
claim that these equalities hold if and only if µ2 = µ3 = · · · = µn = 2m/n. To prove
this, we assume that one of µi is equal to 2m/n.

Then by a simple calculation, µ2 = µ3 = · · · = µn = 2m/n. Otherwise, µi 6=
2m/n, 2 ≤ i ≤ n. If µi, µj ≥ 2m/n or µi, µj ≤ 2m/n, then µi = µj . Otherwise,
µi + µj = 4m/n. Thus Laplacian eigenvalues of G are

0, µ1, · · · , µ1︸ ︷︷ ︸
k1 times

, µ2, · · · , µ2︸ ︷︷ ︸
k2 times

,

where k1 +k2 = n−1 and µ1 +µ2 = 4m/n. Since
∑n

i=1 µi = 2m, k1µ1 +k2µ2 = 2m.
Thus

µ1 =
2m

n
(
2k1 − n + 2
2k1 − n + 1

) =
2m

n
(
k1 − k2 + 3
k1 − k2 + 2

).

Since (k1 − k2 + 3)/(k1 − k2 + 2) > 1, µ1 > 2m/n, a contradiction. Thus, in
Equation (1) equality holds if and only if µ2 = µ3 = · · · = µn = 2m/n if and only if
G is an empty graph.

It is a well-known fact that M1 ≥ 4m2

n . Equation (2) is now derived from
Equation (1) by this inequality.

To prove (3), suppose φ(G, 2m
n ) = 0. Thus 2m/n is a Laplacian eigenvalue and

so it is an algebraic integer. So, by a well-known result in algebraic number theory
2m
n is an integer. But for tree 2m

n = 2(n−1)
n , a contradiction. Thus φ(G, 2m

n ) 6= 0.
Suppose φ(G, x) = xn + bn−1x

n−1 + · · ·+ b1x. Then

φ(G,
2m

n
) = (

2m

n
)n + bn−1(

2m

n
)n−1 + · · ·+ b1

2m

n
6= 0.

This implies that nn|φ(G, 2m
n )| is an integer and so |φ(G, 2m

n )| ≥ 1
nn . This completes

the third part of the theorem.
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Suppose G is an n−vertex tree. Since n
√

n −→ 1 and for any positive constant c,
n
√

c −→ 1, one can see that for large n,

LE(G) ≥ 2(n− 1)
n

+

√
(n− 1)(n2 + 4)

n2
+

(n− 1)(n− 2)
2n

.

Corollary 5. If 2m
n 6∈ Z, then

LE(G) ≥ 2m

n
+

√
M1 + 2m− (n + 1)

4m2

n2
+

(n− 1)(n− 2)
n

n−1

√
n

4m2
.

In particular, for large n, the Laplacian energy of G is greater than or equal to

2m

n
+

√
2m− 4m2

n2
+

(n− 1)(n− 2)
2n

.

Proof. Apply part (2) of Theorem 5 and this fact that |φ(G, 2m
n )| ≥ 1

nn .

Corollary 6. If G is tree, then

LE(G) ≥ 2(n− 1)
n

+

√
M1 +

2(n− 1)(2− n2)
n2

+
(n− 1)(n− 2)

n
n−1

√
n

4(n− 1)2
.
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