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Vol. 45(65)(2010), 373 – 393

THE SMOOTH IRREDUCIBLE REPRESENTATIONS OF

U (2)

Manouchehr Misaghian

Prairie View A & M University, USA

Abstract. In this paper we parametrize all smooth irreducible rep-
resentations of U (2), the compact unitary group in two variables.

1. Introduction and Notation

Let E/F be a quadratic extension of local fields. If (W1, (, )1) is a Hermit-
ian space over E and (W2, (, )2) is a skew-Hermitian space over E, the unitary
groups G1 = G (W1) and G2 = G (W2) form a reductive dual pair in Sp (W ),

where W = W1 ⊗E W2 has the symplectic form 〈, 〉 = 1
2TrE/F

(
(, )1 ⊗ (, )2

)

over F and x → x̄ is the non trivial element of Galois group Γ = Γ (E/F ).
We consider the special case in which dimEW1 = 1, and dimEW2 = 2. In
this case, G1 = U (1), and G2 = U (2) are unitary groups in one and two
variables, respectively. The structure of U (1) is simple and its representa-
tions are all one dimensional and easy to find. The structure of U (2) is more
complicated and is the semidirect-product of two compact groups. Since our
group is compact, all its smooth irreducible representations are finite dimen-
sional. Although new methods and results for finding the representations of
p-adic groups were published recently ([12]), in this paper we will be using
the method used by Manderscheid ([5]) to construct the representations of
SL2, to parametrize the representations of U (2) . Our motivation for find-
ing representations of U (2), in addition to its own interest, is that they are
needed to parametrize the theta correspondence for the reductive dual pair
(U (1) , U (2)) .
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This paper consists of four sections. The first section is devoted to intro-
duction and notation. In the second section we describe the structure of U (2).
In the third section we find all representations of U (2) whose dimensions are
bigger than one. The final section consists of the description of all characters
(one-dimensional representations) of U (2). Besides characters, other finite-
dimensional representations will be described as fully induced representations
from characters of certain subgroups. This is given in Theorem 3.29. In The-
orems 4.5 and 4.6, we will formalize all the results obtained in sections 3 and
4.

To begin, let F be a local p-field, where p is an odd prime integer number
and let̟ be the uniformizer of it. LetD be the unique (up to an isomorphism)
quaternion division algebra over F . Let π be a uniformizer of D such that
π2 = ̟. Also let ǫ be a unit in D such that ǫ2 is a unit in F and ǫπ = −πǫ.
For any x ∈ D we can write:

x = x1 + x2ǫ+ x3π + x4ǫπ.

where x1, x2, x3 and x4 are in F . For any x ∈ D, x = x1 + x2ǫ+ x3π + x4ǫπ,
define x̄ as follows:

x̄ = x1 − x2ǫ− x3π − x4ǫπ.

Then x → x̄ is an involution on D whose restriction to E is the non trivial
element of Galois group Γ = Γ (E/F ). We denote by ν = νD/F the reduced
norm map and is defined as:

ν (x) = xx̄,

and by Tr = TrD/F the reduced trace map and is defined as:

Tr (x) = x+ x̄.

For x ∈ E, TrE/F and νE/F are defined similarly:

TrE/F (x) = x+ x̄,

and

ν (x) = νE/F (x) = xx̄.

Also let O = OF be the ring of integers of F with maximal ideal P = PF
generated by ̟, and k = kF the residue class field O/P with cardinality q.
Let υD (x) be the order of an element, x, in D. So for any x in D we can
write x = uπυD(x) for some unit u in D. Let OD, PD, and k = kD = OD/PD
be the ring of integers, maximal ideal generated by π, and residue class field
of D, respectively. We denote by D◦ the set of all traceless elements in D and
OD◦ = OD ∩D◦. For any integer r, we define P rD as follows:

P rD = ODπ
r = {aπr | a ∈ OD} .
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Also we define P rD◦ as P rD◦ = OD◦∩ P rD. The norm one elements group of D,
denoted by D1 is defined as follows:

D1 = {x ∈ D | ν (x) = 1} .

For any positive integer r, D1
r is the following set:

D1
r =

{
x ∈ D1 | x = 1 + aπr, for some a ∈ OD

}
.

Let E/F be a quadratic extension contained in D. Let γ be a generator of
E/F , i.e., E = F (γ) . We can and will take γ = ǫ when E/F is unramified
and γ = π when E/F is ramified ([13]). Set W1 = E with the following
Hermitian form:

(x, y)1 =
1

2
xȳ, x, y ∈ E,

and set W2 = D with the following skew-Hermitian form:

(x, y)2 =
1

2
TrD/E (γxȳ) , x, y ∈ D,

where TrD/E is the trace map from D to E and is equal to the first coordinate
of x in E, i.e.,

TrD/E (x) = a, for any x ∈ D,x = (a, b) , and a, b ∈ E.

One can show that:
Tr = TrE/F ◦ TrD/E .

Now set W = W1 ⊗EW2. Then W is isomorphic to W2 = D via a⊗ x 7−→ ax
(its inverse is x 7−→ 1 ⊗ x) with the following skew-Hermitian form:

〈x, y〉 =
1

2
Tr (γxȳ) , x, y ∈ D ∼= W.

For any x ∈ D, let x = (a, b), where a and b in E are coordinates of x
in E.( note that D is a two dimensional vector space over E.) From here we
get x̄ = (ā,−b) . We also denote by E1 the norm one elements group of E,
E1 = {x ∈ E | ν (x) = 1} .

2. Structure of U (2)

While the structure of U(2) is well-known and is the semidirect-product
of compact groups D1 and E1 ([2]), we are giving its detailed structure here
in our notation.

Let all notations be as above and for simplicity for the rest of this paper we
assume that E/F is unramified (for ramified case see Remarks 2.14 and 3.15).
Thus we have E = F (ǫ) and B = {1, π} is a basis of D over E. Also note that
the skew-Hermitian space (W, 〈, 〉) is anisotropic space, i.e., 〈x, x〉 = 0 if and
only if x = 0, and the matrix of the skew-Hermitian form 〈, 〉 in this basis, B,
is:

A =

(
1 0
0 −π2

)
.
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Theorem 2.1. The group of isometries of (W, 〈, 〉), G2, is given as fol-
lows:

G2 =

{(
a λπ2c̄
c λā

)
| a ∈ E×, c ∈ E, λ ∈ E1, ν (a) − ν (c)π2 = 1

}
.

Proof. Let g =

(
a b
c d

)
be an element of G2, where a, b, c and d are

in E. Then we must prove that:

(2.1) g∗Ag = A.

where g∗ =

(
ā c̄
b̄ d̄

)
and A is as in above. From equation (2.1) we also get:

(2.2) A−1 = gA−1g∗.

Now since A−1 =

(
1 0
0 −π−2

)
, multiplying equation (2.2) by −π2 we get

(2.3) g

(
−π2 0
0 1

)
g∗ =

(
−π2 0
0 1

)
.

From equations (2.1), (2.2) and( 2.3) we get:

ν (a) − ν (c)π2 = 1,

āb− π2c̄d = 0,

ν (b) − ν (d)π2 = −π2,

π2c̄a− d̄b = 0,

ν (d) − ν (c)π2 = 1,

π2ν (a) − ν (b) = π2.

The above conditions lead to ν (a) = ν (d) and ν (b) = ν (c)π4. From ν (a) =
ν (d) and equation ν (a) − ν (c)π2 = 1 we deduce that a 6= 0, d 6= 0. Because
if a = d = 0, then we must have −ν (c)π2 = 1 , i.e ν (cπ) = 1, which is not
true. See ([7]). From here and π2c̄a− d̄b = 0 we get:

a

d̄
=
d

ā
= λ,

and
a

d̄
=

b

c̄π2
= λ, when c 6= 0.

If c = 0, then b = 0 and g =

(
a 0
0 d

)
with ν (a) = ν (d) = 1. For c 6= 0 we

have d = λā, b = λπ2c̄ and ν (λ) = 1, ν (a) − ν (c)π2 = 1. So

g =

(
a λπ2c̄
c λā

)
.
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i.e.,

G2 =

{(
a λπ2c̄
c λā

)
| a ∈ E×, c ∈ E, λ ∈ E1, ν (a) − ν (c)π2 = 1

}
.

Proposition 2.2. The group E1 is isomorphic to a subgroup of G2 and
D1 is isomorphic to a normal subgroup of G2.

Proof. Define f : E1 → G2 by

f (λ) =

(
1 0
0 λ

)
, λ ∈ E1.

Then one can check that f is a one to one homomorphism from E1 to G2.
For the other part define f : D1 → G2 by

f (x) =

(
a π2b
b̄ ā

)
,

where x = a+ bπ, a, b ∈ E and ν (x) = 1. Then for x = a+ bπ and y = c+ dπ
in D1 we have:

f (xy) = f
(
ac+ bd̄π2 + (ad+ bc̄)π

)

=

(
ac+ bd̄π2 (ad+ bc̄)π2

(ad+ bc̄) ac+ bd̄π2

)

=

(
a π2b
b̄ ā

)(
c π2d
d̄ c̄

)

= f (x) f (y) .

So f is a homomorphism. One can check that f is one to one. So we can
identify D1 with its image, f

(
D1
)
, in G2. To show D1 is normal in G2,

let δ =

(
x π2y
ȳ x̄

)
∈ D1 and g =

(
a λπ2c̄
c λā

)
∈ G2 with a ∈ E×, c ∈

E, λ ∈ E1, ν (a) − ν (c)π2 = 1, and ν (x) − ν (y)π2 = 1. From here we get
det g = λν (a) − λν (c)π2 = λ. Since ν (λ) = 1, so λ−1 = λ̄ and g−1 =(
ā −π2c̄
−cλ̄ λ̄a

)
. This gives us:

g−1δg =

(
a λπ2c̄
c λā

)(
x π2y
ȳ x̄

)(
ā −π2c̄
−cλ̄ λ̄a

)

=

(
x11 x12

x21 x22

)
,
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where

x11 = xν (a) − π2c̄ȳa+ π2āyc− π2ν (c) x̄,

x12 = λxπ2āc̄− λπ4c̄c̄ȳ + λπ2āāy − λπ2āc̄x̄,

x21 = −axλ̄c+ a2λ̄ȳ − π2λ̄c2y + acλ̄x̄,

x22 = −π2xν (c) + aπ2ȳc̄− π2cyā+ ν (a) x̄.

Now one can show that x22 = x11 and x21 = x12

π2 , i.e.,

g−1δg =

(
x11 π2

(
x12

π2

)
x12

π2 x11

)
∈ D1.

Theorem 2.3. G2 is semidirect product of D1 and E1, G2 = D1⋊E1.

Proof. This is well known, see e.g. [2], and Corollary 2.13 in this paper
in our notation.

Lemma 2.4. Let σ : E1 → Aut (W ), be defined as follows:

λ 7→ σλ, for any λ ∈ E1,

where

σλ : W →W

is defined as:

σλ (w) = σλ (a+ bπ) = a+ λbπ,

for any w = a+ bπ ∈W,a, b ∈ E. Then λ 7→ σλ is an isomorphism of E1into
the Aut (W ). Further for any λ ∈ E1, σλ satisfies the following:

1. σλ (w) = σλ (w) for any w ∈ W ,
2. σλ (e) = e for any e ∈ E,
3. σλ is in the GLE (W ) as well as in GLF (W ).

Proof. Let w = a + bπ and w′ = c + dπ be two elements in W , where
a, b, c and d are in E. Let λ, λ′ be in E1. Then:

ww′ = ac+ bd̄π2 + (ad+ bc̄) π,

so by our definition we have:

σλ (ww′) = ac+ bd̄π2 + λ (ad+ bc̄)π

= (a+ λbπ) (c+ λdπ)

= σλ (w) σλ (w′) ,

i.e., for any λ ∈ E1, σλ is a homomorphism of W . One can check that
kerσλ = {1}. Also note that for any w′ = c+ dπ ∈W , we have:

σλ
(
c+ λ̄dπ

)
= c+ dπ = w′,
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which shows that σλ is onto. Also we have:

σλλ′ (w) = σλλ′ (a+ bπ) = a+ λλ′bπ

= σλ (a+ λ′bπ) = σλσλ′ (w) ,

i.e., σλλ′ = σλσλ′ . This shows that σ is homomorphism. It is easy to check
that σ is one to one. So σ is an imbedding. For the remaining statements we
have:

1. For any w = a+ bπ ∈W and λ ∈ E1, we have:

σλ (w̄) = σλ (ā− bπ) = ā− λbπ = σλ (w).

2. Any element e in E is in the form e+ 0π, so σλ (e) = e.
3. Let µ ∈ E. Then we have:

σλ (w + µw′) = σλ (a+ µc+ (b+ µd) π)

= a+ µc+ λ (b+ µd)π

= a+ λbπ + µ (c+ λdπ)

= σλ (w) + µσλ (w′) .

So for any λ ∈ E1, σλ is an E-linear map and hence an F -linear map
as well. As a linear map, σλ, is one to one, too.

Lemma 2.5. For any λ ∈ E1 and any δ ∈ D1. we have σλ (δ) ∈ D1.

Proof. By Lemma 2.4 one has:

ν (σλ (δ)) = σλ (δ) σλ (δ) = σλ (δ)σλ
(
δ̄
)

= σλ
(
δδ̄
)

= σλ (1) = 1.

Corollary 2.6. Let σ : E1 → Aut
(
D1
)
, be defined as follows:

λ 7→ σλ, for any λ ∈ E1,

where σλ is as in Lemma 2.4, restricted to D1 ⊂ D ∼= W. Then σ is an
imbedding.

Lemma 2.7. Let λ ∈ E1. Then for all w ∈W we have:

(2.4) TrD/E (σλ (w)) = TrD/E (w) = σλ
(
TrD/E (w)

)
,

and

(2.5) Tr (σλ (w)) = Tr (w) = σλ (Tr (w)) .
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Proof. We prove (2.5). (2.4) is the same. Write w = a + bπ. Then by
definition of Tr and part 2 of Lemma 2.4 we get:

Tr (σλ (w)) = σλ (w) + σλ (w) = a+ λbπ + ā− λbπ

= a+ ā = w + w̄ = Tr (w) = σλ (Tr (w)) .

Lemma 2.8. For any λ ∈ E1 we have σλ ∈ G2 and σλ ∈ Sp (W ) .

Proof. Let w and w′ be two elements in W . Then by definition of (, )2
and equation (2.4) in Lemma 2.7 we have:

(σλ (w) , σλ (w′))2 =
1

2
TrD/E

(
ǫσλ (w) σλ (w′)

)

=
1

2
TrD/E (ǫσλ (w)σλ (w̄′))

=
1

2
TrD/E (ǫσλ (ww̄′)) =

1

2
TrD/E (ǫww̄′) = (w,w′)2 .

So σλ ∈ G2. The same computations and equation (2.5) in Lemma 2.7 give
the result σλ ∈ Sp (W ) .

Lemma 2.9. Let G = D1 × E1 be the set theoretic Cartesian product of
D1 and E1, and define the following operation on it:

(2.6) (δ, λ) ∗ (δ′, λ′) = (σλ (δ′) δ, λλ′) ,

for (δ, λ) and (δ′, λ′) ∈ G. Then G is a group equal to the semidirect product of
D1 × {1E1} ∼= D1 and {1D1} ×E1 ∼= E1 via σ and we denote it by D1⋊σE

1.

Proof. By Corollary 2.6 the action defined by equation (2.6) is well-
defined and (1, 1) ∈ G is its unit element. Further for any (δ, λ) ∈ G, we
have:

(δ, λ)
(
σλ̄
(
δ̄
)
, λ̄
)

=
(
σλ̄
(
δ̄
)
, λ̄
)
(δ, λ) = (1, 1) .

So (δ, λ)
−1

=
(
σλ̄
(
δ̄
)
, λ̄
)
. On the other hand for any (δ, λ) ∈ G we have:

(δ, λ) = (δ, 1) ∗ (1, λ) ,

and obviously we have:

D1 × {1E1} ∩ {1D1} × E1 = {(1, 1)} .

Remark 2.10. From now on we will write (δ, λ) (δ′, λ′) for (δ, λ)∗ (δ′, λ′).

Lemma 2.11. There is a subgroup, say H, of Sp (W ) such that D1⋊σE
1 ∼=

H.
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Proof. Define f : D1⋊σE
1 → Sp (W ), (δ, λ) 7→ f(δ,λ), where f(δ,λ) is

given as follows:

f(δ,λ) : W →W, f(δ,λ) (w) = σλ (w) δ.

Then f is a homomorphism because for any (δ, λ) and (δ′, λ′) ∈ D1⋊σE
1, and

any w ∈W we have:

f(δ,λ)(δ′,λ′) (w) = f(σλ(δ′)δ,λλ′) (w) = σλλ′ (w) σλ (δ′) δ

= σλ (σλ′ (w) δ′) δ = f(δ,λ) (σλ′ (w) δ′)

= f(δ,λ)f(δ′,λ′) (w) .

This shows that f (δ, λ) f (δ′, λ′) = f ((δ, λ) (δ′, λ′)). Now let (δ, λ) ∈ ker f .
Then, for any w = a+ bπ ∈ W , we must prove that:

f(δ,λ) (w) = (a+ λbπ) δ = a+ bπ.

This forces (δ, λ) = (1, 1). Let (δ, λ) ∈ D1⋊σE
1. Then for any w,w′ in W by

Lemma 2.4 and relations (2.4), (2.5) in Lemma 2.7 we have:

〈
f(δ,λ) (w) , f(δ,λ) (w′)

〉
= 〈σλ (w) δ, σλ (w′) δ〉 =

1

2
Tr
(
ǫσλ (w) δσλ (w′) δ

)

=
1

2
Tr
(
ǫσλ (w) δδ̄σλ (w)

)
=

1

2
Tr (ǫσλ (w) σλ (w̄))

=
1

2
Tr (σλ (ǫww̄)) =

1

2
Tr (ǫww̄) = 〈w, w̄〉 .

So f(δ,λ) ∈ Sp (W ). Now set H =
{
f(δ,λ) ∈ Sp (W ) | (δ, λ) ∈ D1⋊σE

1
}
.

Proposition 2.12. Let all notations be as above. We have H ∼=G2.

Proof. First note that for any f(δ,λ) ∈ H we have f(δ,λ) ∈ G2, because
for any w,w′ in W by Lemma 2.4, and equation (2.4) in Lemma 2.7 we have:

〈
f(δ,λ) (w) , f(δ,λ) (w′)

〉

= 〈σλ (w) δ, σλ (w′) δ〉 =
1

2
TrD/E

(
ǫσλ (w) δσλ (w′) δ

)

=
1

2
TrD/E

(
ǫσλ (w) δδ̄σλ (w′)

)
=

1

2
TrD/E (σλ (ǫww̄′))

=
1

2
TrD/E (ǫww̄′) = 〈w, w̄〉 .

Now define F : H → G2 as follows:

F
(
f(δ,λ)

)
=

(
a λπ2b̄
b λā

)
,
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where δ = a + bπ ∈ D1 and λ ∈ E1. F is a homomorphism because, for
δ = a+ bπ ∈ D1 and δ′ = c+ dπ ∈ D1 and λ, λ′ ∈ E1 we have:

F
(
f(δ,λ)f(δ′,λ′)

)
= F

(
f(σλ(δ′)δ,λλ′)

)

=

(
ac+ λb̄dπ2 λλ′π2

(
λ̄ad̄+ b̄c̄

)

bc+ λād λλ′
(
āc̄+ λ̄bd̄π2

)
)

=

(
a λπ2b̄
b λā

)(
c λ′π2d̄
d λ′c̄

)

= F
(
f(δ,λ)

)
F
(
f(δ′,λ′)

)
.

Now let f(δ,λ) ∈ kerF , where δ = a+ bπ ∈ D1 and λ ∈ E1. Then we have:

F
(
f(δ,λ)

)
=

(
a λπ2b̄
b λā

)
=

(
1 0
0 1

)
.

This gives us δ = λ = 1, i.e., F is one to one. On the other hand for any

Q =

(
a λπ2b̄
b λā

)
∈ G2, if we take δ = a + bπ, then F

(
f(δ,λ)

)
= Q, which

shows that F is onto.

Corollary 2.13. G2 = D1⋊E1 ∼= D1⋊σE
1 = U (2).

Remark 2.14. If E/F is ramified then we may assume that E = F (π).
Then B= {1, ǫ} will be a basis for D over E. So for any x ∈ D we can write
x = a+ ǫb for some a, b ∈ E. In this case the bilinear forms (, )1 and 〈, 〉 will
be redefined as follows:

(x, y)1 =
1

2
xy, for x, y ∈ E

and

〈x, y〉 =
1

2
Tr (πxy) , for x, y ∈ D

Also for any λ ∈ E, σλ will be given by

σλ (x) = σλ (a+ ǫb) = a+ ǫλb

for x = a+ ǫb ∈ D, where a, b ∈ E. The same argument as in unramified case
gives us that

U (2) = D1⋊E1 ∼= D1⋊σE
1

3. Representations of U (2)

In this section we study certain subgroup because it will be used for the
induced representations in the main Theorem.

Let E be the unramified quadratic extension of F contained in D specified
in previous sections. Let OE , PE denote the ring of integers and maximal
ideal of E, respectively. We may and will assume that ̟ (the uniformizer
of F ) is the generator of PE . Also for any integer r, P rE is defined as P rE =
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OE̟
r = OEπ

2r and E1
r =

{
x ∈ E1 | x = 1 + a̟r, for some a ∈ OE

}
. The

residue class field of E will be denoted by kE .

Definition 3.1. Let χ be a non trivial additive character of F . The
conductor of χ is the smallest integer, n say, such that χ is trivial on Pn.
Alternatively we may say Pn is the conductor of χ.

Remark 3.2. Throughout this paper, χ is a non-trivial additive character
of F with the conductor 0 (O).

Lemma 3.3. Let L1 and L2 be any two unramified quadratic extension of
F contained in D. Then there exists a unit d ∈ OD such that L2 = dL1d

−1.

Proof. See [9, page 104.].

Lemma 3.4. For any non zero element d ∈ D, the map α 7→ dαd−1 is an
isomorphism of OD◦ onto OD◦ .

Proof. This is clear.

Remark 3.5. In what follows α ∈ D◦ is an element with υD (α) = −n−1,
where n is a positive integer. Set r =

[
n+1

2

]
, where [ ] is the greatest integer

part. We will identify D1
r⋊σ {1E1} with D1

r as a normal subgroup of U (2).

Lemma 3.6. Define χα : D1
r → C× by :

χα (h) = χ (Tr (α (h− 1))) , h ∈ D1
r .

Then χα is a character of D1
r with conductor equal n.

Proof. See [7].

Definition 3.7. Let ϕ be any homomorphism on a subgroup H of a group
G. For any g ∈ G set H(g) = gHg−1 and define ϕg on it as follows:

ϕg (h) = ϕ
(
g−1hg

)
, h ∈ H(g).

ϕg is called the conjugation of ϕ by g.

Lemma 3.8. Notation is as in Lemma 3.6. For any unit element d ∈ OD,
χα and χdd−1αd are the same characters of D1

r .

Proof. Let δ ∈ D1
r ∩ d D

1
rd

−1 = D1
r . Then we have:

χdd−1αd (δ) = χd−1αd

(
d−1δd

)
= χ

(
Tr
(
d−1αd

) (
d−1δd− 1

))

= χ
(
Tr
(
d−1α (δ − 1) d

))
= χ (Tr (α (δ − 1))) = χα (δ) .

Corollary 3.9. Let L1 and L2 be any two unramified quadratic exten-
sion of F contained in D. Then the characters of L1 and L2 can be identified
in a certain way.
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Remark 3.10. On the basis of Lemmas 3.3 and 3.8, and for our purposes,
any unramified quadratic extension of F contained in D might be taken equal
E.

Lemma 3.11. Let α and r be as in Lemma 3.6. Let L = F (α) be a qua-
dratic extension of F contained in D and set L1={x ∈ L | ν (x) = 1}. Then

there exist ϕ ∈
(
L1
)∧

and ψ ∈
(
E1
)∧

such that ϕ|L1∩D1
r

= χα|L1∩D1
r

and

ψ|E1∩D1
r

= χα|E1∩D1
r
, where ( )

∧
is Pontryagin’s dual.

Proof. See [7].

Definition 3.12. Let α, r and L be as in Lemma 3.11. Set:

Φ (α) =
{
ϕ ∈

(
L1
)∧

| ϕ|L1∩D1
r

= χα|L1∩D1
r

}
,

and

Ψ (α) =
{
ψ ∈

(
E1
)∧

| ψ|E1∩D1
r

= χα|E1∩D1
r

}
.

Lemma 3.13. Let λ ∈ E1, and let α ∈ D◦ be an element with υD (α) =
−n− 1, where n is a positive even integer and set r =

[
n+1

2

]
. Then for any

h ∈ D1
r , we have χα (h) = χα (σλ (h)) if and only if λ ∈ E1

[n−r+1
2 ]

.

Proof. Write h = 1 + x, for some x ∈ P rD. Then we must prove that:

χ (Tr (ασλ (x))) = χ (Tr (αx)) .

This is the same as (ασλ (x) − αx) ∈ P−1
D . Now write x = aπr =

(a1 + a2π)πr , for some unit a ∈ OD where a1, a2 ∈ OE . Then we have:

σλ (x) =





(a1 + λa2π)πr, if r is even,

(λa1 + a2π) πr, if r is odd.

So from here when r is even we get:

(ασλ (x) − αx) = α (λ− 1) a2π
r+1.

Now note (ασλ (x) − αx) ∈ P−1
D if and only if α (λ− 1) a2π

r+1 ∈ P−1
D , or

(λ− 1) ∈ Pn−r−1
D so

(λ− 1) ∈ Pn−r−1
D ∩OE = P

[n−r
2 ]

E = P
[n−r+1

2 ]
E .

This implies that λ ∈ E1

[n−r+1
2 ]

. If r is odd then:

(ασλ (x) − αx) = α (λ− 1) a1π
r.

Now (ασλ (x) − αx) ∈ P−1
D if and only if α (λ− 1)a1π

r ∈ P−1
D or (λ− 1) ∈

Pn−rD . Thus

(λ− 1) ∈ Pn−rD ∩OE = P
[n−r+1

2 ]
E ,

and this is the same as λ ∈ E1

[n−r+1
2 ]

.



THE SMOOTH IRREDUCIBLE REPRESENTATIONS OF U (2) 385

Theorem 3.14. Let α ∈ D◦ be an element with υD (α) = −n− 1, where
n is a positive integer and r =

[
n+1

2

]
. Then the stabilizer of χα, St (χα), in

U (2) is:

St (χα) =






E1D1
r−1⋊σE

1 if n is odd,

L1D1
r⋊σE

1

[ r+1
2 ]

if n is even.

Proof. First suppose n is odd. Then L = F (α) is unramified. So by
Remark 3.10 we may assume L = E. Now let g = (δ, λ) ∈ U (2) where δ ∈ D1

and λ ∈ E1 be an element of St (χα). Then g−1 =
(
σλ̄
(
δ̄
)
, λ̄
)
. Let h ∈ D1

r .
Now we must prove that:

(3.7) χα
(
g−1hg

)
= χα (h) .

On the other hand we have:

g−1hg =
(
σλ̄
(
δ̄
)
, λ̄
)
(h, 1) (δ, λ) =

(
σλ̄ (h)σλ̄

(
δ̄
)
, λ̄
)
(δ, λ)(3.8)

=
(
σλ̄ (δ)σλ̄ (h)σλ̄

(
δ̄
)
, 1
)

=
(
σλ̄
(
δhδ̄
)
, 1
)
.

By writing h = 1 + x, equation (3.7) becomes:

(3.9) χ
(
Tr
(
ασλ̄

(
δxδ̄
)))

= χ (Tr (αx)) .

Now since σλ is E-linear equation (3.9) becomes as follows:

(3.10) χ
(
Tr
(
ασλ̄

(
δxδ̄
)))

= χ
(
Tr
(
σλ̄
(
αδxδ̄

)))
.

Apply Lemma 2.7 to equation (3.10) to get;

χ
(
Tr
(
ασλ̄

(
δxδ̄
)))

= χ
(
Tr
(
αδxδ̄

))
= χ (Tr (αx)) ,

or
χα
(
δhδ̄
)

= χα (h) .

This last equality implies that δ ∈ E1D1
r−1. So g = (δ, λ) ∈ E1D1

r−1⋊σE
1.

Now suppose n is even. Then L = F (α) is ramified. Apply Lemma 3.13
to equation (3.9) to get:

(3.11) χα
(
σλ̄
(
δhδ̄
))

= χα (σλ̄ (h)) ,

if and only if λ ∈ E1

[ r+1
2 ]
. On the other hand equation (3.11) forces that

δ ∈ L1D1
r . So g = (δ, λ) ∈ L1D1

r⋊σE
1

[ r+1
2 ]

.

Remark 3.15. In ramified case the stabilizer of χα, St (χα), in U (2) is:

St (χα) =





E1D1
r⋊σE

1 if n is even, and α ∈ E
L1D1

r⋊σE
1
r if n is even, and α /∈ E

L1D1
r−1⋊σE

1
r−1 if n is odd.

Lemma 3.16. Let notation be as in Definition 3.12.

1. For any ϕ ∈ Φ (α), define ϕα : L1D1
r → C× by ϕα (lδ) = ϕ (l)χα (δ)

for l ∈ L1 and δ ∈ D1
r . Then ϕα is a well-defined character of L1D1

r .
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2. For any ψ ∈ Ψ (α), define ψα : E1D1
r → C× by ψα (eδ) = ψ (e)χα (δ)

for e ∈ E1 and δ ∈ D1
r . Then ψα is a well-defined character of E1D1

r .

Proof. See [7].

Lemma 3.17. Let α ∈ D◦ be an element with υD (α) = −n− 1, where n
is a positive integer and set r =

[
n+1

2

]
.

1. Let n be odd. For any ψ ∈ Ψ (α) and any character ξ of E1define:

ψ(α,ξ) : E1D1
r⋊σE

1 → C×,

by

ψ(α,ξ) (x, λ) = ψα (x) ξ (λ) ,

where ψα is as in Lemma 3.16. Then ψ(α,ξ) is a character of

E1D1
r⋊σE

1.
2. Let n be even. For any ϕ ∈ Φ (α) and any character ξ of E1

[ r+1
2 ]

define:

ϕ(α,ξ) : L1D1
r⋊σE

1

[ r+1
2 ] → C×,

by

ϕ(α,ξ) (x, λ) = ϕα (x) ξ (λ) ,

where ϕα is as in Lemma 3.16. Then ϕ(α,ξ) is a character of

L1D1
r⋊σE

1

[ r+1
2 ]

.

Proof. 1. Let g = (x, λ) and g′ = (x′, λ′) ∈ E1D1
r⋊σE

1. Then:

gg′ = (σλ (x′) x, λλ′) .

So we have:

(3.12) ψ(α,ξ) (gg′) = ψα (σλ (x′)x) ξ (λλ′) = ψα (σλ (x′))ψα (x) ξ (λ) ξ (λ′) .

Now note:

(3.13) σλ (x′) = (1, λ) (x′, 1)
(
1, λ̄
)
.

and since {1}⋊σE
1 is in the St (χα), so by 3.13 we can rewrite 3.12

as follows:

ψ(α,ξ) (gg′) = ψα (x′)ψα (x) ξ (λ) ξ (λ′) = ψα (x) ξ (λ)ψα (x′) ξ (λ′)

= ψ(α,ξ) (g)ψ(α,ξ) (g′) .

2. Same argument as in part 1 works in this part.
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Lemma 3.18. Let n be a positive odd integer such that r = n+1
2 is even.

Set:

Hr−1 =

{
h ∈ D1

r−1/D
1
n | h =

1 − aπr−1

1 + aπr−1
D1
n, a ∈ O

}
.

Then Hr−1 is a subgroup of D1
r−1/D

1
n with order |Hr−1| = q

r
2 .

Proof. See [7].

Lemma 3.19. Let notation be as in Lemma 3.18. Set

Dr−1 = D1
r/D

1
nHr−1.

Then Dr−1 is a subgroup of D1
r−1/D

1
n and we have |Dr−1| = q

∣∣D1
r/D

1
n

∣∣.

Proof. See [7].

Lemma 3.20. Let E1
1 = F (1 + PE) ∩ E1. All other notations are as in

Lemma 3.18. For any λ ∈ E1
1 and h ∈ Hr−1 we have σλ (h) ∈ Dr−1.

Proof. Write λ = b+eπ2 where b ∈ O, e ∈ OE , and let h = 1−aπr−1

1+aπr−1D
1
n ∈

Hr−1. Then by expanding the fraction on the right hand side we have:

σλ (h) =
1 − aλπr−1

1 + aλπr−1
D1
n(3.14)

= 1 − 2abπr−1 − 2aeπr+1 + 2a2π2(r−1) (modPnD) .

Set µ = 1 − 2abπr−1 + 2 (a+ b)
2
π2(r−1) (modPnD). Then if r > 3 we can

rewrite 3.14 as follows:

σλ (h) = µ− 2aeπr+1 − 2abπ2(r−1) − 2b2π2(r−1) (modPnD)

= µ
(
1 −

(
2aµ̄e− 2abµ̄π(r−3) − 2b2µ̄π(r−3)

)
πr+1

)
(modPnD) .(3.15)

Now note that we have µ ∈ Hr−1, and the rest of 3.15 is in the D1
r+1/D

1
n

⊂ D1
r/D

1
n. So σλ (h) ∈ Dr−1. If r = 2, then we have:

σλ (h) = µ− 2b (a+ b)π2

= µ
(
1 − 2bµ̄ (a+ b)π2

)
.

So again σλ (h) ∈ D1 = Dr−1.

Corollary 3.21. Notations are as in Lemmas 3.18, 3.20. Then
E1

1Dr−1⋊σE
1
1 is a subgroup of E1D1

r−1/D
1
n⋊σE

1.

Proof. Arguing as in [7] and Lemma 3.20 yields the result.

Corollary 3.22. Notations are as in Lemma 3.20 Let α ∈ D◦ has order
υD (α) = −n− 1, where n is a positive odd integer such that r = n+1

2 is even.

Then for any λ ∈ E1
1 and h ∈ Hr−1we have χα (σλ (h)) = 1.
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Proof. Using 3.14 in Lemma 3.20 and definition of χα we get:

χα (σλ (h)) = χ
[
Trα

(
−2abπr−1 − 2aeπr+1 + 2a2π2(r−1)

)]

= χ
(
−2abT rαπr−1

)
χ
(
−2aTrαeπr+1

)
χ
(
2a2π2(r−1)Trα

)

= χ (0)χ (0)χ (0) = 1.

Lemma 3.23. Let α, n and r be as in Corollary 3.22. For any ψ ∈ Ψ (α)
and any character ξ of E1define:

ψ̃(α,ξ) : E1
1Dr−1⋊σE

1
1 → C×,

by

ψ̃(α,ξ) (xh, λ) = ψ(α,ξ) (x, λ) , x ∈ E1
1D

1
r/D

1
n, h ∈ Hr−1, λ ∈ E1

1 .

Then ψ̃(α,ξ) is a well-defined character of E1
1Dr−1⋊σE

1
1 .

Proof. Arguing as in [7] and Corollary 3.22 gives the result.

If Γ is a group and Γ1 and Γ2 are subgroups of Γ write [Γ : Γ1] for the num-
ber of left Γ1−cosets in Γ and [Γ1 : Γ : Γ2] for the number of (Γ1,Γ2)−double
cosets in Γ. Arguing as in [7], and using Lemmas 3.18 and 3.19 one can prove
the following:

Lemma 3.24. Let α, n and r be as in Corollary 3.22. Then:

1.
[
E1

Dr−1⋊σE
1
1 : E1

1D
1
r/D

1
n⋊σE

1
1

]
= q

(
q+1
2

)
.

2.
[
E1Dr−1/D

1
n⋊σE

1
1 : E1

1Dr−1⋊σE
1
1

]
= q

(
q+1
2

)
.

3.
[
E1 : E1

1

]
= q+1

2 .

4.
[
E1D1

r/D
1
n⋊σE

1 : E1D1
r−1/D

1
n⋊σE

1 : E1D1
r/D

1
n⋊σE

1
]

= 2q − 1.

5.
[
E1

1D
1
r/D

1
n⋊σE

1
1 : E1D1

r−1/D
1
n⋊σE

1 : E1
1D

1
r/D

1
n⋊σE

1
1

]
= q2

(
q+1
2

)2
.

Lemma 3.25. Let α, n and r be as in Corollary 3.22. For any ψ ∈ Ψ (α)
and any character ξ of E1set

τ(α,ϕ,ξ) = Ind
(
E1D1

r−1/D
1
n⋊σE

1
1 , E

1
1Dr−1⋊σE

1
1 , ψ̃(α,ξ)

)
.

Then τ(α,ϕ,ξ) is an irreducible representation of E1D1
r−1/D

1
n⋊σE

1
1 having di-

mension q
(
q+1
2

)
.

Proof. One can show that the stabilizer of ψ̃(α,ξ) in E1D1
r−1/D

1
n⋊σE

1
1

is E1
1Dr−1⋊σE

1
1 . Now the result follows from [1, Theorem (45.2)

′
].

Lemma 3.26. Notation is as in Lemma 3.25. For any ψ ∈ Ψ (α) and any
character ξ of E1 let ψ′

(α,ξ) be the restriction of ψ(α,ξ) to the E1
1D

1
r/D

1
n⋊σE

1
1

and set:

τ ′(α,ψ,ξ) = Ind
(
E1Dr−1⋊σE

1
1 , E

1
1D

1
r/D

1
n⋊σE

1
1 , ψ

′
(α,ξ)

)
.
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Then τ ′(α,ψ,ξ) is a direct sum of q
(
q+1
2

)
copies of τ(α,ψ,ξ).

Proof. Since ψ̃(α,ξ) = ψ′
(α,ξ) on the E1

1D
1
r/D

1
n⋊σE

1
1 , so τ ′(α,ψ,ξ) is equiv-

alent to
[
E1

Dr−1⋊σE
1
1 : E1

1D
1
r/D

1
n⋊σE

1
1

]
copies of τ(α,ψ,ξ). Now part 1 of

Lemma 3.24 implies the result.

Lemma 3.27. Let η be the character of the following representation:

Ind
(
E1D1

r−1/D
1
n⋊σE

1, E1
1D

1
r/D

1
n⋊σE

1
1 , ψ(α,ξ)

)
.

Then ζ = 2
q(q+1)η is the character of an irreducible representation, say

ρ′ (α, ψ, ξ), of E1D1
r−1/D

1
n⋊σE

1 whose restriction to E1D1
r−1/D

1
n⋊σE

1
1 is

τ(α,ψ,ξ).

Proof. Let (,) denote the usual scalar product on L2
(
E1D1

r−1/D
1
r⋊σE

1
)
.

By Lemma 3.24 and Mackey’s Theorem we get:

(ζ, ζ) =
4

q2 (q + 1)
2 (η, η) =

4

q2 (q + 1)
2 q

2

(
q + 1

2

)2

= 1.

Since η (1) = q2
(
q+1
2

)2
, thus ζ (1) = q

(
q+1
2

)
. So ζ is the character of an irre-

ducible representation of E1D1
r−1/D

1
n⋊σE

1 having dimension q
(
q+1
2

)
. Call

this representation ρ′ (α, ψ, ξ). The multiplicity of ρ′ (α, ψ, ξ) in τ(α,ψ,ξ) is:

(
ζ, χτ(α,ψ,ξ)

)
=

2

q (q + 1)

(
η, χτ(α,ψ,ξ)

)
=

2

q (q + 1)

(
Re η, Indχτ(α,ψ,ξ)

)

=
2

q (q + 1)

[
E1

Dr−1⋊σE
1
1 : E1

1D
1
r/D

1
n⋊σE

1
1

]

=
2

q (q + 1)
· q

(
q + 1

2

)
= 1,

where χτ(α,ψ,ξ) is the character of τ(α,ψ,ξ). Now by Frobenius reciprocity, the

restriction of ρ′ (α, ψ, ξ) to E1D1
r−1/D

1
n⋊σE

1
1 is τ(α,ψ,ξ).

Lemma 3.28. For any positive integer r ≥ 1 we have
(
E1D1

r−1⋊σE
1
)
/E1D1

r−1⋊σ {1} ∼= E1.

Proof. Define f : E1D1
r−1⋊σE

1 → E1 by f (x, e) = e, for any x ∈
E1D1

r−1, e ∈ E1. Then one can show that f is an onto homomorphism with

ker f = E1D1
r−1⋊σ {1}.

Theorem 3.29. Let α ∈ D◦ with υD (α) = −n− 1 where n is a positive
integer and r =

[
n+1

2

]
.

1. Let n be even. For any ϕ ∈ Φ (α) and any character ξ of E1

[ r+1
2 ]

set:

ρ(α,ϕ,ξ) = Ind
(
U (2) , St (χα) , ϕ(α,ξ)

)
.

Then ρ(α,ϕ,ξ) is an irreducible representation of U (2).
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2. Let n and r =
[
n+1

2

]
be odd. Then we know ([7]) E1D1

r−1, and E1D1
r

have the same characters. So for any ψ ∈ Ψ (α) and any character ξ
of E1 set

ρ(α,ψ,ξ) = Ind
(
U (2) , St (χα) , ψ(α,ξ)

)
.

Then ρ(α,ψ,ξ) is an irreducible representation of U (2).

3. Let n be odd but r =
[
n+1

2

]
is even. For any ψ ∈ Ψ (α) and any

character ξ of E1, let ρ′ (α, ψ, ξ) be as in Lemma 3.27. Set:

ρ(α,ψ,ξ) = Ind (U (2) , St (χα) , ρ′ (α, ψ, ξ)) .

Then ρ(α,ψ,ξ) is an irreducible representation of U (2).

Proof. 1. The result follows from [1, Theorem (45.2)
′
].

2. The result follows from [1, Theorem (45.2)
′
].

3. Since ρ′ (α, ψ, ξ) is an extension of τ(α,ψ,ξ), so by [1, Theorem 51.7] and
Lemma 3.28 any irreducible component of the following representation

Ind
(
E1D1

r−1⋊σE
1, E1

1D
1
r⋊σ {1} , τ(α,ψ,ξ)

)
.

is equivalent to ρ′ (α, ψ, ξ) ⊗ γ, for some character γ of E1. On the
other hand by [1, Theorem 38.5] we have ρ′ (α, ψ, ξ)⊗γ ∼= ρ′ (α, ψ, ξγ).
Now apply Clifford Theorem.

4. Characters, one-Dimensional Representations of U (2)

In this section we parametrize all one-dimensional representations (char-
acters) of U (2). Further, we classify all smooth irreducible representations of
U (2) .

Lemma 4.1. The commutator group of U (2) , [U (2) , U (2)] , is equal to
D1

1⋊σ {1} ∼= D1
1.

Proof. Let x = (δ, e) , y = (δ′, e′) ∈ U (2) where δ, δ′ ∈ D1, and e, e′ ∈
E1. Then:

xyx−1y−1 = (δ, e) (δ′, e′)
(
σē
(
δ̄
)
, e−1

) (
σe′
(
δ′
)
, e′−1

)

=
(
δ′σe′

(
δ̄
)
σe (δ′) δ, 1

)
.

So xyx−1y−1 ∈ D1, and hence [U (2) , U (2)] ⊂ D1⋊σ {1E1}. On the other
hand Lemma 4.2 below shows that U (2) �

(
D1

1⋊σ {1E1}
)

is abelian and this

implies that D1
1⋊σ {1E1} ⊂ [U (2) , U (2)].

Lemma 4.2. U (2) �
(
D1

1⋊σ {1E1}
)
∼=
(
D1/D1

1

)
⋊σE

1, where the right
hand side is the external semidirect product via σ.
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Proof. Define f : U (2) →
(
D1�D1

1

)
⋊σE

1, by f (δ, e) =
(
δD1

1 , e
)
.

Then f is a homomorphism because:

f ((δ, e)(δ′, e′)) = f (σe (δ′) δ, ee′) =
(
σe (δ′) δD1

1, ee
′
)

=
(
δD1

1, e
) (
δ′D1

1, e
′
)

= f (δ, e) f (δ′, e′) .

f obviously is onto and one can check that ker f = D1
1⋊σ {1E1}.

Lemma 4.3. D1�D1
1 is a cyclic group of order q + 1 and we will denote

it by µq+1.

Proof. See [7].

Proposition 4.4. For any character of µq+1, say η, and any character
ξ of E1,

ηξ : µq+1⋊σE
1 → C×,

defined by

ηξ (x, λ) = η (x) ξ (λ) ,

is a character of U (2). Conversely any character of U (2) is in this form.

Proof. Since µq+1 and E1 are abelian it is easy to see that ηξ is a char-
acter of µq+1⋊σE

1. Now by inflation we can define ηξ on U (2) . Conversely
let Ω be a character of U (2). Then for any x, y ∈ U (2) we have:

Ω
(
xyx−1y−1

)
= Ω (x) Ω (y)Ω

(
x−1

)
Ω
(
y−1

)
= 1.

i.e., Ω|D1
1⋊σ{1

E1} = 1. So Ω is a character of µq+1⋊σE
1. Let η =

Ω|µq+1⋊σ{1
E1} and ξ = Ω|{1

D1}⋊σE1. Then one can show that Ω = ηξ.

Theorem 4.5. Any irreducible representation of U (2) is either a char-
acter or is one of those determined by Theorem 3.29.

Proof. Let ρ be an irreducible representation of U (2). Since the family{
D1
n⋊σ {1}

}
n≥1

is a system of unity neighborhoods in D1⋊σ {1} , there is a

least integer n ≥ 1 such that the restriction of ρ to D1
n⋊σ {1}, ρ|D1

n⋊σ{1}, is
trivial. Now we have the following cases:

1. n = 1. Then the restriction of ρ to D1
1⋊σ {1E1} , ρ|D1

1⋊σ{1
E1}, is

trivial. So we can look at ρ as an irreducible representation of
U (2) �

(
D1

1⋊σ {1E1}
)
. But U (2) �

(
D1

1⋊σ {1E1}
)

is abelian because

by Lemma 4.2 D1
1⋊σ {1E1} is the commutator group of U (2), so by

Proposition 4.4 ρ is a character of U (2) .
2. n = 2k+1, k a positive integer ≥ 1. Then ρ ∼= ρ (α, ψ, ξ) where α ∈ D◦

with υ (α) = −n− 1, ψ is a character of E1 occurring in ρ|E1
⋊σ{1

E1}
and ξ is a character of E1 occurring in ρ|{1

D1}⋊σE1 .
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3. n = 2k, k a positive integer ≥ 1. Then ρ ∼= ρ (α, ϕ, ξ) where
α ∈ D◦ with υ (α) = −n − 1, ϕ is a character of L1 occurring in
ρ|L1

⋊σ{1
E1} where L = F (α) and ξ is a character of E1

[ r+1
2 ]

occurring

in ρ|{1
D1}⋊σE1

[ r+1
2 ]

.

Theorem 4.6. Irreducible representations of U (2) enjoy the following
equivalencies:

1. Any irreducible representations of U (2) determined by Theorem 3.29,
never is equivalent to a character.

2. Two characters Ω1,Ω2 of U (2) are equivalent if and only if Ω1 = Ω2.
3. Any two irreducible representations ρ1 = ρ1 (α1, ψ1, ξ1) and ρ2 =
ρ2 (α2, ψ2, ξ2) of U (2) determined by Theorem 3.29 are equivalent if
and only if:

• ξ1 = ξ2
• If ψ1α1 is any irreducible representation of D1 occurring in
ρ1|D1

⋊σ{1} and ψ2α2 is any irreducible representation of D1 oc-
curring in ρ2|D1

⋊σ{1}, then ψ1α1
∼= ψ2α2 .

Proof. Parts 1 and 2 are clear. For last part of part 3, from [7] we
know that two irreducible representations ρ (α, ϕ), and ρ (α′, ϕ′) of D1 are
equivalent if and only if:

• they have same conductor, n,
• there exists g ∈ D1such that α′ − gαg−1 ∈ Pn−rD where r =

[
n+1

2

]
,

• ϕ′ (e′) = ϕ
(
geg−1

)
for e′ ∈ E′ = F (α′), and e ∈ E = F (α),

• E′ = gEg−1.

This is because if we consider the restriction of ρ (α, ϕ), and ρ (α′, ϕ′) to
D1
r where r =

[
n+1

2

]
, then Clifford’s Theorem ([1]) gives the result. For more

detail see [7].

Acknowledgements.

I would like thank referee for several valuable comments and suggestions.

References

[1] C. Curtis, I. Reiner, Representation theory and associative algebra, Wiley, New York,
1988.
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