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Numerical analysis of a free piston problem∗
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Abstract. The problem considered is the Stokes and Navier-Stokes flow through a system
of two pipes in the gravity field; inside a vertical pipe there is a free heavy piston. Theo-
retical analysis, the existence and non-uniqueness of solution, has been completed recently
by the authors. Here we present numerical analysis, using finite elements methods, of the
stationary state with respect to the angle between the two pipes, diameters of the pipes,
search for solution of a full problem and search for bifurcation points. The analysis is
carried out for both, 2D and 3D, and for Stokes and Navier-Stokes case.
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1. Introduction

1.1. Notation and geometry of the problem

We consider a flow of incompressible Newtonian heavy fluid in a system of two
converging pipes. The system is constituted by a horizontal and a “vertical” pipe.
The horizontal pipe F1 is infinite with a constant cross-section S1 of diameter d1.
Nevertheless, we consider only a control volume Ω1 of length L which is large enough
to let, in correspondence with constant pressure gradient, Poiseuille flow develop at
the two exits, Σp and Σk, respectively. At the center of Ω1 on a rigid lateral wall
the second semi-infinite pipe F2, with a constant cross-section of diameter d2, is
connected. The axis of F2 is inclined to the vertical by an angle α. Inside the
”vertical” pipe F2 we have a heavy piston, with cross-section of diameter d, which
can translate freely along the “vertical” pipe F2 without rotations. A lower basis of
the piston is horizontal (see Figure 1). Therefore, d and d2 cannot be chosen arbitrary
but some compatibility condition must be satisfied. In all numerical examples cross-
sections S1 and S2 will be circular and then we have d = d2/ cosα. Friction between
the wall of F2 and the piston is neglected.

Fluid enters the “vertical” pipe F2 only up to equilibrium height of the piston.
Let us call Ω2 the region of the F2 filled with the fluid. Let Σh denote the upper
horizontal boundary of Ω2. The piston is modeled as a rigid body. It is in equilibrium
if and only if the total force iz zero. Since the piston is a rigid body, fluid is at rest on
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Σh. Motion of the fluid is given by Navier-Stokes equations. We will consider both, a
2D and 3D case. The goal of this paper is to numerically determine stationary fluid
flow and equilibrium position of the piston and analyse its dependence on geometry,
i.e. on an angle α and a ratio d1

d2
. Furthermore, we will analyse non-uniqueness of the

stationary flow. The main realistic example will be blood flow through arterioles.

Figure 1. Ωα
h

Let us now introduce some notations and precise assumption on the geometry.
Coordinate x (in 3D case x = (x1, x2) and in 2D case x = x1) is along the horizontal
pipe and y is in the opposite direction of acceleration of gravity. Let h be the height
of the piston in the selected coordinate frame, Ωα

h ⊂ Rn, n = 2, 3 the domain
occupied by the fluid. More precisely, Ωα

h = Ω1 ∪ Ω0 ∪ Ωh,α
2 , where

Ω1 = {(x1, x2, y) ; −L ≤ x1 ≤ L, (x2, y) ∈ S1}, S1 ⊂ R2.

Let s = cos αex1 + sin αey be the direction of the “vertical” pipe F2. Then in the
non-orthogonal coordinate frame (ex1 , ex2 , s), Ωh,α

2 has the form:

Ωh,α
2 = {(z1, z2, z3) ; 0 ≤ z3 ≤ h/ cos α, (z1, z2) ∈ Σ}, Σ ⊂ R2.

Only Ωh,α
2 depends on h and α. The lower basis of the piston Σh will be considered

as a subset of the y = const plane. The origin of the coordinate frame is chosen in
a such way that the lower end of the “vertical” pipe Σ0 is a subset of y = 0 plane.
We assume that Σ0 is a symmetric w.r.t. plane perpendicular to the central axis of
the horizontal pipe. Furthermore, we suppose that Ω0 ∪ Ω1 (a domain without the
“vertical” pipe) is also a symmetric w.r.t. plane perpendicular to the central axis
of the horizontal pipe; this is a technical assumption and not a restriction. Note
that Ω0 is an extension of the vertical pipe up to the boundary of Ω1; its shape is
complicated in general in a 3D case, in a 2D case it is empty set. Inflow and outflow
regions are denoted by Σp and Σk, respectively. Γ = ∂Ωα

h \ (Σp ∪ Σk ∪ Σh) is a
rigid boundary. We suppose that the domain is locally Lipschitz. This is a natural
assumption because one cannot expect a smoother domain because we will always
have an angle at the contact of the piston and rigid boundary.
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1.2. Formulation of the problem

Since the fluid is modeled by the Navier-Stokes equations, the stress tensor is given
by T = −pI+2µ sym(∇u), where u is velocity of the fluid, p pressure and µ viscosity.
Total fluid force on the piston in direction s is given by formula:

Fα(h) = −
∫

Σh

Tn · s, (1)

where n denotes the unit outer normal; here n = ey. For simplicity, we will omit
index α in the unknowns. Differential formulation of our problem is:
find (u, p, h) ∈ H1(Ωα

h)3 × L2(Ωα
h)× R+ such that

−µ4u + %(∇u)u +∇p = −g%ey in Ωα
h ,

div u = 0 in Ωα
h ,

u = 0 on Γ,

u = 0 on Σh,
u× n = 0, p = Pp/k − g%y on Σp/k,

Fα(h) = P0.

(2)

Here % is the density of the fluid, µ dynamic viscosity, g gravity constant and P0

constant that takes into account the weight of the piston and atmospheric pressure.
The angle α is given. The first two equations are just the Navier-Stokes equations
for stationary flow of an incompressible Newtonian fluid. Boundary conditions (2)3
and (2)4 are no slip boundary conditions on rigid boundary. Condition (2)6 is a
balance of forces on the piston. Fα(h) is well defined because with our choice
of function spaces we have T ∈ L2(Ωα

h)3×3 and div T ∈ L
3
2 (Ωα

h)3. Pp and Pk are
constants and since flow is driven by the difference of pressures on inflow and outflow
boundary, we can assume that Pp = −Pk (with a possible redefinition of constant
P0). Fixing the pressure does not affect total force on the piston since relevant
quantity is the difference between the atmospheric pressure and fluid pressure. Term
−g%y in (2)5 comes from the hydrostatic pressure. These types of non-standard
boundary conditions involving pressure were studied in [1] and [3]. The problem has
two non-linearities. One that comes from the Navier-Stokes equations is classical
(see [6]). The second comes from the fact that the domain is unknown and therefore
Fα is a nonlinear function. We will also consider Stokes case where the fluid is
modeled with the Stokes equations.

We will often refer to the Stokes or Navier-Stokes problem in a fixed domain,
more precisely for h ∈ R+ fixed, find (u, p) ∈ H1(Ωα

h)3 × L2(Ωα
h) such that (2)1−5

holds. This problem will be denoted by (Sh), (NSh) for Stokes and Navier-Stokes
case, respectively.

2. Overview of theoretical results

In this chapter we will briefly summarize theoretical results; details can be found
in [4]. Since domain Ωα

h is only locally Lipschitz and has concave points, solution
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(uh, ph) of Navier-Stokes system (NSh) has only H1 × L2 regularity. However, by
using techniques from [3] it can be proven that formula (1) can be understood in an
H−1/2(Σh) sense.

Lemma 1. Let (uh, ph) be the solution of Stokes (Sh) or Navier-Stokes (NSh) system
in Ωα

h . Then for every h ≥ 0 we have

Fα(h) = cos α

∫

Σh

ph − µ sin α

∫

Σh

∂y(uh)x1 ,

where the integral is taken in an H−1/2(Σh) sense.

Furthermore, we have an existence result.

Theorem 1. In the Stokes case, there exists P ∈ R such that for every P0 ≤ P
problem (2) has at least one solution (uh, ph, h) ∈ H1(Ωh) × L2(Ωh) × R+. In the
Navier-Stokes case we have the same conclusion provided that data |Pp| and |Pk| are
small enough.

In general, even in the Stokes case we do not have a uniqueness result and
bifurcation phenomena can occur. More precisely, we have the following result:

Theorem 2. There exist α and P0 with corresponding stationary state (u0, p0, h0)
in which we have a turning point. More precisely, (u0, p0, h0) is a solution of the
Stokes case of problem (2) and all solutions of this problem in some neighborhood of
(u0, p0, h0) belong to some curve (X(s), P (s)) with X(0) = (u0, p0, h0) and P (0) =
P0. Furthermore, tangent at (X(0), P (0)) is (V, 0) and P does not have a saddle
point at 0.

In the next chapter we will give a numerical illustration of this theorem. Nu-
merical results suggest uniqueness of the bifurcation point. One of the goals of this
paper is a numerical search for the bifurcation point and analysis of its dependence
on geometry. In order to do that, we will need some additional theoretical results
about function F . As a corollary in proof of the Theorem 2 we concluded that func-
tion F defined in (1) belongs to C1(R+). Furthermore, we can get an expression for
its derivative with respect to h:

(Fα)′(h) = cos α

∫

Σh

P − µ sin α

∫

Σh

(
∂yUx1 −

1
h

∂y(u0)x1

)
.

Here P is a solution of the problem:
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find (U, P ) ∈ V × L2(Ωα
h) such that

∫

Ωα
h

∇U · ∇v −
∫

Ωα
h

P∇ · v = − 1
h

∫

Ωh,α
2

(
∇u0 · ∇v − p0∇ · v

−
(

0
tan(α)∂x + ∂y

)
u0 · ∇v

− 1
h0
∇u0 ·

(
0

tan(α)∂x + ∂y

)
v (3)

−p0∇ · v + p0

(
0

tan(α)∂x + ∂y

)
· v

)
, v ∈ V,

∫

Ωα
h

q∇ ·U = − 1
h

∫

Ωh
2

(tan α∂x(u0)y + ∂y(u0)y), q ∈ L2(Ωα
h),

where (u0, p0) is a solution of Stokes system (Sh) in Ωα
h and

V = {v ∈ H1(Ωα
h)3;v = 0 on Γ ∪ Σh, v × n = 0 on Σp/k}.

We will use this formula later in Example 4.

3. Numerical experiments

In this section we will present numerical experiments that provide better under-
standing of the problem. All experiments in a 2D case are done using FreeFem++
3.4. and visualization is made by Mathematica 5.2. Triangulation and visualization
of solutions in a 3D case are made using Gmsh, while matrix assembly and solving
of linear systems are done in FreeFem.

In both, a 2D and a 3D case, continuous piecewise quadratic and continuous
piecewise linear elements for velocity and pressure, respectively, are used. Mesh size
is indicated by density of arrows in velocity field figures.

Before stating results of numerical experiments we want to emphasize one simple
fact. Let pH(x, y) = −% g y be the hydrostatic pressure. Then all solutions of system
(NSh) have form (uh, qh + pH), where (uh, qh) is a solution of homogenous system
(NSh) (g = 0). In the sequel we will present results for (uh, qh) since hydrostatic
pressure can be added easily.

3.1. Stokes case

When we consider Stokes case, we can, without loss of generality, assume µ = 1
because if (u, p) is a solution of problem (Sh) for µ = 1 then (u/µ, p) is a solution
of problem (Sh) for general µ.

3.1.1. 2D case

In the next few examples we will analyse dependence of function Fα(h) on α. Ge-
ometrical parameters are L = 10, Pp/k = ±5, d1 = 1.6, d = 1.6 and we vary α and
h.
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Example 1. This example illustrates asymptotic behaviour of function Fα. We
take α = π

3 fixed and vary height h from 0 to 16 with step 0.08. For every h we
solve problem (S

π
3
h ) in Ω

π
3
h and compute F

π
3 (h). We keep the maximal diameter of

a triangle in triangulation approximately the same.

In Figure 2 we can see that function F
π
3 approaches its asymptotic value very

fast.

0 5 10 15
h
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0.3

0.4

0.5

0.6
FΠ�3HhL

Figure 2. Graph of function F
π
3

Example 2. The second example shows a graph of function Fα. For every h, Stokes
system (Sh) in Ωα

h is solved and Fα(h) computed. Notice that in this example we
solve a series of Stokes problems (Sh) in fixed domains and we do not solve full
original problem (2).

Figure 3. Graphs of functions F 1.05, F 0.79, F 0.31 and F 0.11

In Figure 3 graphs of F 1.05 (red), F 0.79 (green), F 0.31 (blue) and F 0.11 (violet)
are given. One can notice that for all α, Fα have the same qualitative behaviour, i.e.
first, it is strictly monotone on some interval and then it has a critical point after
which it asymptotically approaches some constant at infinity. Asymptotic decay
can be proved using Leray’s flow (see [4]). This example is a good illustration of
Theorem 2 because we can see that F attains the same value for different height
h. Since for every h we can find related (uh, ph), we have two stationary states for
some P0.

Example 3. With this example we will illustrate non-uniqueness of a solution of
problem (2) more precisely. We will show two different flows which act upon the
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piston with the same force. We take α = π
3 and solve problem (Sh) for h1 = 0.465

and h2 = 0.98. Then we compute F
π
3 (0.465) = 0.19637 and F

π
3 (0.98) = 0.196608.

Furthermore, we compute total fluid force on the piston in point h3 = 0.6, F
π
3 (0.6) =

0.173024.

Figure 4. Velocity field in domain Ω
π
3
0.46

Figure 5. Velocity field in domain Ω
π
3
0.98

Example 4. We take fixed outer pressure PV = 0.3125 and solve full problem
(2) using Newton’s method. More precisely, we use Newton’s method for solving
equations Fα(h) = P0(α, d), where P0(α, d) = PV cos α∗d. We will vary parameters
of geometry (α and d) and consider dependence of equilibrium height of the piston
on geometry.

0.5 0.6 0.7 0.8 0.9 1.0 1.1
d
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0.2

0.3

0.4
h

Figure 6. Dependence of equilibrium height on diameter of the piston d
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Figures 6 and 7 show dependence of equilibrium height h of the piston on diam-
eter of the piston d and angle α, respectively. One can see that height h is greater
for greater d and greater α. The solution is in general not unique, so a numerical
solution depends on initial guess in Newton’s method. In this example we took
initial

0.5 0.6 0.7 0.8 0.9 1.0
Α�rad

0.1

0.2

0.3

0.4
h

Figure 7. Dependence of equilibrium height on angle α

guess on interval where F is decreasing. If we took initial guess on height where
F stabilizes and g 6= 0, equilibrium height would depend only on the asymptotic
value of pressure as h → ∞. Namely, we know that Fα asymptotically approaches
to some constant cos αCα (see [4] and Figure 2) and therefore a balance of forces is
approximately reduced to cos αCα − %gh = P0(α) for h great enough. In the next
example we will analyse constant Cα more closely.

Example 5. As we have proven in [4], for every given geometry and data there
exists constant Cα such that limh→∞Fα(h) = cosαCα. The goal of this example is
to analyse dependence of constants Cα on parameter α. We take all parameters the
same as in the previous example, h = 3 (which is large enough) and vary parameter
α between 0 and 1

3π with step π
120 and compute Fα(3). Since it is easy to verify

symmetry property F−α(h) = −Fα(h), we do not need to compute negative α-s.
Again, we emphasize that here we do not solve full problem (2), but problem (Sh)
for some fixed parameters in order to provide better understanding of qualitative
behaviour of total force Fα.
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Figure 8. Dependence of constant Cα on angle α

Figure 8 strongly suggests linear dependence of asymptotic force on angle α.
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Example 6. We compute bifurcation point hB for various α by solving equation
(Fα)′(h) = 0. The bisection method is used because computation of (Fα)′′ is too
expensive and would result in an additional numerical error. This time we take
α < 0. We can directly compute results for α > 0 using symmetry property F−α(h) =
−Fα(h).
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Figure 9. Dependence of bifurcation point hB on angle α
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Figure 10. Value of function Fα in bifurcation point

Figure 9 shows that the bifurcation point will be reached earlier for α closer to 0.
This is in accordance with Figure 3 and related discussion afterwards. Figure 10 has
a physical interpretation of maximal total outer force in direction s on the piston
that the flow can support.

3.1.2. 3D case

In a 3D, case numerical experiments suggest similar behaviour of solutions as in a
2D case, but of course computations are more complex and therefore we cannot use
triangulations fine enough to ensure a numerical error to be as low as in a 2D case.
Here we present an example illustrating it.

Example 7. Geometrical parameters are L = 10, Pp/k = ±5, d1 = 3, d = 2.
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Figure 11. Graph of function F
π
3
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Figure 12. Dependence of Cα on angle α

Figure 11 shows analogous behaviour of function Fα as in a 2D case. As we have
explained before, small variations after the bifurcation point are due to a numerical
error. Figure 12 suggests that linear dependence of constant Cα on α is not a
property of a 2D case, but it also holds in a 3D case.

3.2. Navier-Stokes case

For every fixed h, we will solve the Navier-Stokes problem (NSh) using Newton’s
method described in [2]. In every step of Newton’s method we will solve the linearized
Navier-Stokes system. We will use a solution of the Stokes system for initial guess in
Newton’s iterations. Therefore, in this section we will only consider laminar flow for
which we also have theoretical results (see Section 2). In the Navier-Stokes case we
will lose symmetry properties that we had in the Stokes case and we will illustrate
those differences with the following few numerical examples.

Example 8. We will consider blood flow through larger arterioles. Since in this
case vessel diameter is much larger than cell diameters, we can assume that blood
has constant viscosity µ = 0.003 Pa·s and it is Newtonian (see [5]). Other data
are: density % = 1060 kg

m3 , diameters of vessels d1 = 0.05mm, d = 0.03mm, length
L = 0.4mm (part of this length is enough to show effects near the junction) and
pressure drop δp = 125Pa

m . Reynolds number of this flow is 0.07. Furthermore, we
will consider the same flow in a 2D case and make analysis of dependence of total
force on the angle and height.
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Figure 13. Solution (u,p) in Ω0

Figure 14. Solution (u,p) in Ω1

Figures 13 and 14 (here x = (x, y), y = z) show solution (u, p) of problem (NSh)
in Ω0 (case when pipes are perpendicular) and Ω1 (just horizontal pipe), respectively.
One can see that we have taken a segment of arteriola that is long enough to allow a
fully developed Poiseuille flow in the horizontal pipe. The only significant difference
between flows in Figures 13 and 14 is near the junction of the pipes and therefore
only this part is plotted.
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Figure 15. Graph of function F
π
4
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Figure 16. Dependence of total force Cα on angle α

Figure 15 shows that the function of total force Fα has the different qualitative,
but same asymptotic behaviour as in Stokes case. From Lemma 1 we see that
x1 component of force Fα is negligible due to the smallness of parameter µ (µ =
3 · 10−6kg/mms). However, due to the fact that the flow is still laminar, we have
only a negligible non-linear effect from the fluid and behaviour of the total fluid
pressure on the piston stays the same as in the Stokes case.

Finally, Figure 16 shows that linear dependence of total force on α was a linear
effect and in Navier-Stokes case we do not have this effect anymore even in the
case of a laminar flow. One can notice that blood flow through arterioles has a
very low Reydnols number (around 0.07) and therefore non-linear effects are not
so pronounced. If we take a more turbulent flow (Reynolds number around 800),
yet still laminar (Figure 17), we can notice that dependence of force on angle α has
different qualitative behaviour. However, qualitative behaviour of Fα in dependence
of h stays the same as in the case of the Stokes flow and the blood the flow (Figure 15)
because flow is still laminar.
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Figure 17. Dependence constant Cα on angle α
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