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Abstract. We study the problem asking which ideals in Noetherian rings have the Artin-
Rees property, and want to obtain new ideals with this property from those for which we
know that satisfy it. We show that the class AR-Ringc, of all (Noetherian) Artin-Rees
rings in which every prime ideal is moreover completely prime, is closed under localization
at an arbitrary denominator set. We discuss and illustrate our results on two particular
examples: the enveloping algebra of sl(2) and the three-dimensional Heisenberg Lie algebra.
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1. Introduction

Given a commutative Noetherian ring A, every ideal A of A satisfies the following
condition: (AR) For any ideal I of A there exists a positive integer n, depending on
I, such that I ∩ An ⊆ IA. This famous result, the Artin-Rees property, was proved
more than fifty years ago independently by E. Artin (unpublished) and Rees [14]. It
is a cornerstone for dealing with A-adic topologies on finitely generated A-modules
M .

Let R be a Noetherian not necessarily commutative ring. Similarly to the above,
we define the (left, right) Artin-Rees property. An ideal I of R has the left (resp.
right) AR (Artin-Rees) property if for every left (resp. right) ideal X of R there
exists n ∈ N such that X ∩ In ⊆ IX (resp. X ∩ In ⊆ XI). We say that R is
an AR ring if every ideal of R has both left and right AR property. Dealing with
the question as to which ideals I of R satisfy the AR property, it turns out that
the complexity of the structure of R is in a certain sense measured by the number
of those I’s which satisfy this property. Precisely, the more ideals will have it, the
easier the structure of R will be.

Concerning the localization technique, the class of rings satisfying the second
layer condition is very interesting; see [8], [12, Sect. 4.3]. Recall that some examples
of rings within this class are enveloping algebras of solvable Lie algebras, and group
rings AG, where A is a commutative Noetherian ring and G is a polycyclic by finite
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group. The AR property is useful in dealing with many rings satisfying the second
layer condition, but which are not FBN rings. Its main use in ring theory is for
localization at semiprime ideals. For example, a well-known result of Smith [18]
states that every semiprime ideal of an AR ring R is localizable; see also [19]. At
the same time, if R is not such a ring, that is, if it has at least one (prime) ideal
which fails to have the AR property, one can localize at many ideals which have the
property (cf. [12, 4.2.12]). On the other hand, if we will be able to localize at a
particular ideal I of a non-AR ring, it will often be the case that this I has the AR
property; see [3], [4], [5], [16, Sect. 3].

Here we provide a method to deduce new ideals with the AR property from ideals
known to satisfy it. Also, new AR rings can be obtained from old ones. That is, we
point out at an interesting class of (noncommutative) AR rings which is closed under
localization at an arbitrary denominator set. More precisely, we have this theorem
which is the main result of the paper.

Theorem 1. Let R be a Noetherian Artin-Rees ring all of whose prime ideals are
completely prime. Then, for any denominator set S in R, the localization RS is also
a (Noetherian) Artin-Rees ring all of whose prime ideals are completely prime.

Let us now formulate the following property of Noetherian rings: (♦) Every prime
ideal of a ring is completely prime. Define AR-Ring to be the class of Noetherian
AR rings, and

AR-Ringc := subclass of AR-Ring consisting of those rings satisfying (♦).

In order to point out at certain important examples of rings within the defined
subclass, recall the following non-trivial and well-known fact. This was obtained in
[11]. See also [7, 3.7.2 Thm.], [10], [13]; and [12, Sect. 4.2], [17, Sect. 5].

Fact. Let U(n) be the universal enveloping algebra of a finite-dimensional nilpotent
Lie algebra n defined over a field of characteristic zero. Then any factor ring of U(n)
belongs to the class AR-Ringc.

Being closed under taking homomorphic images for the AR property is a known
fact, and for prime ideals being completely prime is quite clear. Thus the following
corollary is an immediate consequence of the previous theorem; see also its proof.
Roughly speaking, it says that AR-Ringc is closed under taking homomorphic im-
ages and localizing.

Corollary 1. Suppose that a ring Λ is obtained from a ring Λ0 ∈ AR-Ringc via
finitely many procedures of taking homomorphic images or localizing. That is, we
have

Λ0
proc-1−−−−→ Λ1

proc-2−−−−→ · · · · · · proc-n−−−−→ Λn = Λ,

where proc-i means that either Λi = θ(Λi−1) for some ring homomorphism θ, or Λi

is the localization of Λi−1 at some denominator set S. Then

Λ ∈ AR-Ringc .
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The paper is organized as follows. Section 2 contains a proof of Theorem 1;
see also Proposition 1. In Section 3 we discuss and illustrate our results on two
particular examples: the enveloping algebra of sl(2,C) (semisimple case), and the
three-dimensional Heisenberg Lie algebra (nilpotent case).

2. Results

Throughout this paper all rings are associative with identity and, if not otherwise
said, all ideals are two-sided. For a ring R by Id R, Spm R, Spec R and Specc R we
denote the set of all ideals, the set of all maximal ideals, the set of all prime ideals
and the set of all completely prime ideals of R, respectively. Recall that an ideal I
of R is completely prime if R/I is a domain. For r ∈ R, by 〈r〉 we denote the ideal
generated by r. By

√
I we denote the prime radical of I, that is, the intersection of

all prime ideals containing it.
Part (i) of this lemma is well-known (cf. [12, Prop. 4.2.4(i)]); for (ii) see [16,

Lemma 3.1].

Lemma 1. Suppose that I is an ideal of a ring R satisfying the left (resp. right)
AR property.

(i) If θ : R → S is a ring epimorphism, then θ(I) has the left (resp. right) AR
property in S.

(ii) Ik has the left (resp. right) AR property, for every k ∈ N.

(iii) For any ideal J of R, I + J/J has the left (resp. right) AR property in R/J .

Proof. (iii) Consider the ring R := R/I ∩ J , its ideal J := J/I ∩ J , and the
epimorphism θ : R → R/J defined as θ := ı ◦ ϕ, where ϕ : R → R/J is the
canonical epimorphism and ı : R/J → R/J is the isomorphism obtained via the
third isomorphism theorem. Clearly, θ(I/I ∩ J) = I + J/J . Thus, by (i), we have
the claim.

Part of the next result concerning sums of ideals is new and somewhat surprising.
We provide two proofs of it. One is via the well-known characterization of the AR
property [12, Thm. 4.2.2], and the other is direct and related to what follows.

Proposition 1. Let R be a left (resp. right) Noetherian ring. The set AR-Id R
of all ideals satisfying the AR property is distinguished in the following sense. If
I1, . . . , Ik ∈ AR-Id R, then

I1 · · · Ik, I1 ∩ · · · ∩ Ik, I1 + · · ·+ Ik ∈ AR-Id R.

First proof. We only have to prove that I1 + · · ·+ Ik ∈ AR-Id R; for the other two
claims see [16, Lemma 3.3]. Let k = 2 and define J := I1 + I2. Suppose that M
is a finitely generated R-module and N ≤ M is an essential submodule such that
JN = 0. Then in particular IiN = 0 for i = 1, 2. As Ii satisfy the left AR property,
we know that Ini

i M = 0, for some ni. Hence Jn1+n2M = 0, and so J has the left
AR property, as claimed.
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Second proof. Let, again, k = 2 and J := I1 + I2. For any left ideal L of R, we
have to show that L∩Jn ⊆ JL, for some n. To see this first note that L∩ Ip

2 ⊆ I2L,
for some p. Then define A := I1 + Ip

2 . By the previous lemma, A/Ip
2 has the left AR

property in R/Ip
2 , and so there exists some t such that

L/Ip
2 ∩ (A/Ip

2 )t ⊆ (A/Ip
2 )(L/Ip

2 ). (1)

Let n ≥ pt be arbitrary. Then take any ω ∈ L ∩ Jn. Since Jn ⊆ Jpt ⊆ At, we
particularly have that ω := ω + Ip

2 ∈ R/Ip
2 belongs to the left-hand side of (1).

It immediately follows that ω − x = y, for some x ∈ AL ⊆ JL and y ∈ Ip
2 , and

furthermore ω − x = y ∈ I2L ⊆ JL. We conclude that ω ∈ JL, as desired.

Remark 1. Let R be a (left) Noetherian ring and I ⊆ J are ideals of R such that both
I has the (left) AR property in R and J/I has the same property in R/I. One might
ask the following question concerning the second proof of the above proposition: Does
then follow that J has this property in R? Unfortunately, the answer to this question
is negative for the whole class of (left) Noetherian rings. Thus it is reasonable to look
for some ‘nice’ subclass of rings where the answer is positive. To see this, take R to
be the enveloping algebra of a two-dimensional complex (solvable non-nilpotent) Lie
algebra with basis {x, y} and relation [x, y] = y. Let then I := Ry and J := Rx+Ry.
Since the element y is normal, I has the AR property in R. Also, since R/I ∼= C[x]
is commutative, any ideal of it has the same property. But J does not have it.

The next result follows in the same vein as the above discussion.

Lemma 2. Let I ⊆ J be ideals of a Noetherian ring R, and suppose that I has the
AR property. Then the following are equivalent:

(a) J has the AR property;

(b) J/Ik has the AR property, for every k ∈ N.

Proof. Given a left ideal L of R, we have L∩ Ik ⊆ IL, for some k. Next, supposing
(b), for some t we have L/Ik ∩ J t/Ik ⊆ JL/Ik. Let now ω ∈ L ∩ Jn, with n ≥ t.
Clearly, there exists some y ∈ JL such that ω − y ∈ Ik. Hence, ω − y ∈ JL, and
therefore ω ∈ JL. This proves (b)⇒(a); the opposite is clear.

Remark 2. Suppose that R, I and J are as above, with the additional assumption
that J does not have the AR property. Note that then there always exists certain
k0 ∈ N such that J/Ik has the AR property, for all k < k0, and fails to have this
property, for all k ≥ k0.

The next result was first noticed by Smith [19, Lemma 4.4]. After I finished
writing the first version of this present paper, I became aware of Smith’s result. That
is why I did not cite it in [16], where Corollary 3.5 is now just a slight improvement
of Smith’s result.

Lemma 3. Suppose R is a left (resp. right) Noetherian ring. The following are
equivalent:

(a) Every ideal I of R has the left (resp. right) AR property;
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(b) Every prime ideal P of R has the left (resp. right) AR property.

We need one more auxiliary result, which is interesting in its own right. But first,
for the convenience of the reader, recall some terminology and well-known facts; more
details can be found, e.g., in [12, Chap. 2]. Let ∅ 6= S ⊆ R be a multiplicatively
closed set. Suppose that S is a left Ore set. This means that S satisfies the left Ore
condition; that is, we have Sr ∩Rs 6= ∅, for any r ∈ R and s ∈ S. Next, define a set

assS := {r ∈ R | rs = 0 for some s ∈ S}.
It turns out that assS is an ideal of R, and thus we can define a quotient ring
R := R/ assS. By S denote the image of S in R. A left Ore set S, for which the
elements of S are regular in R, is called a left denominator set. The main feature
of this notion is the following: Given a multiplicatively closed subset S of R, one can
define the left localization RS if and only if S is a left denominator set. (The notions
of a right Ore set, a right denominator set and a right localization, are defined
analogously.)

Lemma 4. Suppose that R is a Noetherian ring, Σ is a left denominator set, P is
a completely prime ideal of R satisfying P ∩Σ = ∅, and L is a left ideal of R. Then

(PL)Σ = PΣLΣ,

and also
(Pn)Σ = (PΣ)n, for n ∈ N.

Proof. We only show the inclusion PΣLΣ ⊆ (PL)Σ; the rest is then clear. For that,
consider some x = s−1a and y = t−1b, where s, t ∈ Σ and a ∈ P, b ∈ L. Analogously
to (i) of the theorem below, we have ρ := ct = ua for some (u, c) ∈ Σ × R. Since
ρ ∈ P, by the assumptions on P we have c ∈ P. Thus cb ∈ PL, and therefore
xy ∈ (PL)Σ. This proves the lemma.

For a ring R and S a left denominator set in R, by RS we denote the left
localization of R at S, and by ı : R → RS the canonical localization homomorphism.
The elements of RS will be written as s−1r. Now we are ready to proceed with the
main result of the paper.

Theorem 2. Let R be a Noetherian ring such that every prime ideal of it is com-
pletely prime, that is, Spec R = Specc R. Let S be any denominator set in R. Then
we have the following.

(i) Every prime of RS is completely prime, that is, Spec RS = Specc RS .

(ii) If R is an AR ring, then so is RS .

Proof. First some preliminary remarks (cf. [12, Prop. 2.1.16]). The left localization
of a left ideal X of R at a denominator set S is denoted by XS ; that is, XS = {s−1x |
s ∈ S, x ∈ X}. This is the left ideal of RS generated by ı(X). If X is moreover a
(two-sided) ideal, then so is XS . The map

φ : {P ∈ Spec R | P ∩ S = ∅} −→ Spec RS , φ(P ) := PS ,
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is bijective; and its inverse is φ−1(P̃ ) = ı−1(P̃ ), that is, φ−1(P̃ ) = P̃ ∩ R. For later
use also note the following: If X and X̃ are left ideals of R and RS , respectively,
then

ı−1(X̃)S = (X̃ ∩R)S = X̃ and X ⊆ ı−1(XS);

where the last inclusion may be strict.
(i) Let P̃ ∈ Spec RS , and define P := φ−1(P̃ ). Suppose that x = s−1a and

y = t−1b are from RS such that xy ∈ P̃ . Since xy = (us)−1(cb), where (u, c) ∈ S×R

satisfies ct = ua, we have cb ∈ P . If b ∈ P , then y ∈ φ(P ) = P̃ . If c ∈ P , then
ct = ua ∈ P ; hence a ∈ P and thus x ∈ P̃ .

(ii) By Lemma 3, it suffices to show that every prime P̃ of RS satisfies, for
example, the left AR property. To do this take any left ideal L̃ of RS , and define
L := L̃∩R. By the assumption that R is an AR ring, there exists some n such that
L ∩ Pn ⊆ PL, where P := φ−1(P̃ ). We claim that also

L̃ ∩ P̃n ⊆ P̃ L̃.

Using Lemma 4, we argue as follows. Let ω ∈ L̃ ∩ P̃n = LS ∩ (Pn)S , where
ω = s−1l = s−1p with l ∈ L and p ∈ Pn. Hence, sω ∈ PL, and thus ω ∈ P̃ L̃, what
we had to show.

Remark 3. Suppose R,S are as above and I is an ideal of R which has the AR
property. Note that the argument as given in the above proof would not work while
trying to prove that IS has the AR property as well.

3. Examples

Recall that the height and the max-height of an ideal I of a Noetherian ring R are
defined by

ht(I) := min{ht(p) | p ∈ Min(I)},
max-ht(I) := max{ht(p) | p ∈ Min(I)},

respectively. Here Min(I) denotes the set of minimal primes over I and ht(p) the
height of the prime p defined in the usual way.

Suppose R is a commutative Noetherian ring. Then, by the principal ideal the-
orem, it is clear that for any ideal I of R we can find (finitely many) ideals, say
I1, . . . , Ik of R, such that I = I1 + · · · + Ik and max-ht(Ii) ≤ 1, for every i. This
suggests an obvious method of proving, via Proposition 1, that a particular (prime)
ideal I of a Noetherian ring R has the AR property. But, among other things, the
following two instructive examples show that in the noncommutative case the situ-
ation is different. Roughly speaking; although in various settings we will be able to
obtain what we want, the approach is in general of limited nature.

Example 1. Let g = sl(2,C), and let U(g) be its universal enveloping algebra.
Recall the description of Spec U(g); see [13, Sect. 6.5], and [20, Ex. 1.27], [15,
Ex. 3.14]. For that purpose first take {y, h, x} to be a standard basis of g, that is,
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[x, y] = h, [h, x] = 2x and [y, h] = 2y. Let then h := Ch be a Cartan subalgebra.
For any λ ∈ h∗, let M(λ) be the corresponding Verma module and L(λ) its (unique)
simple quotient. Define the following ideals:

Iz := ann M(λ) for λ(h) = z ∈ C,

I ′z := ann L(λ) for λ(h) = z ∈ N;

note that Iz ⊂ I ′z for z ∈ N. It is easy to see that Iz = U(g)(Ω − z2 + 1), where Ω
denotes the Casimir element. Also, for z ∈ N, L(λ) is the (unique) z-dimensional
g-module. Now we have

Spec U(g) = {〈0〉} ∪ {Iz | z ∈ C} ∪ {I ′z | z ∈ N};

note that ht(Iz) = 1 and ht(I ′z) = 2.

Claim 1. There are no (finitely many) ideals A1, . . . , Ak of U(g) such that, for
z ∈ N, I ′z = A1 + · · ·+ Ak and at the same time max-ht(Ai) ≤ 1 for every i (cf. (2)
below).

Proof. Suppose the contrary. Then for some a1, . . . , ak ∈ N we would have
√

Ai =
Iz(1,i) ∩ · · · ∩ Iz(ai,i) for certain z(j, i) ∈ C. Hence (Iz(1,i) · · · Iz(ai,i))

t ⊆ Ai ⊆ I ′z for
some t ∈ N, and therefore Iz(j,i) ⊆ I ′z for some j. But then clearly z(j, i) = z. This
implies that Ai ⊆ Iz for every i, and thus I ′z ⊆ Iz; a contradiction.

Our second remark concerns the AR property. Namely, every Iz satisfies this
property; and moreover (see [16, Cor. 3.11])

{I ∈ Id U(g) | max-ht(I) ≤ 1} ⊆ AR-Id U(g). (2)

But the fact is that at least one of the ideals I ′z fails to have it. More precisely, we
have the following claim which is not new; cf. the diagram on p. 226 in [8]. For
the reader’s convenience we give an argument. (Note that the same argument also
shows that U(g) is not an FBN ring.)

Claim 2. U(g) is not an AR ring.

Proof. If we had that U(g) is an AR ring, then it would satisfy the second layer
condition. But the enveloping algebra U(G) of a finite-dimensional complex Lie
algebra G satisfies that condition if and only if it is solvable.

Example 2. Let H = Cx+Cy+Cz be the three-dimensional Heisenberg Lie algebra
over C, where z is central and [x, y] = z. Let U = U(H) be its enveloping algebra.

For any α, β, γ ∈ C and F ∈ IrrC[X,Y ], where the latter denotes the set of all
irreducible polynomials, define the following left ideals:

Mα,β := Uz+U(x−α)+U(y−β), Qγ := U(z−γ), PF (x,y) := Uz+UF (x, y).

By inspection, these are actually two-sided ideals. The maximal and prime spectra
were described in a precise way in [15, App. B] and [16, Sect. 5]; cf. also [2,
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5.7 Beispiel]. (This is certainly known, but we are not aware of any appropriate
reference.)

SpmU = {Mα,β | α, β ∈ C} ∪ {Qγ | γ ∈ C∗},
SpecU = {〈0〉} ∪ {Q0} ∪ {PF (x,y) | F ∈ IrrC[X, Y ]} ∪ SpmU .

Note that the classical Krull dimension dimU and Krull dimension K(U) satisfy the
following: dimU = K(U) = 3. Indeed, by the chain of primes

〈0〉 ⊂ Uz ⊂ Uz + Ux ⊂ Uz + Ux + Uy,

we have
3 ≤ dimU ≤ K(U) ≤ K(grU) = 3;

cf. [12, Thm. 6.6.2].
For localization theoretic reasons in [16] we introduced the notion of a weakly

normal element of a Noetherian ring. Namely, given such an element w, one can
localize at w. There are a lot of weakly normal elements in U which are not normal.
For example, x, 1 + xz and x2 + xz are such elements. An easy exercise shows that
for these elements we have

〈x〉 = P x, 〈1 + xz〉 = U , 〈x2 + xz〉 = (P x)2.

In particular, it is worthy to note the following: As ht(P x) = 2, we see that the
minimal prime over the ideal generated by a weakly normal element can be of height
> 1 (cf. [12, Thm. 4.1.11]).

Although the ring U is in a sense of more simple structure than U(sl(2)), we have
the following analog of Claim 1 in the previous example.

Claim 3. There are no ideals A1, . . . , Ak of U of max-ht(Ai) ≤ 1 such that P x =
A1 + · · ·+ Ak.

Proof. Supposing the contrary and noting that Qγ ’s are the only primes of height 1,
a simple argument as in the proof of the above mentioned claim gives that we would
have Ai ⊆ Q0 for every i, and therefore P x ⊆ Q0, yielding to a contradiction.

Concerning the structure of U , it is also interesting to note the following fact;
we include a direct short argument. For more on FBN rings we refer the reader to
[12, Sect. 6.4].

Claim 4. U is not an FBN ring.

Proof. First recall the following simple and very useful result. (A quick proof is via
the famous ‘Lesieur-Croisot trick’ [9].) Given any left (resp. right) Noetherian ring
R and any x ∈ R which is not a right (resp. left) zero divisor, the left (resp. right)
ideal Rx (resp. xR) is essential.

Consider now the left ideal L := Ux of U . By the above, L is essential. Suppose
that L contains a nonzero ideal. The same argument as in Claims 1 and 3 enables us
to conclude that then L contains some nonzero polynomial f(z). But this is obviously
impossible, and so the claim follows.
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Let us conclude by an illuminating remark.

Remark 4. It is known that U(sl(2)) has the following interesting property, first
observed by Bavula ([1]; see also [6]):

(∗) IJ = JI for any ideals I and J .

It is useful to note that although U(H) is an AR ring, it does not have the property
(∗); cf. [16, Lemma 3.10]. Namely, we leave to the reader to see that, for example,

P xP y 6= P yP x.

(At the same time we have Qγp = pQγ = p ∩ Qγ for any γ and p ∈ Spec U(H),
and also MM ′ = M ′M = M ∩M ′ for any M = Mα,β and M ′ = Mα′,β′ such that
(α, β) 6= (α′, β′)).
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