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Abstract. This paper deals with numerical analysis of a reaction diffusion model from
mathematical ecology posed in an unbounded spatial domain. For numerical simulations
we replace the original system with an equivalent one posed in a bounded domain. This is
done by means of an algebraic map in conjunction with a spectral method. For the semidis-
cretization in time we use an exponential time differencing scheme, the resulting scheme
is explicit both in space and time. Improved error estimates are derived and the com-
putational efficiency of the algorithm is considered. Finally, we present several numerical
simulations which are useful for making pertinent biological deductions.
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1. Introduction

In this paper we deal with the following system of reaction-diffusion equations

ut = a14u + u
(
a− au

K
− cv

v + g

)
, u(0) = u0, (1a)

vt = a24v + v
(
−A +

ku

u + B

)
, v(0) = v0, (1b)

where u0, v0 ∈ L2(Rd) and4 is the Laplacian. In mathematical ecology (1) is known
as the Caughley model with diffusion [14]. The unknown functions u and v represent
densities of trees and elephants, respectively. The reaction terms provide a type II
functional response of the system. Equation (1) contains a number of ecological
parameters, their meaning are as follows: a — the natural rate of increase, K — the
tree carrying capacity, c — the instantaneous elimination rate of tree by elephants,
g — the threshold above which tree destruction depends only on the elephants, A —
the elephants decrease rate in the absence of trees, k — the ameliorated decrease rate
in given ratio of trees to elephants, B — the threshold above which the amelioration
depends only on the trees. The major difficulty in the numerical simulation of (1)
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stems from the unboundedness of the spatial domain. The standard solution in this
situation is to replace the original system (1) posed on the infinite domain by an
equivalent one posed on a bounded domain.

The reduction strategy depends on the aims of the numerical simulation and
on the physical nature of the phenomena under investigation. For instance, if one
is interested in the solutions of (1) in a bounded subdomain Ω ⊂ Rn, then it is
natural to introduce artificial (or transparent) boundary conditions (ABC or TBC)
on ∂Ω. This technique works well for linear equations when initial data is compactly
supported in the interior of Ω. When the asymptotical behaviour of the solution is
known a priori the ABC method could be extended to nonlinear equations as well.
Another possible approach is based on the fast evaluation of the heat potential. This
method is specifically designed to cope with linear equations.

We are interested in the long time behaviour of the complete system (1). As
a consequence of that and also due to the nonlinearities involved in the model the
techniques based on the domain truncation are not suitable. Better results are
obtained if we map Rn onto a bounded domain and then solve the resulting system
numerically. In the present paper we propose an algorithm based on an algebraic
map in conjunction with a spectral discretization in space.

The paper is organized as follows: section 2 deals with numerical discretization
of (1). The detailed account on the time semidiscretization is provided in subsec-
tion 2.1. The analysis of spectral approximations is given in subsection 2.2. In
section 3, some aspects of practical computations are addressed. The final section
contains the results of numerical simulations.

2. Numerical discretization

To obtain a computational scheme we discretize (1) first in time and then in space.

2.1. Semidiscretization in time

Equation (1) can be viewed as an abstract differential equation of the form ut =
Lu + f(u). In (1) the nonlinear operator L + f(·) generates a strongly continuous
semigroup over L2(Rd) for d ≤ 3, see [14], consequently, the solution can be written
as

u(t + τ) = eτLu(t) +
∫ τ

0

e(t−s)Lf(u(t + s))ds, (2)

where τ > 0 is a stepsize. The simplest semidiscretization in time is obtained if we
let uk ≈ u(kτ) and replace f(u(kτ + s)) with f(u(kτ)) in the integral term of (2)

uk+1 = eτLuk + τψ1(τL)f(uk), k ≥ 0, (3)

where

ψ0(z) = ez, ψ`(z) =
1

(`− 1)!

∫ 1

0

esz(1− s)`−1ds, ` = 1, 2, . . . (4)

Scheme (3) is known as the Exponential Time Differencing (ETD) Euler method. In
general, methods of the form (3) are known as the exponential integrators, a survey
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on the exponential multistep and Runge-Kutta methods is available in [10]. In our
computations we use the exponential five-stage Runge-Kutta scheme of stiff order
four developed by Hochbruck and Ostermann [8]

uk,1 = e
τ
2Luk +

τ

2
ψ1,2(τL)f(uk), (5a)

uk,2 = e
τ
2Luk + τ

[1
2
ψ1,2 − ψ2,2

]
(τL)f(uk) + τψ2,2(τL)f(uk,1), (5b)

uk,3 = eτLuk + τ
[
ψ1 − 2ψ2

]
(τL)f(uk) + τψ2(τL)

[
f(uk,1) + f(uk,2)

]
, (5c)

uk,4 = e
τ
2Luk + τ

[1
2
ψ1,2 − 2a5,2 − a5,4

]
(τL)f(uk)

+τa5,2(τL)
[
f(uk,1) + f(uk,2)

]
+ τa5,4(τL)f(uk,3), (5d)

uk+1 = eτLuk + τ
[
ψ1 − 3ψ2 + 4ψ3

]
(τL)f(uk)

+τ
[
4ψ3 − ψ2

]
(τL)f(uk,3) + τ

[
4ψ2 − ψ3

]
(τL)f(uk,4), (5e)

where

a5,2 =
1
2
ψ2,2 − ψ3 +

1
4
ψ2 − 1

2
ψ3,2, a5,4 =

1
4
ψ2,2 − a5,2, ψ`,2(z) = ψ`

(1
2
z
)
.

Semidiscretization (5) converges to the solution of (1) with order four, i.e. ‖uk −
u(kτ)‖L2(Rd) = O(τ4), provided that the nonlinearity f(u) is sufficiently smooth
and uk, uk,j , f(uk), f(uk,j) ∈ L2(Rd), j = 1, . . . , 5, k ≥ 0 are known exactly. In a
computational scheme these quantities must be approximated and since the space
L2(Rd) is separable, it is natural to use a pseudospectral approach. The details are
provided in the next subsection.

2.2. Discretization in space

Given a separable Hilbert space H and an orthogonal basis {φn}n≥0, in the spectral
(pseudospectral) approach we approximate f ∈ H by its truncated Fourier series
(interpolant). A particular choice of the family {φn}n≥0 depends on the structure
of H. In a classical situation, when H = L2

w([−1, 1]), w(x) = (1 + x)α(1 − x)β ,
the bases are provided by Jacobi polynomials P

(α,β)
n (x), n ≥ 0, α, β > −1. Two

cases α = β = −1/2 (Chebyshev polynomials Tn(x)) and α = β = 0 (Legendre
polynomials Pn(x)) are of special importance, see [4, 5, 6].

Since we deal with H = L2(Rd), the spatial domain is unbounded and as a result
the choice of a good family {φn}n≥0 becomes a very delicate issue. We mention
that for d = 1 the computationally feasible options are: the Hermite functions, the
sinc expansion, use of mappings in conjunction with classical Jacobi polynomials,
see [4, 5] and references therein. By the reasons discussed in the introduction we
employ the last alternative. For the sake of simplicity, we assume that d = 1. Let
` > 0 be a parameter, then y = x/(

√
`2 + x2) maps R into [−1, 1]. As the complete

orthogonal basis in L2(R) we use the following modification of algebraically mapped
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Chebyshev polynomials TBn(x) = Tn

( x√
`2 + x2

)
(see [4]):

φn(x) =

√
`√

`2 + x2
TBn(x) =

√
`√

`2 + x2
cos(n arccot x/`), n ≥ 0. (6)

Some approximation properties of (6) can be derived directly from the theory of
TBn, see [4] and references therein. Below we provide new L2(R) approximation
results in the spirit of [9], see also [5]. We found that the analysis simplifies if we
work with Fourier images of φn. Further, we briefly mention some results related to
fractional integrodifferentiation and the Fourier transform.

2.2.1. Bessel fractional integroderivatives

Our presentation closely follows [12, pp. 253-256], see also [2, pp. 219-222]. Let
f(x) be a function, by f̂(s) or F [f ](s) we denote its normalized Fourier transform

F [f ](s) =
1√
2π

∫
R f(x)e−isxdx. The left and the right Bessel fractional integrals

(derivatives) of order α, <α > 0 (<α ≤ 0) are defined as follows

F [Jα,q
± f ](s) =

f̂(s)
(q ∓ is)α

, for some 0 < q < ∞. (7)

The number q is a normalization parameter, it helps to simplify some of our analyt-
ical calculations. We mention the following properties of Bessel fractional integrals
(7) (see [12, pp. 253-256]): Jα,q

± are bounded linear operators in Lp(R), they satisfy

Jα,q
± Jβ,q

± f = Jα+β,q
± f, <α,<β > 0, f ∈ Lp(R), 1 ≤ p ≤ ∞, (8)

the family {Jα,q
± }α>0 generates a continuous semigroup in Lp(R) and the formula of

fractional integration by parts
∫

R
fJα,q

± gdx =
∫

R
gJα,q
∓ fdx, <α > 0, (9)

holds, where f ∈ Lp(R), g ∈ L(p−1)/p(R), 1 ≤ p ≤ ∞. The definition of Jα,q
± , <α > 0

yields

F [Jα,q
± f ](s) =

f̂(s)
(q ∓ is)α

and F−1[Jα,q
± f̂ ](x) =

f(x)
(q ± ix)α

, (10)

where f ∈ Lp(R), 1 ≤ p ≤ 2 and f̂ ∈ Lp/(p−1)(R) according to the Hausdorff-Young
inequality.

Bessel fractional derivative J−α,q
± is the left inverse to Jα,q

± , <α > 0, that is
J−α,q
± Jα,q

± = I, see [12, pp. 253-256]. The formula of fractional integration by parts
takes the form ∫

R
fJ−α,q

± gdx =
∫

R
gJ−α,q
∓ fdx, (11)
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provided that f, J−α,q
± f ∈ Lp(R) and g, J−α,q

± g ∈ Lp/(p−1)(R) for some 1 ≤ p ≤ ∞.
In complete analogy with (10), we have

F [J−α,q
± f ](s) = (q ∓ is)αf̂(s) and F−1[J−α,q

± f̂ ](x) = (q ± ix)αf(x), (12)

provided that J−α,q
± f ∈ Lp(R) and 1 ≤ p ≤ 2.

In the sequel we prove the following analogue of Lemma 3.2 from [12, p. 67]:

Lemma 1. Let f ∈ L2(R) and α, β > 0, then

‖J−α,1
± [(1 + x2)βf ]

∥∥
L2(R)

≤ cα,β

∥∥(1 + x2)βJ−α,1
± f

∥∥
L2(R)

, (13)

where cα,β > 0 does not depend on f , provided that
∥∥(1 + x2)βJ−α,1

± f
∥∥

L2(R)
< ∞.

Proof. It is sufficient to prove (13) for 0 < α < 1 and 0 < β ≤ 1/2. For the general
case we then have

cα,β = c
4bβcbαc
1/2,1/2 c

2bαc
1/2,{β}c

2bβc
{α},1/2c{α},{β}, 0 ≤ {β} ≤ 1/2,

cα,β = c
2(2bβc+1)bαc
1/2,1/2 c

2bαc
1/2,{β}−1/2c

2bβc+1
{α},1/2c{α},{β}−1/2, 1/2 < {β} < 1,

where α = bαc+ {α}, β = bβc+ {β} and the symbols bαc, bβc and {α}, {β} denote
integer and fractional part of α and β, respectively.

For the sake of brevity, we prove (13) for the left Bessel fractional derivative only,
the proof for Jα,1

− is almost identical. The inequality
∥∥(1 + x2)βJ−α,1

+ f
∥∥

L2(R)
< ∞

implies that there exists ψ ∈ L2(R) such that f = Jα,1
+ [(1 + x2)−βψ]. We show that

f = (1 + x2)−βJα,1
+ φ for φ = ψ +Kψ ∈ L2(R), where

K[ψ](x) =
2β sin πα

π

x∫

−∞
K(x, t)ψ(t)dt, K(x, t) =

et−x

x− t

x∫

t

(y − t

x− t

)α y(1 + y2)β−1

(1 + t2)β
dy.

First, we note that K is a linear bounded operator in L2(R). Indeed, the elementary
inequality (1 + (a + b)2)β ≤ (1 + a2)β + (1 + b2)β , which holds for all a, b ∈ R and
0 ≤ β ≤ 1/2, yields the pointwise estimate

|K[ψ](x)| ≤ 2β sin πα

π

∫ x

−∞
et−x|ψ(t)|dt

∣∣∣∣
1

x− t

∫ x

t

(y − t

x− t

)α y(1 + y2)β−1

(1 + t2)β
dy

∣∣∣∣

≤ 2β sin πα

π

∫ x

−∞
et−x |ψ(t)|

(1 + t2)β
dt

×
∣∣∣∣(1 + x2)β − α

∫ 1

0

sα−1
(
1 + (t + (x− t)s)2

)β
ds

∣∣∣∣

≤ 2β sin πα

π

∫ x

−∞
et−x |ψ(t)|

(1 + t2)β

∣∣∣(1 + x2)β − (1 + min{x2, t2})β
∣∣∣dt

≤ 2β sin πα

π

∫ x

−∞
et−x |ψ(t)|

(1 + t2)β

∣∣∣(1 + x2)β − (1 + t2)β
∣∣∣dt
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≤ 2β sin πα

π

∫ x

−∞
et−x(1 + (x− t)2)β |ψ(t)|

(1 + t2)β
dt

=
2β sin πα

π
e−x(1 + x2)βh(x) ∗ |ψ(x)|

(1 + x2)β
,

where ∗ denotes the Fourier convolution and h(x) =
1 + sgn(x)

2
is the Heaviside

function. Since κβ = ‖e−xh(x)(1 + x2)β‖L1(R) =
∫∞
0

e−x(1 + x2)βdx < ∞, the

theorem of Young ([2, p.90]) implies ‖Kψ‖L2(R) ≤
2βκβ sin πα

π
‖ψ‖L2(R).

Second, taking into account Jα,1
+ φ =

e−xh(x)xα−1

Γ(α)
∗ φ and the formula [12, p.163]

π

sin πα

1
b− x

∣∣∣x− a

x− b

∣∣∣
α−1

=
∫ b

a

(y − a)α−1(b− y)−α

y − x
dy, x < a or x > b,

we arrive at the identity Jα,1
+ [(1 + x2)−βψ] = (1 + x2)−βJα,1

+ [ψ +Kψ], which yields
(13) with cα,β = 1 + (2βκβ sinπα)/π.

Corollary 1. Let f ∈ L2(R) and α, β > 0, then
∥∥(1 + x2)βJ−α,1

± f
∥∥

L2(R)
≤ c2β,α/2‖J−α,1

± [(1 + x2)βf ]
∥∥

L2(R)
, (14)

where cα,β > 0 is the same as in Lemma 1.

Proof. By (12),
∥∥(1 + x2)βJ−α,1

± f
∥∥

L2(R)
=

∥∥J−β,1
± J−β,1

∓ [(1 + s2)α/2f̃ ]
∥∥

L2(R)

and ∥∥J−α,1
± [(1 + x2)βf ]

∥∥
L2(R)

=
∥∥(1 + s2)α/2J−β,1

± J−β,1
∓ f̂

∥∥
L2(R)

,

where f̂ = F [f ] and f̃ =
(1∓ is)α/2

(1± is)α/2
f̂ . Lemma 1 yields the result.

In view of (10), (12), Lemma 1 and Corollary 1 it is convenient to work with the
space

H2
α,β(R) = {f |

∥∥J−α,1[(1 + x2)β/2f ]
∥∥

L2(R)
< ∞},

where J−α,1 = J
−α/2,1
± J

−α/2,1
∓ . H2

α,β(R) is a Hilbert space with respect to one of
two inner products

〈f, g〉H2
α,β(R) =

∫

R
(1 + x2)β

(
J−α,1[f ]

)(
J−α,1[g]

)
dx,

〈f, g〉∗,H2
α,β(R) =

∫

R

(
J−α,1[(1 + x2)β/2f ]

)(
J−α,1[(1 + x2)β/2g]

)
dx,

where the corresponding induced norms ‖ · ‖H2
α,β(R) and ‖ · ‖∗,H2

α,β(R) are equivalent.
We mention that F [H2

α,β(R)] = H2
β,α(R), i.e. H2

α,β(R) is invariant under the Fourier
transform. Note that H2

α,0(R) = H2,α(R) is a well known fractional order Sobolev
space, see [2].



Numerical analysis of the Caughley model 469

2.2.2. Approximation in L2(R)

Let N be a positive integer, PN a subspace of L2(R) spanned by {φn}N
n=0, P̂N a

subspace of L2(R) spanned by {φ̂n}N
n=0 and let PN : L2(Rn) → PN , P̂N : L2(Rn) →

P̂N denote the orthogonal projectors onto Pn and P̂n, respectively. Our task is to
estimate ‖f −PNf‖L2(R) = ‖f̂ − P̂Nf‖L2(R). We begin with a technical lemma.

Lemma 2. Let L
(α)
n (s) be the generalized Laguerre polynomial of degree n and Y0(s)

the Bessel function of the second kind (see [1]), then

φ̂0(s) =

√
π`

2
√

2

[
Y0(i`s) + Y0(−i`s)

]
, (15a)

φ̂2n(s) = −
√

π`√
2

(
J1,1 d

ds
sgn(s) + 1

)[
e−`|s|Ln(2`|s|)

]
, n ≥ 1, (15b)

φ̂2n+1(s) = −i

√
π`√
2

sgn(s)e−`|s|Ln(2`|s|), n ≥ 0. (15c)

Proof. Formula (15a) is trivial. To establish (15b) and (15c) consider the generating
functions

ge(x, ξ) =
∑

n≥0

ξnφ2(n+1) =
√

`
(1− ξ)x2 − (1 + ξ)`2

(1− ξ)2x2 + (1 + ξ)2`2
,

go(x, ξ) =
∑

n≥0

ξnφ2n+1 =

√
`(1− ξ)x

(1− ξ)2x2 + (1 + ξ)2`2
,

where |ξ| < 1. Their Fourier transforms are

ĝe(s, ξ) = −
√

π`√
2

(
J1,1 d

ds
sgn(s) + 1

)[ 1
1− ξ

exp
{ξ2`|s|

ξ − 1

}]
,

ĝo(s, ξ) = −i

√
π`√
2

sgn(s)e−`|s| 1
1− ξ

exp
{ξ2`|s|

ξ − 1

}
,

since
exp{ξs/(ξ − 1)}

(1− ξ)−α−1
=

∑
n≥0

L
(α)
n (s), see [1, p. 784], the result follows.

It is convenient to study odd functions first.

Lemma 3. Let f ∈ H2
α,β be an odd function, then

‖f −PNf‖L2(R) ≤
c

min{1, `γ}Nγ/2
‖f‖H2

α,β(R), (16)

where γ=min{2α, β}. The positive constant c does not depend on N and f .

Proof. The assumptions of Lemma 3 imply that f̂ ∈ H2
β,α and f̂ is odd. Hence, the

derivative J−γ,`
− f̂(s) is well defined. Taking into account the definitions of Bessel
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fractional integroderivatives, formulas (11), (15c) and the identity [11, p. 462, for-
mula 2.19.2.2]

Jγ,`
+ [e−`sLn(2`s)h(s)] =

Γ(n + 1)
Γ(n + γ + 1)

sγe−`sL(γ)
n (2`s)h(s), <γ > 0,

we obtain

a2n+1 = 〈f, φ2n+1〉 = 〈f̂ , φ̂2n+1〉 = −i
√

2π`

∫

R
e−`sLn(2`s)h(s)f̂(s)ds

= −i
√

2π`

∫

R
J−γ,`

+ Jγ,`
+ [e−`sLn(2`s)h(s)]f̂(s)ds

= −i
√

2π`

∫

R
Jγ,`

+ [e−`sLn(2`s)h(s)]J−γ,`
− [f̂(s)]ds

= −i
√

2π`
Γ(n + 1)

Γ(n + γ + 1)

∫

R
sγe−`sL(γ)

n (2`s)
(
h(s)J−γ,`

− [f̂(s)]
)
ds.

The family {sγ/2e−s/2L
(γ)
n (s)}n≥0 forms an orthogonal basis in L2(R+) [13, p. 108]

and since ‖sγ/2e−s/2L
(γ)
n (s)‖2L2(R+) =

Γ(n + γ + 1)
Γ(n + 1)

, we have

‖f−PNf‖2L2(R) =
2
π

∑

n≥[N/2]

a2
2n+1

= 4`
∑

n≥[N/2]

Γ2(n + 1)
Γ2(n + γ + 1)

(∫

R
sγe−`sL(γ)

n (2`s)
(
h(s)J−γ,`

− [f̂(s)]
)
ds

)2

≤ 2Γ([N/2] + 1)
(2`)γΓ([N/2] + γ + 1)

∑

n≥0

(2`)γ+1Γ(n + 1)
Γ(n + γ + 1)

×
(∫

R
sγ/2e−`sL(γ)

n (2`s)
(
sγ/2h(s)J−γ,`

− [f̂(s)]
)
ds

)2

=
2Γ([N/2] + 1)

(2`)γΓ([N/2] + γ + 1)

∥∥sγ/2J−γ,`
− [f̂(s)]

∥∥2

L2(R+)
.

Due to Lemma 1 and formula (12)

1
`γ

∥∥sγ/2J−γ,`
− [f̂(s)]

∥∥
L2(R+)

≤ cγ/2,γ

min{1, `γ}‖f‖H2
γ/2,γ

(R),

thus, estimate (16) is the consequence of Stirling’s formula.

For even functions we have a similar result.

Lemma 4. Let f ∈ H2
α,β be an even function, then

‖f −PNf‖L2(R) ≤
c

min{1, `γ}Nγ/2
‖f‖H2

α,β(R), (17)

where γ=min{2α, β}. The positive constant c does not depend on N and f .
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Proof. The proof is completely identical to that of Lemma 3 and it is omitted.

Estimates (16) and (17) together yield

Theorem 1. Let f ∈ L2
α,β, α, β ≥ 0 and γ = min{2α, β}, then

‖f −PNf‖L2(R) ≤
c

min{1, `γ}Nγ/2
‖f‖H2

α,β(R), (18)

where c > 0 does not depend on N and f .

We mention that inequality (16) improves the result of [9], where an estimate for
Laguerre type spectral approximations is obtained using an interpolation of Sobolev
spaces.

2.2.3. Pseudospectral discretization in space

Using the pseudospectral approach we shall replace uk in (5) with its truncated
spectral expansion. According to (6), the spectral coefficients are given by

uk,n = 〈uk, φn〉 =
∫

R
(uk(x), φn(x))dx =

∫ π

0

uk(ξ)
sin ξ

cos nξdξ, 0 ≤ n ≤ N − 1,

where ξ = arccot
x

`
. In practice, the coefficient uk,n cannot be computed exactly

and the integral must be replaced with a quadrature formula. Since uk ∈ L2(R), i.e.
u(±∞) = 0, we use Gauss quadrature

ũk,j =
2
N

N−1∑
n=0

uk(ξn)
sin(ξn)

cos jξn, ξn =
2n + 1

2N
π, (19)

0 ≤ n ≤ N − 1, 0 ≤ j ≤ N − 1.
It is straightforward to verify that the discrete expansion interpolates uk(x) at

the Gaussian points, i.e.

ũk(xn) =
ũk,0

π
φ0(xn) +

N−1∑

j=1

2ũk,j

π
φj(xn), xn = ` cot

2n + 1
2N

π. (20)

0 ≤ n ≤ N − 1.
Thus, we can write ũk = INuk, where IN is the interpolation operator defined

by (19) and (20). The simplest space discretization of (5) is obtained if we re-
place the quantities u, eLu and ψ(L)f(u) with their interpolants INu, INeLũ and
INψ(L)INf(ũ), respectively.

Figure 1.



472 S. Shindin and N.Parumasur

The resulting numerical scheme is explicit both in time and space. Its local or-
der of approximation is four in time. Order of approximation in space is given by
Theorem 1. Unfortunately, numerical experiments show that the method is numer-
ically unstable. The problem is that the nonlinear terms INf(ũ) rapidly amplify
the approximation error introduced by the truncated discrete expansion of uk. As
a result, after a short time the numerical solution develops parasitic high frequency
spatial oscillations and the numerical scheme blows up. The standard solution to
the problem is to use filtering, see [4, 5, 6]. In our computations we use the simplest
second order filter (the raised cosine filter)

FNu =
1
π

N−1∑

j=0

ũj

(
1 + cos

( j

N

))
φj .

The resulting method takes the form

ũk,1 = IN

(
e

τ
2Lũk +

τ

2
ψ1,2(τL)FNf(ũk)

)
, (21a)

ũk,2 = IN

(
e

τ
2Lũk + τ

[1
2
ψ1,2 − ψ2,2

]
(τL)FNf(ũk) (21b)

+τψ2,2(τL)FNf(ũk,1)
)
,

ũk,3 = IN

(
eτLũk + τ

[
ψ1 − 2ψ2

]
(τL)FNf(ũk) (21c)

+τψ2(τL)FN

[
f(ũk,1) + f(ũk,2)

])
,

ũk,4 = IN

(
e

τ
2Lũk + τ

[1
2
ψ1,2 − 2a5,2 − a5,4

]
(τL)FNf(ũk) (21d)

+τa5,2(τL)FN

[
f(ũk,1) + f(ũk,2)

]
+ τa5,4(τL)FNf(ũk,3)

)
,

ũk+1 = IN

(
eτLũk + τ

[
ψ1 − 3ψ2 + 4ψ3

]
(τL)FNf(ũk) (21e)

+τ
[
4ψ3 − ψ2

]
(τL)FNf(ũk,3) + τ

[
4ψ2 − ψ3

]
(τL)FNf(ũk,4)

)
.

The filter efficiently damps all parasitic spatial oscillations and the resulting method
is stable and suitable for long time numerical simulations. The smoothing effect of
FN is illustrated in Fig. 1.

3. Computational aspects

Method (21) requires five discrete expansions of the form INf(u) and twenty ”func-
tion of operator-vector products” of the form ψ(τL)u per time step. Here we discuss
how to organize these computations efficiently.
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3.1. Fast spectral transform

The discrete expansions (19) can be efficiently calculated via the standard discrete
fast Fourier transform (FFT). For this we set

vn = e−i 2πn
N

{
uk(ξ2n), 0 ≤ n ≤ N

2 − 1;
−uk(ξ2N−2n−1), N

2 ≤ n ≤ N − 1;
(22a)

and apply FFT to the sequence vn

ṽj =
N−1∑
n=0

vne−i 2πjn
N , 0 ≤ j ≤ N − 1. (22b)

The coefficients ũk,j are obtained by means of the formula

ũk,j = ũk,j+2 +
2i

N

(
e−i

π(j+1)
2N ṽj − ei

π(j+1)
2N ṽN−j−2

)
, 0 ≤ j ≤ N − 2, (22c)

ũk,N−1 = 2
N ṽN−1, ũk,N = 0. (22d)

Note that (22) avoids explicit evaluations of the fractions
uk(ξn)
sin ξn

which are not well

defined numerically when abscissas ξn are close to the boundary points 0 and π.
Fast inverse transform (20) is obtained by inverting (22).

3.2. Evaluation of ”function of operator times vector”

At each time step we have to approximate few expressions of the form ψ(τL)u, where
u ∈ span{φj |0 ≤ j ≤ N − 1}. This can be efficiently done by means of the Krylov
subspace method, see [7]. The identity

−4φj =
1
16

(
(j − 1)(j − 3)φ|j−4| − 4(j − 1)2φ|j−2|

+ (6j2 + 2)φj − 4(j + 1)2φj+2 + (j + 1)(j + 3)φj+4

)

shows that in the mode space the Laplacian is represented by infinite dimensional five
diagonal matrix and the action Lu is easily evaluated. Applying the Arnoldi process
to L we obtain an orthonormal basis Um = [u1, . . . , um] of the Krylov subspace
Km = span{Lju|0 ≤ j ≤ m − 1} and the upper Hessenberg matrix Hm ∈ Rm×m

such that
LUm = HmUm + hm+1,mum+1e

T
m,

where em is the m-th unit vector. The approximation is given by

ψ(τL)u ≈ Umψ(τHm)e1, m ≥ 1. (23)

The analysis of (23) in finite dimensional settings can be found in [7]. Its modification
to infinite dimensions is straightforward. The convergence rate of (23) is normally
very fast, in our case the algorithm requires from 3 to 7 iterations to approximate
ψ(τL)u with the accuracy of 10−5.
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Figure 2. Numerical solution of (1) with a1 = 10−5, a2 = 10−6 and initial
conditions (24)

4. Numerical simulation

For numerical simulations we set A =
1
5
,

K = 100, and a = k = c = g = B = 1.
With this choice of the parameters the or-
dinary differential equation (equation (1)
with a1 = a2 = 0) has a limit cycle, see
Fig. 1. In our first experiment we set

Figure 3.
N = 1024, a1 = 10−5, a2 = 10−6,

u0(x) =
10e−10 cos8

(
πx/

√
1+x2

)
√

1 + x2
, (24a)

v0(x) =
2√

1 + x2
+

x

(1 + x2)2
, (24b)

and integrate (1) using (21) in the interval [0, 104]. Solutions are shown in the two
upper diagrams of Fig. 2. The dynamics of both components u and v are very
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Figure 4. Numerical solution of (1) with a1 = 10−5, a2 = 10−6 and initial
conditions (25), (24b)

complicated. One can observe that from time to time the trajectories split into
a large number of irregular patches which slowly travel towards the boundaries.
A more descriptive account on the behavior of (1) is provided by the two lower
diagrams of Fig. 2. The left plot shows the phase portrait of the spatial averages
‖u(t)‖L2(R) and ‖v(t)‖L2(R). The phase trajectory is bounded and almost entirely
fills some region in the phase space. The structure of the region is seen better in
the right diagram where the phase trajectory for t ∈ [2500, 104] is plotted. It is
important to mention that in the last diagram the trajectory is separated away from
the coordinate axes (compare to Fig. 3), thus, the presence of a small diffusion in
the model (1) ensures the coexistence of the species.

In the second experiment we repeat our previous simulation with

u0(x) =
1√

1 + x2
− x3

(1 + x2)2
(25)

and (24b). The results are qualitatively the same as before (compare two lower
diagrams in Fig. 2 and Fig. 4). We tested (1) using various initial data, in all these
runs the long time behavior remains the same as in Figs. 2 and 4. This agrees with
the results of [14] where the existence of a global attractor is established.
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Figure 5. Numerical solution of (1) with a1 = a2 = 1 and initial conditions (25),
(24b)

For our final test run we set N = 256, a1 = a2 = 1 and use the initial conditions
(25) and (24b). With these settings the dynamics of (1) is relatively simple. After
a short period of time the large diffusion coefficients almost equidistribute u and v
over the spatial domain (see two upper diagrams in Fig. 5). The phase portraits
of the averaged densities are provided in the lower diagrams of Fig. 5. Once again
there is a noticeable gap between the phase trajectory and the axes when t > 500,
hence, both species do coexist.

To conclude this section we emphasize that the ecological model (1) based on the
ODE (a1 = a2 = 0) leads to a pessimistic scenario where both ecological species are
practically extinct (see Fig. 3). Nonetheless, the numerical simulations indicate that
in the presence of (even tiny) diffusion the species may safely coexist. Hence, the
spatial interaction between the species cannot be eliminated in the present ecological
model.

Concluding remarks

In the present paper we proposed an efficient algorithm for simulating a reaction-
diffusion equation posed in the entire space Rd. The numerical algorithm is applied
to a practical model taken from mathematical ecology. However, the method is
sufficiently general to be used in other areas of applied sciences.
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The analysis of the spatial discretization error based on the use of Bessel frac-
tional integroderivatives leads to sharper error bounds in L2(R), as compared to
previously known results. The extension of this approach to general Sobolev spaces
is currently under investigation.
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