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THE ϑ-TRANSFER TECHNIQUE: ON NOETHERIAN

INVOLUTION RINGS AND SYMMETRY OF PRIMITIVITY

Boris Širola

University of Zagreb, Croatia

Abstract. Let ϑ : R → S be a ring anti-isomorphism. We study
ϑ-homomorphisms between left R-modules E and right S-modules M , that
is, homomorphisms of the additive groups θ : E → M satisfying θ(r.x) =
θ(x).ϑ(r) for r ∈ R and x ∈ E. We also study the class of Noetherian
involution rings and the problem of symmetry of primitivity. In particular,
suppose that for every semiprimitive Noetherian involution ring which has
exactly two minimal prime ideals both of these satisfy (SP). Then every
prime ideal of an arbitrary Noetherian ring satisfies (SP); we say that a
prime ideal P of some ring satisfies (SP), the symmetry of primitivity, if it
holds that P is left primitive if and only if it is right primitive. Besides, as
an interesting fact, we note that any factor ring of the enveloping algebra
of the Lie algebra sl(2) over a field of characteristic zero is an involution
algebra, and so it satisfies the Krull symmetry.

Introduction

The problem of validity of various symmetry properties for some class
of rings or a category of bimodules RXS , for given rings R and S, is very
interesting. In particular, the following two: (KS) Krull symmetry, and (SP)
symmetry of primitivity, are well known and yet unsolved problems for the
class Noe of Noetherian rings (see, e.g., [GW, Appendix]). Nevertheless, some
results have been obtained for certain subclasses of Noe. For example, (KS)
holds for FBN rings due to Gabriel [G] (see also [MR, Thm. 6.4.8], and [K,
GR]) who showed that in this case the classical Krull dimension is equal to
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the (left, right) Krull dimension; and for factor rings of the enveloping algebra
of a finite-dimensional solvable Lie algebra over a field of characteristic zero
due to Heinicke [H]. Also, (SP) holds for the enveloping algebra of a finite
dimensional Lie algebra over an algebraically closed field of characteristic
zero due to Dixmier [Di] and Moeglin [Mg].

Suppose now that (R,S) is a pair of anti-isomorphic (resp. isomorphic)
rings, and fix some anti-isomorphism (resp. isomorphism) ϑ : R → S. Let
E be a left R-module and M a right (resp. left) S-module. The following
generalizes the standard notion of a homomorphism of modules: A homomor-
phism of the additive groups θ : E → M will be called a ϑ-homomorphism
between E andM if θ(r.x) = θ(x).ϑ(r) (resp. θ(r.x) = ϑ(r).θ(x)) for all r ∈ R
and x ∈ E; if θ is moreover bijective it will be called a ϑ-isomorphism. The
purpose of this paper is to study ϑ-homomorphisms between left R-modules
E and right S-modules M . Namely, choosing convenient ϑ, many left-hand
properties of E are “transferable via ϑ” to the corresponding right-hand prop-
erties of M . This transfering we call the ϑ-transfer technique; as we will see, it
can be helpful while considering various symmetry properties. Next, we focus
our attention at the class of antiautomorphic rings, and in particular at its
subclass NoeInv of Noetherian involution rings. Although the class NoeInv

is for many problems much easier to study than the class Noe (for example,
for NoeInv the problem (KS) is trivial; see Corollary 2.2), it turns out that
these also have some close connections. The following theorem supports the
last claim; it will be proved in Section 3. (By this, we see that in order to
deal with the problem (SP) it is sufficient to consider only the (finitely many)
minimal primes of R, when R is running through a rather restricted class of
rings. Moreover, we may assume that every such R has exactly two minimal
primes.)

Theorem. The following are equivalent.

(i) (SP) holds for the class Noe.
(ii) (SP) holds for the class NoeInv.
(iii) For every semiprimitive Noetherian involution ring R, every minimal

prime ideal of R satisfies (SP).
(iv) For every semiprimitive Noetherian involution ring R such that it has

exactly two minimal prime ideals, say P1 and P2, it holds that Pi is
left primitive if and only if it is right primitive, for i = 1, 2.

Remark. (1) Suppose that (R,S) and an anti-isomorphism ϑ are as
above. Let R-mod and mod-S be the categories of left R-modules and right
S-modules, respectively. Consider Ω : R-mod → mod-S defined on objects
such that Ω(E) is E as an additive group, and x.s := ϑ−1(s).x for s ∈ S and
x ∈ E. Also, if ε is a homomorphism between left R-modules E and F , define
Ω(ε)(x) := ε(x) for x ∈ E; then Ω(ε) is a homomorphism between the right
S-modules Ω(E) and Ω(F ). Thus, as is very well known, Ω is an equivalence
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of categories. But let us emphasize that the approach via the ϑ-transfer pre-
sented here, and the obtained conclusions as well, cannot be simply deduced
just using the fact that now R-mod and mod-S are equivalent categories.

(2) The class Noe and the class of antiautomorphic rings are mutually in-
comparable. However, a number of important rings which appear in practice
are antiautomorphic or even involution. For example, the ring Tn(A) of all
upper/lower triangular n × n matrices over an antiautomorphic (resp. invo-
lution) ring A is antiautomorphic (resp. involution) as well; see Claim 2.4.
Next, let U be the enveloping algebra of the Lie algebra sl(2) over a field of
characteristic zero. Then, for any ideal I of U , U/I is an involution algebra,
and thus in particular it satisfies the Krull symmetry; see Proposition 2.5.

Notation, terminology and conventions

Let us briefly introduce the notation, terminology and conventions that
will be freely used throughout the paper; we assume that the reader is familiar
with the standard material, as can be found in [GW] and [MR].

Every ring will have an identity and every module will be unital. If not
otherwise specified, the term “ideal” always means a two-sided ideal.

Let R be a ring. We denote by (0) the zero-ideal of R, by J(R) the
Jacobson radical of R, by IdR the set of all ideals of R and by AutR the
group of all automorphisms of R. For a subset A ⊆ R, 〈A〉 denotes the ideal
of R generated by A. The prime spectrum of R, the maximal spectrum of R,
the left primitive spectrum of R and the right primitive spectrum of R will
be denoted by SpecR, MaxR, lPrimR and rPrimR , respectively.

Let now X be a (left, right) R-module. We denote by L(X) the lattice
of all submodules of X . For a subset S ⊆ X , we write ann(S) for the anni-
hilator of S. If X is moreover a bimodule, for the sake of preciseness we will
usually distinguish the left annihilator lann(S) of S from the right annihilator
rann(S). The Krull dimension (see [RG], and also [MR, Sect. 6]) is denoted
by Kdim.

Let R and S be two rings. An antihomomorphism from R to S is a homo-
morphism ϑ of the additive groups which moreover satisfies ϑ(xy) = ϑ(y)ϑ(x)
for every x, y ∈ R. A bijective (resp. injective, surjective) antihomomorphism
is called an anti-isomorphism (resp. antimonomorphism, antiepimorphism).
We say that two rings are anti-isomorphic if there exists an anti-isomorphism
between them. An anti-isomorphism (resp. antihomomorphism) from R to
R is called an antiautomorphism (resp. antiendomorphism) of R, and then
we say that R is a ring with antiautomorphism or antiautomorphic ring. By
aAutR we denote the set of all antiautomorphisms of R. If not otherwise
said, an involution of a ring R will always be denoted by ∗; in that case R is
called a ring with involution or involution ring. By InvR we denote the set
of all involutions of R.



32 B. ŠIROLA

1. ϑ-homomorphisms of modules

Note. In the sequel, when we say, for example, that “ϑ : R → S is an
antihomomorphism” it always means that R and S are rings and that ϑ is
some antihomomorphism between them.

The notions of a homomorphism of rings and homomorphism of modules
are standard. In this preparatory section we focus our attention on the “dual”
notions: ring antihomomorphisms, and ϑ-homomorphisms of modules for a
fixed ring antihomomorphism ϑ (cf. [B, Ch. I, §§4,8 and Ch. II, §1]). We
also give some preliminary results, and introduce some other notions closely
related to the ϑ-transfer. We begin with the following clear lemma.

Lemma 1.1. Suppose that ϑ : R → S is an antiepimorphism.

(i) If I is a left (resp. right, two-sided) ideal of R, then ϑ(I) is a right
(resp. left, two-sided) ideal of S. If I is moreover a maximal (left,
right or two-sided) ideal and ϑ is an anti-isomorphism, then ϑ(I) is
maximal too.

(ii) If J is a left (resp. right, two-sided) ideal of S, then ϑ−1(J) is a right
(resp. left, two-sided) ideal of R.

By the previous lemma it follows that the following definition makes sense
only for (two-sided) ideals.

Definition 1.2. An ideal I of a ringR with antiautomorphism α is called
an α-stable ideal if α(I) ⊆ I . If moreover α(I) = I , we say that I is an α-ideal.
(Note that every α-stable ideal is an α-ideal when α ∈ InvR.) An ideal of R
which is an α-ideal for some (resp. every) α ∈ aAutR will be called proper
(resp. strongly proper).

Remark 1.3. (1) For an antihomomorphism ϑ : R → S and ideals I
of R and J of S satisfying ϑ(I) ⊆ J , the map ϑ : R/I → S/J defines an
antihomomorphism of the quotient rings in a natural way. If ϑ is an anti-
isomorphism and ϑ(I) = J , then ϑ is an anti-isomorphism too. In particular,
for α ∈ aAutR and I α-stable (resp. an α-ideal), the map α defines an
antiendomorphism (resp. antiautomorphism) of the factor ring R/I .

(2) In general, an α-stable ideal need not be an α-ideal. To see this
one can consider the ring R := F[Xi | i ∈ Z], the algebra of polynomials in
infinitely many variables indexed by the integers and with coefficients from a
field F. Let α be a shift defined on the generators of R as α(Xi) := Xi+1 for
every i ∈ Z. Clearly, α ∈ AutR (= aAutR; since R is commutative). Now,
the ideal I := 〈Xi | i ≥ 0〉 is α-stable but it is not an α-ideal.

For convenience of the reader and further needs we recall the definition
of a skew group ring. (We prefer the “left-hand version”; for the right-hand
one see, e.g., [MR, 1.5.4].) Let A be a ring, G a group and ϕ : G → AutA
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a group homomorphism. Write ag instead of ϕ(g)(a). Then the skew group
ring A#G is a free left A-module with elements of G as a basis, and with
multiplication defined by (a.g)(b.h) := abg.gh for a, b ∈ A and g, h ∈ G. When
ϕ is trivial, A#G becomes the ordinary group ring which we denote by A[G].
The following lemma is a basic result; cf. Remark 1.5.

Lemma 1.4. Let A be a commutative ring and G any group. Then the
skew group ring A#G is an involution ring with the natural involution

(1.1) (a.g)∗ := ag−1

.g−1 for a ∈ A, g ∈ G.

Remark 1.5. The previous lemma can be slightly improved. For that,
suppose A is a ring with an antiautomorphism (resp. involution) α. (Of
course, for A commutative we can take α = 1A.) Then the group ring A[G] is
antiautomorphic (resp. involution) too. Moreover, suppose that every ϕ(g),
g ∈ G, commutes with α. Then it is easy to check that the map

ϑ(a.g) := α(a)g−1

.g−1

is an antiautomorphism (resp. involution) of A#G.

In the example below we will see that, having a concrete antiautomor-
phism α of an even relatively simple ring R, it can be quite complicated to
check whether a concrete ideal of R is α-stable or not. (Concerning this, note
how one can expect that the problem of understanding of the set of all proper
ideals in an arbitrary R could be very hard.)

Example 1.6. Let A be a commutative ring, and G a finite cyclic group
of order n with generator $. Consider R := A[G] with the natural involution
as in (1.1). Let r =

∑

i<n ai.$
i ∈ R be arbitrary and then define the principal

ideal P := 〈r〉 of R. We would like to know whether P ∗ = P ; or equivalently
asked, whether

(?) r∗ = ρr for some ρ ∈ R.
Putting ρ =

∑

i<n xi.$
i, (?) is further equivalent to the solvability of the

system

(??)
∑

i<n

xiaj−i = an−j for j = 0, 1, . . . , n− 1,

in the indeterminates xi; here ak = al provided k ≡ l (mod n).
Let now A = F be an algebraically closed field and take n = 3. By

elementary calculations it can be shown that the system (??) is non-solvable
if and only if char(F) 6= 3 and simultaneously we have:

(a) 3a0a1a2 = a3
0 + a3

1 + a3
2; and

(b) (a0 + a1 + a2)(a0 − a1)(a0 − a2)(a1 − a2) 6= 0.
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Consider the case char(F) 6= 3. Then define the principal ideals (e denotes
the identity of G)

I := 〈e+$ +$2〉, K := 〈e−$〉, K1 := 〈$ + γ$2〉,
where γ ∈ F satisfies γ2 +1 = γ. Using the above criterion we easily conclude
that I∗ = I , K∗ = K and K∗

1 6= K1. We also have R = I ⊕K, and for the
ideal J := K ∩ K1 it holds J = 〈−γe + $ + γ2$2〉. Hence we deduce that
R = I ⊕ J ⊕ J∗. Let us observe that the maximal ideal K = J ⊕ J∗ is a
∗-ideal, while the natural involution permutes the maximal ideals K1 = I ⊕ J
and K∗

1 = I ⊕ J∗. (Note that by Maschke’s theorem (see, e.g., [P, §3.6]) we
know that R is a semisimple ring, and hence that SpecR = {K,K1,K

∗
1} and

IdR = {(0)} ∪ {I, J, J∗} ∪ SpecR.)

The following definition introduces the ϑ-homomorphisms of modules.

Definition 1.7. Let ϑ : R → S be an anti-isomorphism, E a left (resp.
right) R-module, and M a right (resp. left) S-module. A homomorphism
θ : E →M of the additive groups, which moreover satisfies

(1.2) θ(r.x) = θ(x).ϑ(r) (resp. θ(x.r) = ϑ(r).θ(x))

for r ∈ R and x ∈ E, will be called a ϑ-homomorphism of E and M . Define

ϑ- Hom(E,M) := the set of all ϑ-homomorphisms between E and M.

The notions of ϑ-monomorphism, ϑ-epimorphism, ϑ-isomorphism, the kernel
ker θ and the image im θ are defined in the usual way.

Note. Let ϑ : R → S be an anti-isomorphism. The fact that E is a left
(resp. right) R-module, M a right (resp. left) S-module and θ : E →M some
ϑ-homomorphism between these modules will be in the sequel often shortly
expressed as θ ∈ ϑ-Hom(E,M).

The next result might be called the first ϑ-isomorphism theorem; a
straightforward proof is omitted.

Lemma 1.8. Let ϑ : R → S be an anti-isomorphism and θ ∈ ϑ-
Hom(E,M). Then ker θ is a left (resp. right) R-module, im θ is a right (resp.

left) S-module, and the induced map θ : E/ ker θ → im θ is a ϑ-isomorphism.

2. Antiautomorphic rings

In this section several remarks and basic results concerning antiautomor-
phic rings are given; for example, these rings satisfy some intrinsic symmetry
properties such as Noetherian, Artinian and Goldie. We also point out at
certain rings within this class.

The proposition below uses the ϑ-transfer on computing of the Krull di-
mension; it can actually be considered as a variation of a well known Lenagan’s
theorem [Ln] (see also [GW, Ch. 7]).
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Proposition 2.1. Let ϑ : R → S be an anti-isomorphism and θ ∈ ϑ-
Hom(E,M).

(i) If θ is a ϑ-monomorphism, then Kdim(E) ≤ Kdim(M).
(ii) If θ is a ϑ-epimorphism, then Kdim(M) ≤ Kdim(E).

Proof. For later use let us state the following claim.

Claim. The map pθ : L(E)→ L(M), F 7→ θ(F ), is monotone. Moreover,
if θ is a ϑ-isomorphism, then pθ is strictly monotone.

Proof of the Claim. Using the definition of a ϑ-homomorphism it im-
mediately follows that θ(F ) ∈ L(M) for every F ∈ L(E); that is, pθ is well
defined. Obviously, pθ is monotone. For the second claim consider the map
pθ−1 and use the fact that pθ and pθ−1 are inverses of each other.

(i) Use the above Claim and [GW, Ex. 13Q].

(ii) By Lemma 1.8, it follows that the map θ : E/ ker θ → M is a ϑ-
isomorphism. Hence, by (i), we have Kdim(E/ ker θ) = Kdim(M), which
together with the fact Kdim(E/ ker θ) ≤ Kdim(E) proves the claim.

The following well known corollary is now a direct consequence of Re-
mark 1.3(1) and the above proposition. (Of course, we could formulate this
corollary in a simpler equivalent form by stating that every antiautomorphic
ring satisfies the Krull symmetry, but we wanted to emphasize again the role
of the set of all proper ideals in a ring; cf. Proposition 2.5 and its proof.)

Corollary 2.2. Let R be an antiautomorphic ring, and suppose that I
is a ϑ-ideal for some ϑ ∈ aAutR. Denote by Q the factor ring R/I. Then
Kdim(QQ) = Kdim(QQ).

Remark 2.3. (1) As is well known, a lot of symmetry properties fail when
only one-sided Noetherian rings are considered. On the other hand, antiauto-
morphic rings behave well with respect to various symmetry properties. It is
worthy to note that this is somehow in accordance with the following simple
claim.

Claim. An antiautomorphic ring is left Noetherian (resp. Artinian,
Goldie) if and only if it is right Noetherian (resp. Artinian, Goldie).

(2) Concerning the above corollary and Lemma 1.4, let us say that the
precise value of the Krull dimension of A[G], for a Noetherian ring A and a
polycyclic by finite group G, has been computed by Smith [S].

For completeness and later use we include the next interesting, and easy
fact which is mostly well-known; at least to those working with involutions.

Claim 2.4. Let A be a ring with antiautomorphism (resp. involution) α.
Then the ring of all upper (or lower) triangular matrices Tn(A) is antiauto-
morphic (resp. involution), for every n ∈ N.
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Proof. First note that the full matrix ring Mn(A) is antiautomorphic.
More precisely, the map ϑ(A) := α(A)t, for A ∈ Mn(A), where “t” denotes
the ordinary transpose, defines an antiautomorphism. Here for a matrix A =
[aij ] the new matrix [α(aij)] is written in short as α(A). Next, let Ep,q , for
1 ≤ p, q ≤ n, denote the standard matrix having 1 in the place (p, q) and 0
elsewhere. Define the matrix S :=

∑n
i=1 Ei,n+1−i, and then define the map

on matrices
ϑ(A) := α(SAS)t for A ∈Mn(A).

Now it is straightforward to check that ϑ(aEi,j) = α(a)En+1−j,n+1−i for
a ∈ A. In particular, this means that ϑ maps Tn(A) onto itself. Further, using
the obtained equality one can see at once that ϑ is an antihomomorphism.
Hence the claim follows.

Any factor of the enveloping algebra of a finite-dimensional solvable Lie
algebra over a field of characteristic zero satisfies the Krull symmetry (see
[H]). The following interesting fact is the first step related to the question
whether the same holds for semisimple Lie algebras as well (cf. [Lv]).

Proposition 2.5. Any factor of the enveloping algebra of the Lie algebra
sl(2) over a field of characteristic zero is an involution algebra, and so in
particular it satisfies the Krull symmetry.

Proof. Let F be an algebraically closed field of characteristic zero, and g

be a semisimple Lie algebra over F. By a famous Duflo’s result we know that
there exists an involution τ of the enveloping algebra U(g) such that every
semiprime ideal of U(g) is a τ -ideal (see [Du, Cor. 2]); for example, let τ be
the Chevalley involution defined for some Chevalley basis of g. Hence, given
a semiprime ideal I of U(g), the map τI , τI(u+ I) := τ(u) + I for u ∈ U(g),
defines an involution of the factor algebra U(g)/I (see Remark 1.3(1)); thus,
in particular, this algebra satisfies the Krull symmetry.

Let g = sl(2,F). Then, to prove the proposition, one just needs that now
moreover every ideal of U(g) is a τ -ideal. The latter is an easy consequence
of well understanding of the set of all ideals in U(g) (see, e.g., [C]; cf. also
[Š2, Sect. 3]); note that here F is not necessarily algebraically closed.

3. On the symmetry of primitivity

In this section we prove the theorem stated in the Introduction. We also
present two instructive examples of involution algebras, and study the action
of their involutions on the corresponding prime spectra. (This will suggest
some further hints how to deal with the problem of symmetry of primitivity
within the class of semiprimitive Noetherian involution rings; see Remark
3.13.)

Recall the following terminology. We say that a prime ideal P of a ring R
satisfies the symmetry of primitivity, or (SP) in short, if it holds that P is left
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primitive if and only if it is right primitive; also, we will say that R satisfies
(SP) if each of its primes satisfies this property. A ring R is semiprimitive if
J(R) = 0.

We begin with proposition which is a straightforward generalization of
[B, Ch. I, §8, Thm. 5]; cf. [Š1, Sect. 2]. For completeness we provide an
argument; for that we first need the following two obvious lemmas.

Lemma 3.1. Let G,H be groups and f : G → H an epimorphism of
groups. Suppose that G1 is a subgroup of G containing the kernel kerf . Then
f−1(f(G1)) = G1.

Lemma 3.2. Let ϑ : R → S be an epimorphism (resp. antiepimorphism)
of rings.

(i) If I1, I2 are ideals of R, then ϑ(I1)ϑ(I2) is equal to ϑ(I1I2) (resp.
ϑ(I2I1)).

(ii) If J1, J2 are ideals of S, then ϑ−1(J1)ϑ
−1(J2) is included in ϑ−1(J1J2)

(resp. ϑ−1(J2J1)).

Proposition 3.3. Let ϑ : R → S be either an antiepimorphism or an
epimorphism of rings.

(i) If I is a prime (resp. semiprime) ideal of R containing the kernel
kerϑ, then ϑ(I) is a prime (resp. semiprime) ideal of S.

(ii) If J is a prime (resp. semiprime) ideal of S, then ϑ−1(J) is a prime
(resp. semiprime) ideal of R.

(iii) The maps ψ1 : I 7→ ϑ(I) and ψ2 : J 7→ ϑ−1(J) from the set of ideals
{I ∈ IdR | kerϑ ⊆ I} (resp. {I ∈ SpecR | kerϑ ⊆ I}) to the set of
ideals IdS (resp. SpecS) and conversely, respectively, are inverses of
each other.

Proof. We will assume that ϑ is an epimorphism.
(ii) Define I := ϑ−1(J), and let I1, I2 be ideals of R such that I1I2 ⊆ I

(see Lemma 1.1). Consider the ideals I ′i := Ii + kerϑ for i = 1, 2. Then
I ′1I

′
2 ⊆ I , and hence ϑ(I ′1)ϑ(I ′2) ⊆ J (by Lemma 3.2(i)). Since J is prime we

have ϑ(I ′i0 ) ⊆ J for i0 = 1 or 2, and thus I ′i0 ⊆ I (use Lemma 3.1), what we
had to see.

(i) Similar to (ii) (use Lemma 3.2(ii)).
(iii) By (i) and (ii), we see that ψ1 and ψ2 are well defined. It remains to

note that, by Lemma 3.1 and a well known fact that for any sets X,Y and a
surjective map f : X → Y we have f(f−1(S)) = S for every S ⊆ Y , we have
(ψ2 ◦ ψ1)(I) = I and (ψ1 ◦ ψ2)(J) = J , respectively.

For what follows it will be convenient to have the following result which
relates the ϑ-transfer and localization; a straightforward proof is omitted.
When R is a ring and Σ ⊆ R a left (resp. right) denominator set, we denote
the left (resp. right) localization of R at Σ by ΣR (resp. RΣ). The elements
of ΣR (resp. RΣ) are written as σ−1r (resp. rσ−1), for σ ∈ Σ and r ∈ R.
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Lemma 3.4. Let ϑ : R → S be an anti-isomorphism and Σ a multiplica-
tively closed subset of R.

(i) The set ϑ(Σ) is a multiplicatively closed subset of S. If Σ is a left
(resp. right) Ore set, then ϑ(Σ) is a right (resp. left) Ore set. If Σ is
a left (resp. right) denominator set, then ϑ(Σ) is a right (resp. left)
denominator set. If Σ is equal to the set of regular elements of R, then
ϑ(Σ) is equal to the set of regular elements of S.

(ii) Let Σ be a left denominator set. Then the map

Σϑ : ΣR −→ Sϑ(Σ),

Σϑ(σ−1r) := ϑ(r)ϑ(σ)−1 for σ ∈ Σ, r ∈ R,
is an anti-isomorphism of the corresponding localized rings. (For a
right denominator set Σ, the map ϑΣ is defined analogously.)

To prove our theorem we will use the next two easy lemmas. The first one
deals with the ϑ-transfer of primitive ideals. The second lemma will provide
the base of induction in the proof of the theorem (cf. Corollary 3.10).

Lemma 3.5. Let ϑ : R → S be an anti-isomorphism. If I is a left (resp.
right) primitive ideal of R, then ϑ(I) is a right (resp. left) primitive ideal of
S. Moreover, it holds ϑ(lPrimR) = rPrimS (resp. ϑ(rPrimR) = lPrimS).

Proof. Take a maximal left ideal L of R satisfying I = lann(R/L). It
immediately follows that ϑ(I) = rann(S/ϑ(L)). But we know, by Lemma
1.1(i), that ϑ(L) is a maximal right ideal of S. Hence the lemma follows.

Lemma 3.6. Let R be a left (or right) Artinian ring. Then

(3.1) SpecR = lPrimR = rPrimR = MaxR.
Proof. It is well known that MaxR ⊆ lPrimR, rPrimR ⊆ SpecR; of

course, this is true for any ring. Now the lemma follows by [GW, Prop. 3.19].

Remark 3.7. Recall that an ideal I of a ringR is semiprimitive if the ring
R/I is semiprimitive; or equivalently said, if I is an intersection of primitive
ideals. (Note that there is no ambiguity in the last definition of a semiprimitive
ideal (cf. [GW, p.37]). More precisely, an ideal I is semiprimitive if and
only if I =

⋂

P∈Φ P for some subset Φ ⊆ lPrimR ∪ rPrimR. To see this
set J := J(R/I) and decompose Φ = Φl ∪ Φr, where Φl ⊆ lPrimR and
Φr ⊆ rPrimR. Using Claim B given below (in the proof of our theorem)
and [GW, Prop. 2.16], we have J ⊆ ⋂P∈Φl

P/I and J ⊆ ⋂P∈Φr
P/I . Thus

J ⊆ ⋂P∈Φ P/I . It remains to note that
⋂

P∈Φ P/I = (0).)

Proof of the Theorem. Let C = NoeInv, the class of Noetherian in-
volution rings.
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(iii)⇒(ii) To prove this implication we will proceed by induction on the
Krull dimension Kdim(R), R ∈ C. (Note that by Corollary 2.2 we have
Kdim(RR) = Kdim(RR) for R ∈ C; the latter number is written in short as
Kdim(R).)

Take some R ∈ C such that Kdim(R) = 0. This in fact means that R is
Artinian and so we have (3.1); thus the base of the induction is proved.

For later use we state the following two auxiliary claims. (The second
one presents a well known result in a form suitable for our purposes; for the
reader’s convenience we include an argument. It will be used below for reduc-
ing of the general ring case to the semiprimitive ring case, and for providing
the induction step.)

Claim A. The Jacobson radical of an antiautomorphic ring R is a
strongly proper ideal.

Proof of the Claim A. We have to show that ϑ(J(R)) = J(R) for
every ϑ ∈ aAutR; see Definition 1.2. For that, first note the following
more general fact: If ϑ : R → S is an anti-isomorphism and θ ∈ ϑ-
Hom(E,M), then θ(radE) ⊆ radM with equality if θ is a ϑ-isomorphism.
(One just has to adapt the proof of [P, §4.1, Lemma], by replacing the notions
“homomorphism”↔“ϑ-homomorphism”.) Now the claim follows by putting
above that θ = ϑ; recall that J(R) := radRR = radRR.

Claim B. Let P be a prime ideal of a ringR and I an ideal ofR contained
in P . Suppose that P is a left (resp. right) primitive, but not right (resp.
left) primitive, ideal. Then P/I is a left (resp. right) primitive, but not right
(resp. left) primitive, ideal of R/I .

Proof of the Claim B. Let L be a maximal left ideal of R such that
P = lann(R/L). Define the factor ring R := R/I , and observe that L is a
maximal left ideal of R. It is easy to check that P = lann(R/L), which proves
that P is a left primitive ideal of R.

Let us now show that P is not right primitive. In order to see this
assume to the contrary; that is, that there exists a maximal right ideal ∆ of
R satisfying P = rann(R/∆). Then consider the maximal right ideal D of
R such that D = ∆, and the right primitive ideal Q := rann(R/D) of R. It
immediately follows that P = Q; a contradiction.

Suppose now that (ii) holds for every ring from C with Krull dimension
less than n, n ∈ N. Then consider some R ∈ C, Kdim(R) = n. Also suppose
that there exists a prime P of R which is left primitive, but not right primitive
(or vice versa). By the above claims we can assume with no loss of generality
that R is semiprimitive. Hence, by (iii), it follows that P is not a minimal
prime ideal. Now define the ideal

I := P ∩ P∗.
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Note that I 6= P . [Indeed, otherwise it would follow that P = P∗. But then
Lemma 3.5 implies that P is a right primitive ideal; a contradiction.]

Let the set of regular elements of R be denoted by Σ(R). We claim that

(3.2) I ∩ Σ(R) 6= ∅.
To show this first observe that P ∩ Σ(R) 6= ∅, since P is not a minimal
prime; see, e.g., [GW, Prop. 6.3]. Then take some regular σ ∈ P . Obviously,
the element σ∗ is also regular (cf. Lemma 3.4(i)), and thus σσ∗ is a regular
element from I . This shows (3.2).

Finally, define the factor ring R/I , and consider in it the left, but not
right, primitive ideal P/I . By (3.2) we know that Kdim(R/I) < Kdim(R)
and so the induction hypothesis applies; see, e.g., [MR, 6.3.9 Lemma]. (Note
that I is a ∗-ideal and so R/I ∈ C.)

(iv)⇒(iii) Let R ∈ C be a semiprimitive ring with the set of its minimal
primes {P1, . . . ,Pn}, and suppose that some Pi is for example left primitive
but not right primitive. Then P∗

i = Pj for some j 6= i. Similarly as above,
define I := Pi∩Pj . Then I is a semiprimitive ideal (cf. Remark 3.7; note that
Pj is right, but not left, primitive). Thus, R/I is a semiprimitive ring from C

with the set of minimal primes {Pi/I,Pj/I}, where both of these primes fail
to satisfy (SP).

(i)⇔(ii) Take any R ∈ Noe and set Λ := R⊕Ropp; Ropp is the opposite
ring. Then Λ ∈ C; see Remark 3.9 below. Now, if (ii) would hold, by Lemma
3.8 below we would have that R satisfies (SP); therefore the stated equivalence
follows.

Since (i)⇒(iv) is obvious, the theorem is proved.

Lemma 3.8. Let R,S be rings, and Λ be the direct sum R⊕ S. Suppose
that Λ satisfies (SP). Then both R and S satisfy (SP).

Proof. We will show that, for example, R satisfies (SP).
So, let P ∈ lPrimR and L a maximal left ideal of R such that P =

lann(R/L). Set L̂ := L ⊕ S; then L̂ is a maximal left ideal of Λ. Further,

define P̂ := lann(Λ/L̂); P̂ is a left primitive ideal of Λ. It is easy to see that

(3.3) P̂ = P ⊕ S.

By the supposition of the lemma we have P̂ ∈ rPrimΛ, and therefore there
exists a maximal right ideal D̂ of Λ such that P̂ = rann(Λ/D̂). Obviously,

we can write D̂ = D ⊕ S for some subset D of R. But it is clear that D is a
right ideal of R and moreover it is maximal. Then consider the right primitive
ideal Q := rann(R/D). Proceeding analogously as in proving (3.3) (one only

has to replace the words “left” and “right”), we obtain P̂ = Q⊕S. Hence we
conclude that P = Q. This finishes the proof that R satisfies (SP).
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Remark 3.9. Note that if R,S and Λ are as in the previous lemma,
and moreover R and S are anti-isomorphic rings, then Λ is an involution
ring. More precisely, if ϑ : R → S is an anti-isomorphism, then the map α,
α(r, s) := (ϑ−1(s), ϑ(r)) for r ∈ R and s ∈ S, defines an involution of Λ.

Corollary 3.10. Let R be a prime Noetherian antiautomorphic ring
such that Kdim(R) ≤ 1 (see the beginning of the proof of our theorem). Then
R satisfies (SP).

Proof. Suppose that P is a left, but not right, primitive ideal of R; note
that P 6= (0). Then take a maximal right ideal D of R containing P . The
ideal Q := rann(R/D) is right primitive and so it strictly contains P . Hence
the classical Krull dimension of R is greater than 1, which further implies
that Kdim(R) > 1; a contradiction.

Now we present the two announced examples in which we investigate the
action of involutions of certain (finite-dimensional) matrix algebras on their
prime spectra.

Example 3.11. The following notation will be used in this example.
Given an arbitrary ring X , by Mn(X ) we denote the matrix ring of n × n
matrices with coefficients from X . The identity of Mn(X ) will be denoted by
ı; it will be clear from the context which X and n we mean. The transpose of
Mn(X ) will be denoted by τX , or simply by the superscript “t”. For a subset
S ⊆Mn(X ) we write St := {mt | m ∈ S}.

Let F be a field and U (resp. L) the subring of M2(F) consisting of all
upper (resp. lower) triangular matrices. Consider the F-algebra

R := M2(U)⊕M2(L).

First we will describe the set of all ideals of R. For this it is sufficient to
determine the sets IdM2(X ) for X = U ,L; since one can immediately see
that

(3.4) I = I ∩M2(U)⊕ I ∩M2(L)

for every ideal I of R. We will consider only the subring M2(U); then the
conclusions forM2(L) are simply obtained by “transposing”. Put p1 :=

[

F F
0 0

]

,

p2 :=
[

0 F

0 F

]

, and q := p1 ∩ p2. Then

IdU = {(0), q,p1,p2,U},
wherefrom it is easy to see that

IdM2(U) = {M2(A) | A ∈ IdU}.
Hence, using (3.4), we have the description of the set IdR. In particular, by
denoting Pi := M2(pi) ⊕M2(L) and Qi := M2(U) ⊕M2(p

t
i) for i = 1, 2, it

follows that (cf. Lemma 3.6)

(3.5) SpecR = {P1,P2,Q1,Q2}.
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Now we will deal with involutions of R.

Claim. If ϑ ∈ aAutR, then either ϑ leaves invariant both M2(U) and
M2(L), or ϑ interchanges these subrings of R.

Proof of the Claim. To prove this claim suppose to the contrary.
Also observe that M2(U) is a 12-dimensional ideal of R. Therefore, using
Lemma 1.1, ϑ(M2(U)) must be equal to some of the following four ideals (use
the above description of IdR):

M2(pi)⊕M2(q
t), M2(q)⊕M2(p

t
i), for i = 1, 2.

Assume the first possibility; the other three can be considered analogously.
Let ϑ(ı) = (a, b) for some a ∈ M2(p1), b ∈ M2(q

t). Since ϑ(ı) = ϑ(ı2) =
(a2, 0), we conclude that b = 0. Hence

ϑ(m) = ϑ(mı) = ϑ(ı)ϑ(m) ∈M2(p1) for m ∈M2(U).

This is a contradiction, which proves the claim.

Let us emphasize that the construction which follows was influenced by
the result of Montgomery [Mo, Thm. 1] which describes F-involutions of
M2(F), for char(F) 6= 2.

Given an arbitrary ring X , we consider the automorphisms τX and σX of
the X -module M2(X ), where σX is the “symplectic” map (cf. [Mo], and also
[Š3, Sect. 3])

σX

([

a b
c d

])

:=

[

d −b
−c a

]

.

In general, τX and σX need not be involutions (cf. Claim 2.4). But if α ∈
InvX , then the map γ × α, which acts as

γ × α
([

a b
c d

])

:= γ

([

α(a) α(b)
α(c) α(d)

])

,

defines an involution of M2(X ) for γ = τX , σX . Using this observation and
the above Claim, we will construct several distinguished involutions of R. Let
it be said that for easier notation we write τ both for the anti-isomorphism
τF |U : U → L and for its inverse. Also, we write σ both for the involutions
σF |U and σF |L of U and L, respectively. Now we consider the following two
pairs of mutually nonequal involutions:

σU × σ, τU × σ ∈M2(U)

and

σL × σ, τL × σ ∈M2(L).

Also, we consider two pairs of anti-isomorphisms which are inverses of each
other:

σL × τ : M2(U) 
 M2(L) : σU × τ
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and
τL × τ : M2(U) 
 M2(L) : τU × τ.

Note that τL × τ and τU × τ act as the transpose in M4(F). (The involution
δ2 defined below acts as δ2(m,n) = (nt,mt).)

Notation. In general, for antiautomorphisms α of M2(U) and β of
M2(L) we define the antiautomorphism (α, β) of R by (α, β)(m,n) :=
(α(m), β(n)), for (m,n) ∈ R. Also, for anti-isomorphisms α : M2(U) 


M2(L) : β we define the antiautomorphism (α, β) of R by (α, β)(m,n) :=
(β(n), α(m)), for (m,n) ∈ R.

Taking into account all that we said, we list the following involutions of
R:

ϑ1 := (σU × σ, σL × σ),

ϑ2 := (σU × σ, τL × σ),

ϑ3 := (τU × σ, σL × σ),

ϑ4 := (τU × σ, τL × σ),

δ1 := (σL × τ, σU × τ),
δ2 := (τL × τ, τU × τ).

The reader can now easily verify that none of the above six involutions leave
the prime ideal P1 (see (3.5)) stable. More precisely, it holds ϑi(P1) = P2

and δj(P1) = Q1 for any i and j.

It is also interesting to note the following. For the ideals Pi and Qj of

R := R/J(R) (obviously, the Jacobson radical J(R) equals M2(q)⊕M2(q
t)),

and involutions ϑi and δj of R, we have that P1 is not stable for any of ϑi and

δj . But at the same time, since R '⊕ 4M2(F) (four copies of M2(F)), it is

clear that there exist a lot of involutions of R which leave stable every prime
of R (e.g., consider the pull-back of the “four times transpose” of

⊕

4M2(F)).

Let it be said that when F is for example equal to the field Q of rational
numbers, then none of the involutions ofR leaving the prime ideals ofR stable
does arise as the ϑ for some ϑ ∈ InvR. A more easier example concerning
this phenomenon is the following one.

Example 3.12. Let F = Q and U , p1, p2, q as in the previous example.
Then J(U) = q and so the ring U := U/J(U) is isomorphic to F ⊕ F; we
identify these rings in the sequel. Further, it is immediate that any α ∈ InvU
has the form

α

([

x y
0 z

])

:=

[

z b(x− z) + cy
0 x

]

for some b, c ∈ F, c 6= 0. Hence the involution α of U acts as α(x, z) = (z, x),
and so α(p1) = p2; that is, α interchanges p1 and p2. At the same time the
identity map 1U leaves stable both p1 and p2. (Note that pi ' F for i = 1, 2.)
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We will finish the paper with the following remark.

Remark 3.13. Let R be a semiprimitive Noetherian involution ring. By
Goldie’s theorem it follows the existence of the quotient ring Q(R) := RΣ(R)

(Σ(R) denotes the set of all regular elements of R), and by Lemma 3.4 we
know that this ring is also an involution ring. Further, R is embedded in
Q(R). Now we can state the following simple claim which is motivated by
the above considerations. In particular, it suggests a possibility to deal with
the problem of symmetry of primitivity via passing to the quotient ring of a
given ring.

Claim. Let R be a semiprimitive Noetherian involution ring. Consider
the following three statements.

(I) R satisfies (SP).
(II) For every minimal prime P of R, there exists an involution αP of R

(in general, αP depends of P) such that P is an αP -ideal.
(III) There exists an involution α of Q(R) which leaves stable both the ring

R and every prime ideal of Q(R).

Then (III)⇒(II)⇒(I).

Proof of the Claim. By Proposition 3.3 and our theorem, it is clear
that (II)⇒(I).

Given a minimal prime P of R, the localization PΣ(R) is a prime of Q(R)
and it holds PΣ(R) ∩ R = P . Hence the restriction α|R leaves stable every
such P . Thus (III)⇒(II).

Note that if R is moreover Artinian, then by the Artin-Wedderburn struc-
ture theorem it follows that Q(R) = R. So, in particular, we have Q(R) = R
and Q(U) = U for the rings R and U from Examples 3.11 and 3.12, respec-
tively. Thus, as it was in fact already noted, now we have the existence of a
“good” involution α of Q(R) (resp. Q(U)) such that (III) is fulfilled. (Also,
there is no such α for Q(R) (resp. Q(U)); therefore we cannot drop the
assumption, in the claim, that the ring R is semiprimitive.)
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96–112.
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[G] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.
[GW] K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noe-

therian Rings, London Math. Soc. Stud. Texts, vol. 16, Cambridge Univ. Press,
Cambridge, 1989.

[GR] R. Gordon and J. C. Robson, Krull dimension, Memoirs Amer. Math. Soc. 133,
1973.

[H] A. G. Heinicke, On the Krull-symmetry of enveloping algebras, J. London Math. Soc.
(2) 24 (1981), 109–112.

[K] G. Krause, On fully left bounded left noetherian rings, J. Algebra 23 (1972), 88–99.
[Ln] T. H. Lenagan, Artinian ideals in noetherian rings, Proc. Amer. Math. Soc. 51

(1975), 499–500.
[Lv] T. Levasseur, Krull dimension of the enveloping algebra of a semisimple Lie algebra,

Proc. Amer. Math. Soc. 130 (2002), 3519–3523.
[MR] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, J. Wiley,

New York, 1987.
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[Š2] , On noncommutative Noetherian schemes, J. Algebra 282 (2004), 667–698.
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