THE SMOOTH IRREDUCIBLE REPRESENTATIONS OF

$U(2)$
Manouchehr Misaghian
Prairie View A \& M University, USA

Abstract

In this paper we parametrize all smooth irreducible representations of $U(2)$, the compact unitary group in two variables.

1. Introduction and Notation

Let E / F be a quadratic extension of local fields. If $\left(W_{1},(,)_{1}\right)$ is a Hermitian space over E and $\left(W_{2},(,)_{2}\right)$ is a skew-Hermitian space over E, the unitary groups $G_{1}=G\left(W_{1}\right)$ and $G_{2}=G\left(W_{2}\right)$ form a reductive dual pair in $S p(W)$, where $W=W_{1} \otimes_{E} W_{2}$ has the symplectic form $\langle\rangle=,\frac{1}{2} \operatorname{Tr}_{E / F}\left(\overline{(,)_{1}} \otimes(,)_{2}\right)$ over F and $x \rightarrow \bar{x}$ is the non trivial element of Galois group $\Gamma=\Gamma(E / F)$. We consider the special case in which $\operatorname{dim}_{E} W_{1}=1$, and $\operatorname{dim}_{E} W_{2}=2$. In this case, $G_{1}=U(1)$, and $G_{2}=U(2)$ are unitary groups in one and two variables, respectively. The structure of $U(1)$ is simple and its representations are all one dimensional and easy to find. The structure of $U(2)$ is more complicated and is the semidirect-product of two compact groups. Since our group is compact, all its smooth irreducible representations are finite dimensional. Although new methods and results for finding the representations of p-adic groups were published recently ([12]), in this paper we will be using the method used by Manderscheid ([5]) to construct the representations of $S L_{2}$, to parametrize the representations of $U(2)$. Our motivation for finding representations of $U(2)$, in addition to its own interest, is that they are needed to parametrize the theta correspondence for the reductive dual pair $(U(1), U(2))$.

[^0]This paper consists of four sections. The first section is devoted to introduction and notation. In the second section we describe the structure of $U(2)$. In the third section we find all representations of $U(2)$ whose dimensions are bigger than one. The final section consists of the description of all characters (one-dimensional representations) of $U(2)$. Besides characters, other finitedimensional representations will be described as fully induced representations from characters of certain subgroups. This is given in Theorem 3.29. In Theorems 4.5 and 4.6 , we will formalize all the results obtained in sections 3 and 4.

To begin, let F be a local p-field, where p is an odd prime integer number and let ϖ be the uniformizer of it. Let D be the unique (up to an isomorphism) quaternion division algebra over F. Let π be a uniformizer of D such that $\pi^{2}=\varpi$. Also let ϵ be a unit in D such that ϵ^{2} is a unit in F and $\epsilon \pi=-\pi \epsilon$. For any $x \in D$ we can write:

$$
x=x_{1}+x_{2} \epsilon+x_{3} \pi+x_{4} \epsilon \pi .
$$

where x_{1}, x_{2}, x_{3} and x_{4} are in F. For any $x \in D, x=x_{1}+x_{2} \epsilon+x_{3} \pi+x_{4} \epsilon \pi$, define \bar{x} as follows:

$$
\bar{x}=x_{1}-x_{2} \epsilon-x_{3} \pi-x_{4} \epsilon \pi .
$$

Then $x \rightarrow \bar{x}$ is an involution on D whose restriction to E is the non trivial element of Galois group $\Gamma=\Gamma(E / F)$. We denote by $\nu=\nu_{D / F}$ the reduced norm map and is defined as:

$$
\nu(x)=x \bar{x},
$$

and by $\operatorname{Tr}=T r_{D / F}$ the reduced trace map and is defined as:

$$
\operatorname{Tr}(x)=x+\bar{x}
$$

For $x \in E, T r_{E / F}$ and $\nu_{E / F}$ are defined similarly:

$$
\operatorname{Tr}_{E / F}(x)=x+\bar{x},
$$

and

$$
\nu(x)=\nu_{E / F}(x)=x \bar{x} .
$$

Also let $O=O_{F}$ be the ring of integers of F with maximal ideal $P=P_{F}$ generated by ϖ, and $k=k_{F}$ the residue class field O / P with cardinality q. Let $v_{D}(x)$ be the order of an element, x, in D. So for any x in D we can write $x=u \pi^{v_{D}(x)}$ for some unit u in D. Let O_{D}, P_{D}, and $\mathbf{k}=k_{D}=O_{D} / P_{D}$ be the ring of integers, maximal ideal generated by π, and residue class field of D, respectively. We denote by D° the set of all traceless elements in D and $O_{D^{\circ}}=O_{D} \cap D^{\circ}$. For any integer r, we define P_{D}^{r} as follows:

$$
P_{D}^{r}=O_{D} \pi^{r}=\left\{a \pi^{r} \mid a \in O_{D}\right\} .
$$

Also we define $P_{D^{\circ}}^{r}$ as $P_{D^{\circ}}^{r}=O_{D^{\circ}} \cap P_{D}^{r}$. The norm one elements group of D, denoted by D^{1} is defined as follows:

$$
D^{1}=\{x \in D \mid \nu(x)=1\} .
$$

For any positive integer r, D_{r}^{1} is the following set:

$$
D_{r}^{1}=\left\{x \in D^{1} \mid x=1+a \pi^{r}, \text { for some } a \in O_{D}\right\}
$$

Let E / F be a quadratic extension contained in D. Let γ be a generator of E / F, i.e., $E=F(\gamma)$. We can and will take $\gamma=\epsilon$ when E / F is unramified and $\gamma=\pi$ when E / F is ramified ([13]). Set $W_{1}=E$ with the following Hermitian form:

$$
(x, y)_{1}=\frac{1}{2} x \bar{y}, x, y \in E
$$

and set $W_{2}=D$ with the following skew-Hermitian form:

$$
(x, y)_{2}=\frac{1}{2} \operatorname{Tr}_{D / E}(\gamma x \bar{y}), x, y \in D,
$$

where $T r_{D / E}$ is the trace map from D to E and is equal to the first coordinate of x in E, i.e.,

$$
\operatorname{Tr}_{D / E}(x)=a, \text { for any } x \in D, x=(a, b), \text { and } a, b \in E .
$$

One can show that:

$$
T r=T r_{E / F} \circ T r_{D / E}
$$

Now set $W=W_{1} \otimes_{E} W_{2}$. Then W is isomorphic to $W_{2}=D$ via $a \otimes x \longmapsto a x$ (its inverse is $x \longmapsto 1 \otimes x$) with the following skew-Hermitian form:

$$
\langle x, y\rangle=\frac{1}{2} \operatorname{Tr}(\gamma x \bar{y}), x, y \in D \cong W .
$$

For any $x \in D$, let $x=(a, b)$, where a and b in E are coordinates of x in E. (note that D is a two dimensional vector space over E.) From here we get $\bar{x}=(\bar{a},-b)$. We also denote by E^{1} the norm one elements group of E, $E^{1}=\{x \in E \mid \nu(x)=1\}$.

2. Structure of $U(2)$

While the structure of $U(2)$ is well-known and is the semidirect-product of compact groups D^{1} and $E^{1}([2])$, we are giving its detailed structure here in our notation.

Let all notations be as above and for simplicity for the rest of this paper we assume that E / F is unramified (for ramified case see Remarks 2.14 and 3.15). Thus we have $E=F(\epsilon)$ and $\mathcal{B}=\{1, \pi\}$ is a basis of D over E. Also note that the skew-Hermitian space $(W,\langle\rangle$,$) is anisotropic space, i.e., \langle x, x\rangle=0$ if and only if $x=0$, and the matrix of the skew-Hermitian form \langle,$\rangle in this basis, \mathcal{B}$, is:

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & -\pi^{2}
\end{array}\right) .
$$

Theorem 2.1. The group of isometries of $(W,\langle\rangle),, G_{2}$, is given as follows:

$$
G_{2}=\left\{\left.\left(\begin{array}{ll}
a & \lambda \pi^{2} \bar{c} \\
c & \lambda \bar{a}
\end{array}\right) \right\rvert\, a \in E^{\times}, c \in E, \lambda \in E^{1}, \nu(a)-\nu(c) \pi^{2}=1\right\} .
$$

Proof. Let $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an element of G_{2}, where a, b, c and d are in E. Then we must prove that:

$$
\begin{equation*}
g^{*} A g=A \tag{2.1}
\end{equation*}
$$

where $g^{*}=\left(\begin{array}{cc}\bar{a} & \bar{c} \\ \bar{b} & \bar{d}\end{array}\right)$ and A is as in above. From equation (2.1) we also get:

$$
\begin{equation*}
A^{-1}=g A^{-1} g^{*} \tag{2.2}
\end{equation*}
$$

Now since $A^{-1}=\left(\begin{array}{ll}1 & 0 \\ 0 & -\pi^{-2}\end{array}\right)$, multiplying equation (2.2) by $-\pi^{2}$ we get

$$
g\left(\begin{array}{ll}
-\pi^{2} & 0 \tag{2.3}\\
0 & 1
\end{array}\right) g^{*}=\left(\begin{array}{ll}
-\pi^{2} & 0 \\
0 & 1
\end{array}\right)
$$

From equations (2.1), (2.2) and(2.3) we get:

$$
\begin{aligned}
\nu(a)-\nu(c) \pi^{2} & =1, \\
\bar{a} b-\pi^{2} \bar{c} d & =0, \\
\nu(b)-\nu(d) \pi^{2} & =-\pi^{2}, \\
\pi^{2} \bar{c} a-\bar{d} b & =0, \\
\nu(d)-\nu(c) \pi^{2} & =1, \\
\pi^{2} \nu(a)-\nu(b) & =\pi^{2} .
\end{aligned}
$$

The above conditions lead to $\nu(a)=\nu(d)$ and $\nu(b)=\nu(c) \pi^{4}$. From $\nu(a)=$ $\nu(d)$ and equation $\nu(a)-\nu(c) \pi^{2}=1$ we deduce that $a \neq 0, d \neq 0$. Because if $a=d=0$, then we must have $-\nu(c) \pi^{2}=1$, i.e $\nu(c \pi)=1$, which is not true. See ([7]). From here and $\pi^{2} \bar{c} a-\bar{d} b=0$ we get:

$$
\frac{a}{\bar{d}}=\frac{d}{\bar{a}}=\lambda,
$$

and

$$
\frac{a}{\bar{d}}=\frac{b}{\bar{c} \pi^{2}}=\lambda, \text { when } c \neq 0
$$

If $c=0$, then $b=0$ and $g=\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)$ with $\nu(a)=\nu(d)=1$. For $c \neq 0$ we have $d=\lambda \bar{a}, b=\lambda \pi^{2} \bar{c}$ and $\nu(\lambda)=1, \nu(a)-\nu(c) \pi^{2}=1$. So

$$
g=\left(\begin{array}{ll}
a & \lambda \pi^{2} \bar{c} \\
c & \lambda \bar{a}
\end{array}\right)
$$

i.e.,

$$
G_{2}=\left\{\left.\left(\begin{array}{ll}
a & \lambda \pi^{2} \bar{c} \\
c & \lambda \bar{a}
\end{array}\right) \right\rvert\, a \in E^{\times}, c \in E, \lambda \in E^{1}, \nu(a)-\nu(c) \pi^{2}=1\right\} .
$$

Proposition 2.2. The group E^{1} is isomorphic to a subgroup of G_{2} and D^{1} is isomorphic to a normal subgroup of G_{2}.

Proof. Define $f: E^{1} \rightarrow G_{2}$ by

$$
f(\lambda)=\left(\begin{array}{cc}
1 & 0 \\
0 & \lambda
\end{array}\right), \lambda \in E^{1}
$$

Then one can check that f is a one to one homomorphism from E^{1} to G_{2}. For the other part define $f: D^{1} \rightarrow G_{2}$ by

$$
f(x)=\left(\begin{array}{ll}
a & \pi^{2} b \\
\bar{b} & \bar{a}
\end{array}\right)
$$

where $x=a+b \pi, a, b \in E$ and $\nu(x)=1$. Then for $x=a+b \pi$ and $y=c+d \pi$ in D^{1} we have:

$$
\begin{aligned}
f(x y) & =f\left(a c+b \bar{d} \pi^{2}+(a d+b \bar{c}) \pi\right) \\
& =\left(\begin{array}{ll}
\frac{a c+b \bar{d} \pi^{2}}{(a d+b \bar{c})} & \frac{(a d+b \bar{c}) \pi^{2}}{a c+b \bar{d} \pi^{2}}
\end{array}\right) \\
& =\left(\begin{array}{ll}
a & \pi^{2} b \\
\bar{b} & \bar{a}
\end{array}\right)\left(\begin{array}{ll}
c & \pi^{2} d \\
\bar{d} & \bar{c}
\end{array}\right) \\
& =f(x) f(y) .
\end{aligned}
$$

So f is a homomorphism. One can check that f is one to one. So we can identify D^{1} with its image, $f\left(D^{1}\right)$, in G_{2}. To show D^{1} is normal in G_{2}, let $\delta=\left(\begin{array}{ll}x & \pi^{2} y \\ \bar{y} & \bar{x}\end{array}\right) \in D^{1}$ and $g=\left(\begin{array}{ll}a & \lambda \pi^{2} \bar{c} \\ c & \lambda \bar{a}\end{array}\right) \in G_{2}$ with $a \in E^{\times}, c \in$ $E, \lambda \in E^{1}, \nu(a)-\nu(c) \pi^{2}=1$, and $\nu(x)-\nu(y) \pi^{2}=1$. From here we get $\operatorname{det} g=\lambda \nu(a)-\lambda \nu(c) \pi^{2}=\lambda$. Since $\nu(\lambda)=1$, so $\lambda^{-1}=\bar{\lambda}$ and $g^{-1}=$ $\left(\begin{array}{ll}\bar{a} & -\pi^{2} \bar{c} \\ -c \bar{\lambda} & \bar{\lambda} a\end{array}\right)$. This gives us:

$$
\begin{aligned}
g^{-1} \delta g & =\left(\begin{array}{ll}
a & \lambda \pi^{2} \bar{c} \\
c & \lambda \bar{a}
\end{array}\right)\left(\begin{array}{ll}
x & \pi^{2} y \\
\bar{y} & \bar{x}
\end{array}\right)\left(\begin{array}{ll}
\bar{a} & -\pi^{2} \bar{c} \\
-c \bar{\lambda} & \bar{\lambda} a
\end{array}\right) \\
& =\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& x_{11}=x \nu(a)-\pi^{2} \bar{c} \bar{y} a+\pi^{2} \bar{a} y c-\pi^{2} \nu(c) \bar{x}, \\
& x_{12}=\lambda x \pi^{2} \bar{a} \bar{c}-\lambda \pi^{4} \bar{c} \bar{c} \bar{y}+\lambda \pi^{2} \bar{a} \bar{a} y-\lambda \pi^{2} \bar{a} \bar{c} \bar{x}, \\
& x_{21}=-a x \bar{\lambda} c+a^{2} \bar{\lambda} \bar{y}-\pi^{2} \bar{\lambda} c^{2} y+a c \bar{\lambda} \bar{x}, \\
& x_{22}=-\pi^{2} x \nu(c)+a \pi^{2} \bar{y} \bar{c}-\pi^{2} c y \bar{a}+\nu(a) \bar{x} .
\end{aligned}
$$

Now one can show that $x_{22}=\overline{x_{11}}$ and $x_{21}=\frac{\overline{x_{12}}}{\pi^{2}}$, i.e.,

$$
g^{-1} \delta g=\left(\begin{array}{ll}
x_{11} & \pi^{2} \overline{\left(\frac{\overline{x_{12}}}{\pi^{2}}\right)} \\
\frac{\overline{x_{12}}}{\pi^{2}} & \overline{x_{11}}
\end{array}\right) \in D^{1} .
$$

Theorem 2.3. G_{2} is semidirect product of D^{1} and $E^{1}, G_{2}=D^{1} \rtimes E^{1}$.
Proof. This is well known, see e.g. [2], and Corollary 2.13 in this paper in our notation.

Lemma 2.4. Let $\sigma: E^{1} \rightarrow A u t(W)$, be defined as follows:

$$
\lambda \mapsto \sigma_{\lambda}, \text { for any } \lambda \in E^{1}
$$

where

$$
\sigma_{\lambda}: W \rightarrow W
$$

is defined as:

$$
\sigma_{\lambda}(w)=\sigma_{\lambda}(a+b \pi)=a+\lambda b \pi,
$$

for any $w=a+b \pi \in W, a, b \in E$. Then $\lambda \mapsto \sigma_{\lambda}$ is an isomorphism of E^{1} into the Aut (W). Further for any $\lambda \in E^{1}, \sigma_{\lambda}$ satisfies the following:

1. $\overline{\sigma_{\lambda}(w)}=\sigma_{\lambda}(\bar{w})$ for any $w \in W$,
2. $\sigma_{\lambda}(e)=e$ for any $e \in E$,
3. σ_{λ} is in the $G L_{E}(W)$ as well as in $G L_{F}(W)$.

Proof. Let $w=a+b \pi$ and $w^{\prime}=c+d \pi$ be two elements in W, where a, b, c and d are in E. Let $\lambda, \lambda^{\prime}$ be in E^{1}. Then:

$$
w w^{\prime}=a c+b \bar{d} \pi^{2}+(a d+b \bar{c}) \pi
$$

so by our definition we have:

$$
\begin{aligned}
\sigma_{\lambda}\left(w w^{\prime}\right) & =a c+b \bar{d} \pi^{2}+\lambda(a d+b \bar{c}) \pi \\
& =(a+\lambda b \pi)(c+\lambda d \pi) \\
& =\sigma_{\lambda}(w) \sigma_{\lambda}\left(w^{\prime}\right)
\end{aligned}
$$

i.e., for any $\lambda \in E^{1}, \sigma_{\lambda}$ is a homomorphism of W. One can check that $\operatorname{ker} \sigma_{\lambda}=\{1\}$. Also note that for any $w^{\prime}=c+d \pi \in W$, we have:

$$
\sigma_{\lambda}(c+\bar{\lambda} d \pi)=c+d \pi=w^{\prime}
$$

which shows that σ_{λ} is onto. Also we have:

$$
\begin{aligned}
\sigma_{\lambda \lambda^{\prime}}(w) & =\sigma_{\lambda \lambda^{\prime}}(a+b \pi)=a+\lambda \lambda^{\prime} b \pi \\
& =\sigma_{\lambda}\left(a+\lambda^{\prime} b \pi\right)=\sigma_{\lambda} \sigma_{\lambda^{\prime}}(w),
\end{aligned}
$$

i.e., $\sigma_{\lambda \lambda^{\prime}}=\sigma_{\lambda} \sigma_{\lambda^{\prime}}$. This shows that σ is homomorphism. It is easy to check that σ is one to one. So σ is an imbedding. For the remaining statements we have:

1. For any $w=a+b \pi \in W$ and $\lambda \in E^{1}$, we have:

$$
\sigma_{\lambda}(\bar{w})=\sigma_{\lambda}(\bar{a}-b \pi)=\bar{a}-\lambda b \pi=\overline{\sigma_{\lambda}(w)}
$$

2. Any element e in E is in the form $e+0 \pi$, so $\sigma_{\lambda}(e)=e$.
3. Let $\mu \in E$. Then we have:

$$
\begin{aligned}
\sigma_{\lambda}\left(w+\mu w^{\prime}\right) & =\sigma_{\lambda}(a+\mu c+(b+\mu d) \pi) \\
& =a+\mu c+\lambda(b+\mu d) \pi \\
& =a+\lambda b \pi+\mu(c+\lambda d \pi) \\
& =\sigma_{\lambda}(w)+\mu \sigma_{\lambda}\left(w^{\prime}\right)
\end{aligned}
$$

So for any $\lambda \in E^{1}, \sigma_{\lambda}$ is an E-linear map and hence an F-linear map as well. As a linear map, σ_{λ}, is one to one, too.

Lemma 2.5. For any $\lambda \in E^{1}$ and any $\delta \in D^{1}$. we have $\sigma_{\lambda}(\delta) \in D^{1}$.
Proof. By Lemma 2.4 one has:

$$
\begin{aligned}
\nu\left(\sigma_{\lambda}(\delta)\right) & =\sigma_{\lambda}(\delta) \overline{\sigma_{\lambda}(\delta)}=\sigma_{\lambda}(\delta) \sigma_{\lambda}(\bar{\delta}) \\
& =\sigma_{\lambda}(\delta \bar{\delta})=\sigma_{\lambda}(1)=1
\end{aligned}
$$

Corollary 2.6. Let $\sigma: E^{1} \rightarrow$ Aut $\left(D^{1}\right)$, be defined as follows:

$$
\lambda \mapsto \sigma_{\lambda}, \text { for any } \lambda \in E^{1}
$$

where σ_{λ} is as in Lemma 2.4, restricted to $D^{1} \subset D \cong W$. Then σ is an imbedding.

Lemma 2.7. Let $\lambda \in E^{1}$. Then for all $w \in W$ we have:

$$
\begin{equation*}
\operatorname{Tr}_{D / E}\left(\sigma_{\lambda}(w)\right)=\operatorname{Tr}_{D / E}(w)=\sigma_{\lambda}\left(\operatorname{Tr}_{D / E}(w)\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Tr}\left(\sigma_{\lambda}(w)\right)=\operatorname{Tr}(w)=\sigma_{\lambda}(\operatorname{Tr}(w)) \tag{2.5}
\end{equation*}
$$

Proof. We prove (2.5). (2.4) is the same. Write $w=a+b \pi$. Then by definition of Tr and part 2 of Lemma 2.4 we get:

$$
\begin{aligned}
\operatorname{Tr}\left(\sigma_{\lambda}(w)\right) & =\sigma_{\lambda}(w)+\overline{\sigma_{\lambda}(w)}=a+\lambda b \pi+\bar{a}-\lambda b \pi \\
& =a+\bar{a}=w+\bar{w}=\operatorname{Tr}(w)=\sigma_{\lambda}(\operatorname{Tr}(w))
\end{aligned}
$$

Lemma 2.8. For any $\lambda \in E^{1}$ we have $\sigma_{\lambda} \in G_{2}$ and $\sigma_{\lambda} \in S p(W)$.
Proof. Let w and w^{\prime} be two elements in W. Then by definition of $(,)_{2}$ and equation (2.4) in Lemma 2.7 we have:

$$
\begin{aligned}
\left(\sigma_{\lambda}(w), \sigma_{\lambda}\left(w^{\prime}\right)\right)_{2} & =\frac{1}{2} \operatorname{Tr}_{D / E}\left(\epsilon \sigma_{\lambda}(w) \overline{\sigma_{\lambda}\left(w^{\prime}\right)}\right) \\
& =\frac{1}{2} \operatorname{Tr}_{D / E}\left(\epsilon \sigma_{\lambda}(w) \sigma_{\lambda}\left(\bar{w}^{\prime}\right)\right) \\
& =\frac{1}{2} \operatorname{Tr}_{D / E}\left(\epsilon \sigma_{\lambda}\left(w \bar{w}^{\prime}\right)\right)=\frac{1}{2} \operatorname{Tr}_{D / E}\left(\epsilon w \bar{w}^{\prime}\right)=\left(w, w^{\prime}\right)_{2}
\end{aligned}
$$

So $\sigma_{\lambda} \in G_{2}$. The same computations and equation (2.5) in Lemma 2.7 give the result $\sigma_{\lambda} \in S p(W)$.

Lemma 2.9. Let $\mathcal{G}=D^{1} \times E^{1}$ be the set theoretic Cartesian product of D^{1} and E^{1}, and define the following operation on it:

$$
\begin{equation*}
(\delta, \lambda) *\left(\delta^{\prime}, \lambda^{\prime}\right)=\left(\sigma_{\lambda}\left(\delta^{\prime}\right) \delta, \lambda \lambda^{\prime}\right) \tag{2.6}
\end{equation*}
$$

for (δ, λ) and $\left(\delta^{\prime}, \lambda^{\prime}\right) \in \mathcal{G}$. Then \mathcal{G} is a group equal to the semidirect product of $D^{1} \times\left\{1_{E^{1}}\right\} \cong D^{1}$ and $\left\{1_{D^{1}}\right\} \times E^{1} \cong E^{1}$ via σ and we denote it by $D^{1} \rtimes_{\sigma} E^{1}$.

Proof. By Corollary 2.6 the action defined by equation (2.6) is welldefined and $(1,1) \in \mathcal{G}$ is its unit element. Further for any $(\delta, \lambda) \in \mathcal{G}$, we have:

$$
(\delta, \lambda)\left(\sigma_{\bar{\lambda}}(\bar{\delta}), \bar{\lambda}\right)=\left(\sigma_{\bar{\lambda}}(\bar{\delta}), \bar{\lambda}\right)(\delta, \lambda)=(1,1) .
$$

So $(\delta, \lambda)^{-1}=\left(\sigma_{\bar{\lambda}}(\bar{\delta}), \bar{\lambda}\right)$. On the other hand for any $(\delta, \lambda) \in \mathcal{G}$ we have:

$$
(\delta, \lambda)=(\delta, 1) *(1, \lambda)
$$

and obviously we have:

$$
D^{1} \times\left\{1_{E^{1}}\right\} \cap\left\{1_{D^{1}}\right\} \times E^{1}=\{(1,1)\} .
$$

Remark 2.10. From now on we will write $(\delta, \lambda)\left(\delta^{\prime}, \lambda^{\prime}\right)$ for $(\delta, \lambda) *\left(\delta^{\prime}, \lambda^{\prime}\right)$.
Lemma 2.11. There is a subgroup, say \mathcal{H}, of $S p(W)$ such that $D^{1} \rtimes_{\sigma} E^{1} \cong$ \mathcal{H}.

Proof. Define $f: D^{1} \rtimes_{\sigma} E^{1} \rightarrow S p(W),(\delta, \lambda) \mapsto f_{(\delta, \lambda)}$, where $f_{(\delta, \lambda)}$ is given as follows:

$$
f_{(\delta, \lambda)}: W \rightarrow W, \quad f_{(\delta, \lambda)}(w)=\sigma_{\lambda}(w) \delta
$$

Then f is a homomorphism because for any (δ, λ) and $\left(\delta^{\prime}, \lambda^{\prime}\right) \in D^{1} \rtimes_{\sigma} E^{1}$, and any $w \in W$ we have:

$$
\begin{aligned}
f_{(\delta, \lambda)\left(\delta^{\prime}, \lambda^{\prime}\right)}(w) & =f_{\left(\sigma_{\lambda}\left(\delta^{\prime}\right) \delta, \lambda \lambda^{\prime}\right)}(w)=\sigma_{\lambda \lambda^{\prime}}(w) \sigma_{\lambda}\left(\delta^{\prime}\right) \delta \\
& =\sigma_{\lambda}\left(\sigma_{\lambda^{\prime}}(w) \delta^{\prime}\right) \delta=f_{(\delta, \lambda)}\left(\sigma_{\lambda^{\prime}}(w) \delta^{\prime}\right) \\
& =f_{(\delta, \lambda)} f_{\left(\delta^{\prime}, \lambda^{\prime}\right)}(w) .
\end{aligned}
$$

This shows that $f(\delta, \lambda) f\left(\delta^{\prime}, \lambda^{\prime}\right)=f\left((\delta, \lambda)\left(\delta^{\prime}, \lambda^{\prime}\right)\right)$. Now let $(\delta, \lambda) \in \operatorname{ker} f$. Then, for any $w=a+b \pi \in W$, we must prove that:

$$
f_{(\delta, \lambda)}(w)=(a+\lambda b \pi) \delta=a+b \pi
$$

This forces $(\delta, \lambda)=(1,1)$. Let $(\delta, \lambda) \in D^{1} \rtimes_{\sigma} E^{1}$. Then for any w, w^{\prime} in W by Lemma 2.4 and relations (2.4), (2.5) in Lemma 2.7 we have:

$$
\begin{aligned}
\left\langle f_{(\delta, \lambda)}(w), f_{(\delta, \lambda)}\left(w^{\prime}\right)\right\rangle & =\left\langle\sigma_{\lambda}(w) \delta, \sigma_{\lambda}\left(w^{\prime}\right) \delta\right\rangle=\frac{1}{2} \operatorname{Tr}\left(\epsilon \sigma_{\lambda}(w) \delta \overline{\sigma_{\lambda}\left(w^{\prime}\right) \delta}\right) \\
& =\frac{1}{2} \operatorname{Tr}\left(\epsilon \sigma_{\lambda}(w) \delta \bar{\delta} \overline{\sigma_{\lambda}(w)}\right)=\frac{1}{2} \operatorname{Tr}\left(\epsilon \sigma_{\lambda}(w) \sigma_{\lambda}(\bar{w})\right) \\
& =\frac{1}{2} \operatorname{Tr}\left(\sigma_{\lambda}(\epsilon w \bar{w})\right)=\frac{1}{2} \operatorname{Tr}(\epsilon w \bar{w})=\langle w, \bar{w}\rangle
\end{aligned}
$$

So $f_{(\delta, \lambda)} \in S p(W)$. Now set $\mathcal{H}=\left\{f_{(\delta, \lambda)} \in S p(W) \mid(\delta, \lambda) \in D^{1} \rtimes_{\sigma} E^{1}\right\}$.
Proposition 2.12. Let all notations be as above. We have $\mathcal{H} \cong G_{2}$.
Proof. First note that for any $f_{(\delta, \lambda)} \in \mathcal{H}$ we have $f_{(\delta, \lambda)} \in G_{2}$, because for any w, w^{\prime} in W by Lemma 2.4, and equation (2.4) in Lemma 2.7 we have:

$$
\begin{aligned}
\left\langle f_{(\delta, \lambda)}(w)\right. & \left., f_{(\delta, \lambda)}\left(w^{\prime}\right)\right\rangle \\
= & \left\langle\sigma_{\lambda}(w) \delta, \sigma_{\lambda}\left(w^{\prime}\right) \delta\right\rangle=\frac{1}{2} \operatorname{Tr}_{D / E}\left(\epsilon \sigma_{\lambda}(w) \delta \overline{\sigma_{\lambda}\left(w^{\prime}\right) \delta}\right) \\
= & \frac{1}{2} \operatorname{Tr}_{D / E}\left(\epsilon \sigma_{\lambda}(w) \delta \bar{\delta} \overline{\sigma_{\lambda}\left(w^{\prime}\right)}\right)=\frac{1}{2} \operatorname{Tr}_{D / E}\left(\sigma_{\lambda}\left(\epsilon w \bar{w}^{\prime}\right)\right) \\
= & \frac{1}{2} \operatorname{Tr}_{D / E}\left(\epsilon w \bar{w}^{\prime}\right)=\langle w, \bar{w}\rangle .
\end{aligned}
$$

Now define $\mathcal{F}: \mathcal{H} \rightarrow G_{2}$ as follows:

$$
\mathcal{F}\left(f_{(\delta, \lambda)}\right)=\left(\begin{array}{ll}
a & \lambda \pi^{2} \bar{b} \\
b & \lambda \bar{a}
\end{array}\right)
$$

where $\delta=a+b \pi \in D^{1}$ and $\lambda \in E^{1}$. \mathcal{F} is a homomorphism because, for $\delta=a+b \pi \in D^{1}$ and $\delta^{\prime}=c+d \pi \in D^{1}$ and $\lambda, \lambda^{\prime} \in E^{1}$ we have:

$$
\begin{aligned}
\mathcal{F}\left(f_{(\delta, \lambda)} f_{\left(\delta^{\prime}, \lambda^{\prime}\right)}\right) & =\mathcal{F}\left(f_{\left(\sigma_{\lambda}\left(\delta^{\prime}\right) \delta, \lambda \lambda^{\prime}\right)}\right) \\
& =\left(\begin{array}{ll}
a c+\lambda \bar{b} d \pi^{2} & \lambda \lambda^{\prime} \pi^{2}(\bar{\lambda} a \bar{d}+\bar{b} \bar{c}) \\
b c+\lambda \bar{a} d & \lambda \lambda^{\prime}\left(\bar{a} \bar{c}+\bar{\lambda} b \bar{d} \pi^{2}\right)
\end{array}\right) \\
& =\left(\begin{array}{ll}
a & \lambda \pi^{2} \bar{b} \\
b & \lambda \bar{a}
\end{array}\right)\left(\begin{array}{ll}
c & \lambda^{\prime} \pi^{2} \bar{d} \\
d & \lambda^{\prime} \bar{c}
\end{array}\right) \\
& =\mathcal{F}\left(f_{(\delta, \lambda)}\right) \mathcal{F}\left(f_{\left(\delta^{\prime}, \lambda^{\prime}\right)}\right) .
\end{aligned}
$$

Now let $f_{(\delta, \lambda)} \in \operatorname{ker} \mathcal{F}$, where $\delta=a+b \pi \in D^{1}$ and $\lambda \in E^{1}$. Then we have:

$$
\mathcal{F}\left(f_{(\delta, \lambda)}\right)=\left(\begin{array}{ll}
a & \lambda \pi^{2} \bar{b} \\
b & \lambda \bar{a}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

This gives us $\delta=\lambda=1$, i.e., \mathcal{F} is one to one. On the other hand for any $Q=\left(\begin{array}{ll}a & \lambda \pi^{2} \bar{b} \\ b & \lambda \bar{a}\end{array}\right) \in G_{2}$, if we take $\delta=a+b \pi$, then $\mathcal{F}\left(f_{(\delta, \lambda)}\right)=Q$, which shows that \mathcal{F} is onto.

Corollary 2.13. $G_{2}=D^{1} \rtimes E^{1} \cong D^{1} \rtimes_{\sigma} E^{1}=U(2)$.
Remark 2.14. If E / F is ramified then we may assume that $E=F(\pi)$. Then $\mathcal{B}=\{1, \epsilon\}$ will be a basis for D over E. So for any $x \in D$ we can write $x=a+\epsilon b$ for some $a, b \in E$. In this case the bilinear forms $(,)_{1}$ and \langle,$\rangle will$ be redefined as follows:

$$
(x, y)_{1}=\frac{1}{2} \bar{x} y, \text { for } x, y \in E
$$

and

$$
\langle x, y\rangle=\frac{1}{2} \operatorname{Tr}(\pi \bar{x} y), \quad \text { for } x, y \in D
$$

Also for any $\lambda \in E, \sigma_{\lambda}$ will be given by

$$
\sigma_{\lambda}(x)=\sigma_{\lambda}(a+\epsilon b)=a+\epsilon \lambda b
$$

for $x=a+\epsilon b \in D$, where $a, b \in E$. The same argument as in unramified case gives us that

$$
U(2)=D^{1} \rtimes E^{1} \cong D^{1} \rtimes_{\sigma} E^{1}
$$

3. Representations of $U(2)$

In this section we study certain subgroup because it will be used for the induced representations in the main Theorem.

Let E be the unramified quadratic extension of F contained in D specified in previous sections. Let O_{E}, P_{E} denote the ring of integers and maximal ideal of E, respectively. We may and will assume that ϖ (the uniformizer of F) is the generator of P_{E}. Also for any integer r, P_{E}^{r} is defined as $P_{E}^{r}=$
$O_{E} \varpi^{r}=O_{E} \pi^{2 r}$ and $E_{r}^{1}=\left\{x \in E^{1} \mid x=1+a \varpi^{r}\right.$, for some $\left.a \in O_{E}\right\}$. The residue class field of E will be denoted by k_{E}.

Definition 3.1. Let χ be a non trivial additive character of F. The conductor of χ is the smallest integer, n say, such that χ is trivial on P^{n}. Alternatively we may say P^{n} is the conductor of χ.

Remark 3.2. Throughout this paper, χ is a non-trivial additive character of F with the conductor $0(O)$.

Lemma 3.3. Let L_{1} and L_{2} be any two unramified quadratic extension of F contained in D. Then there exists a unit $d \in O_{D}$ such that $L_{2}=d L_{1} d^{-1}$.

Proof. See [9, page 104.].
Lemma 3.4. For any non zero element $d \in D$, the map $\alpha \mapsto d \alpha d^{-1}$ is an isomorphism of $O_{D^{\circ}}$ onto $O_{D^{\circ}}$.

Proof. This is clear.
REmark 3.5. In what follows $\alpha \in D^{\circ}$ is an element with $v_{D}(\alpha)=-n-1$, where n is a positive integer. Set $r=\left[\frac{n+1}{2}\right]$, where [] is the greatest integer part. We will identify $D_{r}^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}$ with D_{r}^{1} as a normal subgroup of $U(2)$.

Lemma 3.6. Define $\chi_{\alpha}: D_{r}^{1} \rightarrow \mathbb{C}^{\times}$by:

$$
\chi_{\alpha}(h)=\chi(\operatorname{Tr}(\alpha(h-1))), h \in D_{r}^{1} .
$$

Then χ_{α} is a character of D_{r}^{1} with conductor equal n.
Proof. See [7].
Definition 3.7. Let φ be any homomorphism on a subgroup H of a group G. For any $g \in G$ set $H^{(g)}=g H^{-1}$ and define φ^{g} on it as follows:

$$
\varphi^{g}(h)=\varphi\left(g^{-1} h g\right), h \in H^{(g)}
$$

φ^{g} is called the conjugation of φ by g.
Lemma 3.8. Notation is as in Lemma 3.6. For any unit element $d \in O_{D}$, χ_{α} and $\chi_{d^{-1} \alpha d}^{d}$ are the same characters of D_{r}^{1}.

Proof. Let $\delta \in D_{r}^{1} \cap d D_{r}^{1} d^{-1}=D_{r}^{1}$. Then we have:

$$
\begin{aligned}
\chi_{d^{-1} \alpha d}^{d}(\delta) & =\chi_{d^{-1} \alpha d}\left(d^{-1} \delta d\right)=\chi\left(\operatorname{Tr}\left(d^{-1} \alpha d\right)\left(d^{-1} \delta d-1\right)\right) \\
& =\chi\left(\operatorname{Tr}\left(d^{-1} \alpha(\delta-1) d\right)\right)=\chi(\operatorname{Tr}(\alpha(\delta-1)))=\chi_{\alpha}(\delta)
\end{aligned}
$$

Corollary 3.9. Let L_{1} and L_{2} be any two unramified quadratic extension of F contained in D. Then the characters of L_{1} and L_{2} can be identified in a certain way.

Remark 3.10. On the basis of Lemmas 3.3 and 3.8, and for our purposes, any unramified quadratic extension of F contained in D might be taken equal E.

Lemma 3.11. Let α and r be as in Lemma 3.6. Let $L=F(\alpha)$ be a quadratic extension of F contained in D and set $L^{1}=\{x \in L \mid \nu(x)=1\}$. Then there exist $\varphi \in\left(L^{1}\right)^{\wedge}$ and $\psi \in\left(E^{1}\right)^{\wedge}$ such that $\varphi_{\mid L^{1} \cap D_{r}^{1}}=\chi_{\alpha \mid L^{1} \cap D_{r}^{1}}$ and $\psi_{\mid E^{1} \cap D_{r}^{1}}=\chi_{\alpha \mid E^{1} \cap D_{r}^{1}}$, where ()$^{\wedge}$ is Pontryagin's dual.

Proof. See [7].
Definition 3.12. Let α, r and L be as in Lemma 3.11. Set:

$$
\Phi(\alpha)=\left\{\varphi \in\left(L^{1}\right)^{\wedge} \mid \varphi_{\mid L^{1} \cap D_{r}^{1}}=\chi_{\alpha \mid L^{1} \cap D_{r}^{1}}\right\}
$$

and

$$
\Psi(\alpha)=\left\{\psi \in\left(E^{1}\right)^{\wedge} \mid \psi_{\mid E^{1} \cap D_{r}^{1}}=\chi_{\alpha \mid E^{1} \cap D_{r}^{1}}\right\} .
$$

Lemma 3.13. Let $\lambda \in E^{1}$, and let $\alpha \in D^{\circ}$ be an element with $v_{D}(\alpha)=$ $-n-1$, where n is a positive even integer and set $r=\left[\frac{n+1}{2}\right]$. Then for any $h \in D_{r}^{1}$, we have $\chi_{\alpha}(h)=\chi_{\alpha}\left(\sigma_{\lambda}(h)\right)$ if and only if $\lambda \in E_{\left[\frac{n-r+1}{2}\right]}^{1}$.

Proof. Write $h=1+x$, for some $x \in P_{D}^{r}$. Then we must prove that:

$$
\chi\left(\operatorname{Tr}\left(\alpha \sigma_{\lambda}(x)\right)\right)=\chi(\operatorname{Tr}(\alpha x)) .
$$

This is the same as $\left(\alpha \sigma_{\lambda}(x)-\alpha x\right) \in P_{D}^{-1}$. Now write $x=a \pi^{r}=$ $\left(a_{1}+a_{2} \pi\right) \pi^{r}$, for some unit $a \in O_{D}$ where $a_{1}, a_{2} \in O_{E}$. Then we have:

$$
\sigma_{\lambda}(x)= \begin{cases}\left(a_{1}+\lambda a_{2} \pi\right) \pi^{r}, & \text { if } r \text { is even } \\ \left(\lambda a_{1}+a_{2} \pi\right) \pi^{r}, & \text { if } r \text { is odd }\end{cases}
$$

So from here when r is even we get:

$$
\left(\alpha \sigma_{\lambda}(x)-\alpha x\right)=\alpha(\lambda-1) a_{2} \pi^{r+1} .
$$

Now note $\left(\alpha \sigma_{\lambda}(x)-\alpha x\right) \in P_{D}^{-1}$ if and only if $\alpha(\lambda-1) a_{2} \pi^{r+1} \in P_{D}^{-1}$, or $(\lambda-1) \in P_{D}^{n-r-1}$ so

$$
(\lambda-1) \in P_{D}^{n-r-1} \cap O_{E}=P_{E}^{\left[\frac{n-r}{2}\right]}=P_{E}^{\left[\frac{n-r+1}{2}\right]}
$$

This implies that $\lambda \in E_{\left[\frac{n-r+1}{2}\right]}^{1}$. If r is odd then:

$$
\left(\alpha \sigma_{\lambda}(x)-\alpha x\right)=\alpha(\lambda-1) a_{1} \pi^{r}
$$

Now $\left(\alpha \sigma_{\lambda}(x)-\alpha x\right) \in P_{D}^{-1}$ if and only if $\alpha(\lambda-1) a_{1} \pi^{r} \in P_{D}^{-1}$ or $(\lambda-1) \in$ P_{D}^{n-r}. Thus

$$
(\lambda-1) \in P_{D}^{n-r} \cap O_{E}=P_{E}^{\left[\frac{n-r+1}{2}\right]}
$$

and this is the same as $\lambda \in E_{\left[\frac{n-r+1}{2}\right]}^{1}$.

Theorem 3.14. Let $\alpha \in D^{\circ}$ be an element with $v_{D}(\alpha)=-n-1$, where n is a positive integer and $r=\left[\frac{n+1}{2}\right]$. Then the stabilizer of $\chi_{\alpha}, S t\left(\chi_{\alpha}\right)$, in $U(2)$ is:

$$
\text { St }\left(\chi_{\alpha}\right)= \begin{cases}E^{1} D_{r-1}^{1} \rtimes_{\sigma} E^{1} & \text { if } n \text { is odd }, \\ \left.L^{1} D_{r}^{1} \rtimes_{\sigma} E_{\left[\frac{r+1}{2}\right]}^{1}\right] & \text { if } n \text { is even } .\end{cases}
$$

Proof. First suppose n is odd. Then $L=F(\alpha)$ is unramified. So by Remark 3.10 we may assume $L=E$. Now let $g=(\delta, \lambda) \in U(2)$ where $\delta \in D^{1}$ and $\lambda \in E^{1}$ be an element of $S t\left(\chi_{\alpha}\right)$. Then $g^{-1}=\left(\sigma_{\bar{\lambda}}(\bar{\delta}), \bar{\lambda}\right)$. Let $h \in D_{r}^{1}$. Now we must prove that:

$$
\begin{equation*}
\chi_{\alpha}\left(g^{-1} h g\right)=\chi_{\alpha}(h) . \tag{3.7}
\end{equation*}
$$

On the other hand we have:

$$
\begin{align*}
g^{-1} h g & =\left(\sigma_{\bar{\lambda}}(\bar{\delta}), \bar{\lambda}\right)(h, 1)(\delta, \lambda)=\left(\sigma_{\bar{\lambda}}(h) \sigma_{\bar{\lambda}}(\bar{\delta}), \bar{\lambda}\right)(\delta, \lambda) \tag{3.8}\\
& =\left(\sigma_{\bar{\lambda}}(\delta) \sigma_{\bar{\lambda}}(h) \sigma_{\bar{\lambda}}(\bar{\delta}), 1\right)=\left(\sigma_{\bar{\lambda}}(\delta h \bar{\delta}), 1\right)
\end{align*}
$$

By writing $h=1+x$, equation (3.7) becomes:

$$
\begin{equation*}
\chi\left(\operatorname{Tr}\left(\alpha \sigma_{\bar{\lambda}}(\delta x \bar{\delta})\right)\right)=\chi(\operatorname{Tr}(\alpha x)) \tag{3.9}
\end{equation*}
$$

Now since σ_{λ} is E-linear equation (3.9) becomes as follows:

$$
\begin{equation*}
\chi\left(\operatorname{Tr}\left(\alpha \sigma_{\bar{\lambda}}(\delta x \bar{\delta})\right)\right)=\chi\left(\operatorname{Tr}\left(\sigma_{\bar{\lambda}}(\alpha \delta x \bar{\delta})\right)\right) \tag{3.10}
\end{equation*}
$$

Apply Lemma 2.7 to equation (3.10) to get;

$$
\chi\left(\operatorname{Tr}\left(\alpha \sigma_{\bar{\lambda}}(\delta x \bar{\delta})\right)\right)=\chi(\operatorname{Tr}(\alpha \delta x \bar{\delta}))=\chi(\operatorname{Tr}(\alpha x)),
$$

or

$$
\chi_{\alpha}(\delta h \bar{\delta})=\chi_{\alpha}(h) .
$$

This last equality implies that $\delta \in E^{1} D_{r-1}^{1}$. So $g=(\delta, \lambda) \in E^{1} D_{r-1}^{1} \rtimes_{\sigma} E^{1}$.
Now suppose n is even. Then $L=F(\alpha)$ is ramified. Apply Lemma 3.13 to equation (3.9) to get:

$$
\begin{equation*}
\chi_{\alpha}\left(\sigma_{\bar{\lambda}}(\delta h \bar{\delta})\right)=\chi_{\alpha}\left(\sigma_{\bar{\lambda}}(h)\right) \tag{3.11}
\end{equation*}
$$

if and only if $\lambda \in E_{\left[\frac{r+1}{2}\right]}^{1}$. On the other hand equation (3.11) forces that $\delta \in L^{1} D_{r}^{1}$. So $g=(\delta, \lambda) \in L^{1} D_{r}^{1} \rtimes_{\sigma} E_{\left[\frac{r+1}{2}\right]}^{1}$.

Remark 3.15. In ramified case the stabilizer of $\chi_{\alpha}, S t\left(\chi_{\alpha}\right)$, in $U(2)$ is:

$$
\text { St }\left(\chi_{\alpha}\right)=\left\{\begin{array}{lr}
E^{1} D_{r}^{1} \rtimes_{\sigma} E^{1} & \text { if } n \text { is even, }
\end{array} \text { and } \alpha \in E \text {. } \begin{array}{lr}
L_{r}^{1} D_{\sigma}^{1} \rtimes_{\sigma} E_{r}^{1} & \text { if } n \text { is even, and } \alpha \notin E \\
L^{1} D_{r-1}^{1} \rtimes_{\sigma} E_{r-1}^{1} & \text { if } n \text { is odd. }
\end{array}\right.
$$

Lemma 3.16. Let notation be as in Definition 3.12.

1. For any $\varphi \in \Phi(\alpha)$, define $\varphi_{\alpha}: L^{1} D_{r}^{1} \rightarrow \mathbb{C}^{\times}$by $\varphi_{\alpha}(l \delta)=\varphi(l) \chi_{\alpha}(\delta)$ for $l \in L^{1}$ and $\delta \in D_{r}^{1}$. Then φ_{α} is a well-defined character of $L^{1} D_{r}^{1}$.
2. For any $\psi \in \Psi(\alpha)$, define $\psi_{\alpha}: E^{1} D_{r}^{1} \rightarrow \mathbb{C}^{\times}$by $\psi_{\alpha}(e \delta)=\psi(e) \chi_{\alpha}(\delta)$ for $e \in E^{1}$ and $\delta \in D_{r}^{1}$. Then ψ_{α} is a well-defined character of $E^{1} D_{r}^{1}$.

Proof. See [7].
LEmma 3.17. Let $\alpha \in D^{\circ}$ be an element with $v_{D}(\alpha)=-n-1$, where n is a positive integer and set $r=\left[\frac{n+1}{2}\right]$.

1. Let n be odd. For any $\psi \in \Psi(\alpha)$ and any character ξ of E^{1} define:

$$
\psi_{(\alpha, \xi)}: E^{1} D_{r}^{1} \rtimes_{\sigma} E^{1} \rightarrow \mathbb{C}^{\times}
$$

by

$$
\psi_{(\alpha, \xi)}(x, \lambda)=\psi_{\alpha}(x) \xi(\lambda)
$$

where ψ_{α} is as in Lemma 3.16. Then $\psi_{(\alpha, \xi)}$ is a character of $E^{1} D_{r}^{1} \rtimes_{\sigma} E^{1}$.
2. Let n be even. For any $\varphi \in \Phi(\alpha)$ and any character ξ of $E_{\left[\frac{r+1}{2}\right]}^{1}$ define:

$$
\varphi_{(\alpha, \xi)}: L^{1} D_{r}^{1} \rtimes_{\sigma} E_{\left[\frac{r+1}{2}\right]}^{1} \rightarrow \mathbb{C}^{\times}
$$

by

$$
\varphi_{(\alpha, \xi)}(x, \lambda)=\varphi_{\alpha}(x) \xi(\lambda),
$$

where φ_{α} is as in Lemma 3.16. Then $\varphi_{(\alpha, \xi)}$ is a character of $L^{1} D_{r}^{1} \rtimes_{\sigma} E_{\left[\frac{r+1}{2}\right]}^{1}$.

Proof. 1. Let $g=(x, \lambda)$ and $g^{\prime}=\left(x^{\prime}, \lambda^{\prime}\right) \in E^{1} D_{r}^{1} \rtimes_{\sigma} E^{1}$. Then:

$$
g g^{\prime}=\left(\sigma_{\lambda}\left(x^{\prime}\right) x, \lambda \lambda^{\prime}\right)
$$

So we have:
$\psi_{(\alpha, \xi)}\left(g g^{\prime}\right)=\psi_{\alpha}\left(\sigma_{\lambda}\left(x^{\prime}\right) x\right) \xi\left(\lambda \lambda^{\prime}\right)=\psi_{\alpha}\left(\sigma_{\lambda}\left(x^{\prime}\right)\right) \psi_{\alpha}(x) \xi(\lambda) \xi\left(\lambda^{\prime}\right)$.
Now note:

$$
\begin{equation*}
\sigma_{\lambda}\left(x^{\prime}\right)=(1, \lambda)\left(x^{\prime}, 1\right)(1, \bar{\lambda}) . \tag{3.13}
\end{equation*}
$$

and since $\{1\} \rtimes_{\sigma} E^{1}$ is in the $S t\left(\chi_{\alpha}\right)$, so by 3.13 we can rewrite 3.12 as follows:

$$
\begin{aligned}
\psi_{(\alpha, \xi)}\left(g g^{\prime}\right) & =\psi_{\alpha}\left(x^{\prime}\right) \psi_{\alpha}(x) \xi(\lambda) \xi\left(\lambda^{\prime}\right)=\psi_{\alpha}(x) \xi(\lambda) \psi_{\alpha}\left(x^{\prime}\right) \xi\left(\lambda^{\prime}\right) \\
& =\psi_{(\alpha, \xi)}(g) \psi_{(\alpha, \xi)}\left(g^{\prime}\right)
\end{aligned}
$$

2. Same argument as in part 1 works in this part.

Lemma 3.18. Let n be a positive odd integer such that $r=\frac{n+1}{2}$ is even. Set:

$$
H_{r-1}=\left\{h \in D_{r-1}^{1} / D_{n}^{1} \left\lvert\, h=\frac{1-a \pi^{r-1}}{1+a \pi^{r-1}} D_{n}^{1}\right., a \in O\right\}
$$

Then H_{r-1} is a subgroup of D_{r-1}^{1} / D_{n}^{1} with order $\left|H_{r-1}\right|=q^{\frac{r}{2}}$.
Proof. See [7].
Lemma 3.19. Let notation be as in Lemma 3.18. Set

$$
\mathfrak{D}_{r-1}=D_{r}^{1} / D_{n}^{1} H_{r-1}
$$

Then \mathfrak{D}_{r-1} is a subgroup of D_{r-1}^{1} / D_{n}^{1} and we have $\left|\mathfrak{D}_{r-1}\right|=q\left|D_{r}^{1} / D_{n}^{1}\right|$.
Proof. See [7].
LEMMA 3.20. Let $E_{1}^{1}=F\left(1+P_{E}\right) \cap E^{1}$. All other notations are as in Lemma 3.18. For any $\lambda \in E_{1}^{1}$ and $h \in H_{r-1}$ we have $\sigma_{\lambda}(h) \in \mathfrak{D}_{r-1}$.

Proof. Write $\lambda=b+e \pi^{2}$ where $b \in O, e \in O_{E}$, and let $h=\frac{1-a \pi^{r-1}}{1+a \pi^{r-1}} D_{n}^{1} \in$ H_{r-1}. Then by expanding the fraction on the right hand side we have:

$$
\begin{align*}
\sigma_{\lambda}(h) & =\frac{1-a \lambda \pi^{r-1}}{1+a \lambda \pi^{r-1}} D_{n}^{1} \tag{3.14}\\
& =1-2 a b \pi^{r-1}-2 a e \pi^{r+1}+2 a^{2} \pi^{2(r-1)}\left(\bmod P_{D}^{n}\right)
\end{align*}
$$

Set $\mu=1-2 a b \pi^{r-1}+2(a+b)^{2} \pi^{2(r-1)}\left(\bmod P_{D}^{n}\right)$. Then if $r>3$ we can rewrite 3.14 as follows:

$$
\begin{align*}
\sigma_{\lambda}(h) & =\mu-2 a e \pi^{r+1}-2 a b \pi^{2(r-1)}-2 b^{2} \pi^{2(r-1)}\left(\bmod P_{D}^{n}\right) \\
& =\mu\left(1-\left(2 a \bar{\mu} e-2 a b \bar{\mu} \pi^{(r-3)}-2 b^{2} \bar{\mu} \pi^{(r-3)}\right) \pi^{r+1}\right)\left(\bmod P_{D}^{n}\right) \tag{3.15}
\end{align*}
$$

Now note that we have $\mu \in H_{r-1}$, and the rest of 3.15 is in the D_{r+1}^{1} / D_{n}^{1} $\subset D_{r}^{1} / D_{n}^{1}$. So $\sigma_{\lambda}(h) \in \mathfrak{D}_{r-1}$. If $r=2$, then we have:

$$
\begin{aligned}
\sigma_{\lambda}(h) & =\mu-2 b(a+b) \pi^{2} \\
& =\mu\left(1-2 b \bar{\mu}(a+b) \pi^{2}\right)
\end{aligned}
$$

So again $\sigma_{\lambda}(h) \in \mathfrak{D}_{1}=\mathfrak{D}_{r-1}$.
Corollary 3.21. Notations are as in Lemmas 3.18, 3.20. Then $E_{1}^{1} \mathfrak{D}_{r-1} \rtimes_{\sigma} E_{1}^{1}$ is a subgroup of $E^{1} D_{r-1}^{1} / D_{n}^{1} \rtimes_{\sigma} E^{1}$.

Proof. Arguing as in [7] and Lemma 3.20 yields the result.
Corollary 3.22. Notations are as in Lemma 3.20 Let $\alpha \in D^{\circ}$ has order $v_{D}(\alpha)=-n-1$, where n is a positive odd integer such that $r=\frac{n+1}{2}$ is even. Then for any $\lambda \in E_{1}^{1}$ and $h \in H_{r-1}$ we have $\chi_{\alpha}\left(\sigma_{\lambda}(h)\right)=1$.

Proof. Using 3.14 in Lemma 3.20 and definition of χ_{α} we get:

$$
\begin{aligned}
\chi_{\alpha}\left(\sigma_{\lambda}(h)\right) & =\chi\left[\operatorname{Tr} \alpha\left(-2 a b \pi^{r-1}-2 a e \pi^{r+1}+2 a^{2} \pi^{2(r-1)}\right)\right] \\
& =\chi\left(-2 a b \operatorname{Tr} \alpha \pi^{r-1}\right) \chi\left(-2 a \operatorname{Tr} \alpha e \pi^{r+1}\right) \chi\left(2 a^{2} \pi^{2(r-1)} \operatorname{Tr} \alpha\right) \\
& =\chi(0) \chi(0) \chi(0)=1 .
\end{aligned}
$$

Lemma 3.23. Let α, n and r be as in Corollary 3.22. For any $\psi \in \Psi(\alpha)$ and any character ξ of E^{1} define:

$$
\tilde{\psi}_{(\alpha, \xi)}: E_{1}^{1} \mathfrak{D}_{r-1} \rtimes_{\sigma} E_{1}^{1} \rightarrow \mathbb{C}^{\times}
$$

by

$$
\widetilde{\psi}_{(\alpha, \xi)}(x h, \lambda)=\psi_{(\alpha, \xi)}(x, \lambda), \quad x \in E_{1}^{1} D_{r}^{1} / D_{n}^{1}, h \in H_{r-1}, \lambda \in E_{1}^{1} .
$$

Then $\widetilde{\psi}_{(\alpha, \xi)}$ is a well-defined character of $E_{1}^{1} \mathfrak{D}_{r-1} \rtimes_{\sigma} E_{1}^{1}$.
Proof. Arguing as in [7] and Corollary 3.22 gives the result.
If Γ is a group and Γ_{1} and Γ_{2} are subgroups of Γ write $\left[\Gamma: \Gamma_{1}\right]$ for the number of left Γ_{1}-cosets in Γ and $\left[\Gamma_{1}: \Gamma: \Gamma_{2}\right]$ for the number of $\left(\Gamma_{1}, \Gamma_{2}\right)$-double cosets in Γ. Arguing as in [7], and using Lemmas 3.18 and 3.19 one can prove the following:

Lemma 3.24. Let α, n and r be as in Corollary 3.22. Then:

1. $\left[E^{1} \mathfrak{D}_{r-1} \rtimes_{\sigma} E_{1}^{1}: E_{1}^{1} D_{r}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}\right]=q\left(\frac{q+1}{2}\right)$.
2. $\left[E^{1} D_{r-1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}: E_{1}^{1} \mathfrak{D}_{r-1} \rtimes_{\sigma} E_{1}^{1}\right]=q\left(\frac{q+1}{2}\right)$.
3. $\left[E^{1}: E_{1}^{1}\right]=\frac{q+1}{2}$.
4. $\left[E^{1} D_{r}^{1} / D_{n}^{1} \rtimes_{\sigma} E^{1}: E^{1} D_{r-1}^{1} / D_{n}^{1} \rtimes_{\sigma} E^{1}: E^{1} D_{r}^{1} / D_{n}^{1} \rtimes_{\sigma} E^{1}\right]=2 q-1$.
5. $\left[E_{1}^{1} D_{r}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}: E^{1} D_{r-1}^{1} / D_{n}^{1} \rtimes_{\sigma} E^{1}: E_{1}^{1} D_{r}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}\right]=q^{2}\left(\frac{q+1}{2}\right)^{2}$.

Lemma 3.25. Let α, n and r be as in Corollary 3.22. For any $\psi \in \Psi(\alpha)$ and any character ξ of E^{1} set

$$
\tau_{(\alpha, \varphi, \xi)}=\operatorname{Ind}\left(E^{1} D_{r-1}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}, E_{1}^{1} \mathfrak{D}_{r-1} \rtimes_{\sigma} E_{1}^{1}, \widetilde{\psi}_{(\alpha, \xi)}\right)
$$

Then $\tau_{(\alpha, \varphi, \xi)}$ is an irreducible representation of $E^{1} D_{r-1}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}$ having dimension $q\left(\frac{q+1}{2}\right)$.

Proof. One can show that the stabilizer of $\widetilde{\psi}_{(\alpha, \xi)}$ in $E^{1} D_{r-1}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}$ is $E_{1}^{1} \mathfrak{D}_{r-1} \rtimes_{\sigma} E_{1}^{1}$. Now the result follows from [1, Theorem (45.2)'].

Lemma 3.26. Notation is as in Lemma 3.25. For any $\psi \in \Psi(\alpha)$ and any character ξ of E^{1} let $\psi_{(\alpha, \xi)}^{\prime}$ be the restriction of $\psi_{(\alpha, \xi)}$ to the $E_{1}^{1} D_{r}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}$ and set:

$$
\tau_{(\alpha, \psi, \xi)}^{\prime}=\operatorname{Ind}\left(E^{1} D_{r-1} \rtimes_{\sigma} E_{1}^{1}, E_{1}^{1} D_{r}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}, \psi_{(\alpha, \xi)}^{\prime}\right) .
$$

Then $\tau_{(\alpha, \psi, \xi)}^{\prime}$ is a direct sum of $q\left(\frac{q+1}{2}\right)$ copies of $\tau_{(\alpha, \psi, \xi)}$.
Proof. Since $\widetilde{\psi}_{(\alpha, \xi)}=\psi_{(\alpha, \xi)}^{\prime}$ on the $E_{1}^{1} D_{r}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}$, so $\tau_{(\alpha, \psi, \xi)}^{\prime}$ is equivalent to $\left[E^{1} \mathfrak{D}_{r-1} \rtimes_{\sigma} E_{1}^{1}: E_{1}^{1} D_{r}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}\right]$ copies of $\tau_{(\alpha, \psi, \xi)}$. Now part 1 of Lemma 3.24 implies the result.

Lemma 3.27. Let η be the character of the following representation:

$$
\operatorname{Ind}\left(E^{1} D_{r-1}^{1} / D_{n}^{1} \rtimes_{\sigma} E^{1}, E_{1}^{1} D_{r}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}, \psi_{(\alpha, \xi)}\right) .
$$

Then $\zeta=\frac{2}{q(q+1)} \eta$ is the character of an irreducible representation, say $\rho^{\prime}(\alpha, \psi, \xi)$, of $E^{1} D_{r-1}^{1} / D_{n}^{1} \rtimes_{\sigma} E^{1}$ whose restriction to $E^{1} D_{r-1}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}$ is $\tau_{(\alpha, \psi, \xi)}$.

Proof. Let (,) denote the usual scalar product on $L^{2}\left(E^{1} D_{r-1}^{1} / D_{r}^{1} \rtimes_{\sigma} E^{1}\right)$. By Lemma 3.24 and Mackey's Theorem we get:

$$
(\zeta, \zeta)=\frac{4}{q^{2}(q+1)^{2}}(\eta, \eta)=\frac{4}{q^{2}(q+1)^{2}} q^{2}\left(\frac{q+1}{2}\right)^{2}=1 .
$$

Since $\eta(1)=q^{2}\left(\frac{q+1}{2}\right)^{2}$, thus $\zeta(1)=q\left(\frac{q+1}{2}\right)$. So ζ is the character of an irreducible representation of $E^{1} D_{r-1}^{1} / D_{n}^{1} \rtimes_{\sigma} E^{1}$ having dimension $q\left(\frac{q+1}{2}\right)$. Call this representation $\rho^{\prime}(\alpha, \psi, \xi)$. The multiplicity of $\rho^{\prime}(\alpha, \psi, \xi)$ in $\tau_{(\alpha, \psi, \xi)}$ is:

$$
\begin{aligned}
\left(\zeta, \chi_{\tau_{(\alpha, \psi, \xi)}}\right) & =\frac{2}{q(q+1)}\left(\eta, \chi_{\tau_{(\alpha, \psi, \xi)}}\right)=\frac{2}{q(q+1)}\left(\operatorname{Re} \eta, \operatorname{Ind} \chi_{\tau_{(\alpha, \psi, \xi)}}\right) \\
& =\frac{2}{q(q+1)}\left[E^{1} \mathfrak{D}_{r-1} \rtimes_{\sigma} E_{1}^{1}: E_{1}^{1} D_{r}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}\right] \\
& =\frac{2}{q(q+1)} \cdot q\left(\frac{q+1}{2}\right)=1
\end{aligned}
$$

where $\chi_{\tau_{(\alpha, \psi, \xi)}}$ is the character of $\tau_{(\alpha, \psi, \xi)}$. Now by Frobenius reciprocity, the restriction of $\rho^{\prime}(\alpha, \psi, \xi)$ to $E^{1} D_{r-1}^{1} / D_{n}^{1} \rtimes_{\sigma} E_{1}^{1}$ is $\tau_{(\alpha, \psi, \xi)}$.

Lemma 3.28. For any positive integer $r \geq 1$ we have

$$
\left(E^{1} D_{r-1}^{1} \rtimes_{\sigma} E^{1}\right) / E^{1} D_{r-1}^{1} \rtimes_{\sigma}\{1\} \cong E^{1} .
$$

Proof. Define $f: E^{1} D_{r-1}^{1} \rtimes_{\sigma} E^{1} \rightarrow E^{1}$ by $f(x, e)=e$, for any $x \in$ $E^{1} D_{r-1}^{1}, e \in E^{1}$. Then one can show that f is an onto homomorphism with ker $f=E^{1} D_{r-1}^{1} \rtimes_{\sigma}\{1\}$.

Theorem 3.29. Let $\alpha \in D^{\circ}$ with $v_{D}(\alpha)=-n-1$ where n is a positive integer and $r=\left[\frac{n+1}{2}\right]$.

1. Let n be even. For any $\varphi \in \Phi(\alpha)$ and any character ξ of $E_{\left[\frac{r+1}{2}\right]}^{1}$ set:

$$
\rho_{(\alpha, \varphi, \xi)}=\operatorname{Ind}\left(U(2), \operatorname{St}\left(\chi_{\alpha}\right), \varphi_{(\alpha, \xi)}\right)
$$

Then $\rho_{(\alpha, \varphi, \xi)}$ is an irreducible representation of $U(2)$.
2. Let n and $r=\left[\frac{n+1}{2}\right]$ be odd. Then we know ([7]) $E^{1} D_{r-1}^{1}$, and $E^{1} D_{r}^{1}$ have the same characters. So for any $\psi \in \Psi(\alpha)$ and any character ξ of E^{1} set

$$
\rho_{(\alpha, \psi, \xi)}=\operatorname{Ind}\left(U(2), S t\left(\chi_{\alpha}\right), \psi_{(\alpha, \xi)}\right) .
$$

Then $\rho_{(\alpha, \psi, \xi)}$ is an irreducible representation of $U(2)$.
3. Let n be odd but $r=\left[\frac{n+1}{2}\right]$ is even. For any $\psi \in \Psi(\alpha)$ and any character ξ of E^{1}, let $\rho^{\prime}(\alpha, \psi, \xi)$ be as in Lemma 3.27. Set:

$$
\rho_{(\alpha, \psi, \xi)}=\operatorname{Ind}\left(U(2), S t\left(\chi_{\alpha}\right), \rho^{\prime}(\alpha, \psi, \xi)\right) .
$$

Then $\rho_{(\alpha, \psi, \xi)}$ is an irreducible representation of $U(2)$.
Proof. 1. The result follows from [1, Theorem (45.2) ${ }^{\prime}$.
2. The result follows from $\left[1\right.$, Theorem $\left.(45.2)^{\prime}\right]$.
3. Since $\rho^{\prime}(\alpha, \psi, \xi)$ is an extension of $\tau_{(\alpha, \psi, \xi)}$, so by [1, Theorem 51.7] and Lemma 3.28 any irreducible component of the following representation

$$
\operatorname{Ind}\left(E^{1} D_{r-1}^{1} \rtimes_{\sigma} E^{1}, E_{1}^{1} D_{r}^{1} \rtimes_{\sigma}\{1\}, \tau_{(\alpha, \psi, \xi)}\right) .
$$

is equivalent to $\rho^{\prime}(\alpha, \psi, \xi) \otimes \gamma$, for some character γ of E^{1}. On the other hand by [1, Theorem 38.5] we have $\rho^{\prime}(\alpha, \psi, \xi) \otimes \gamma \cong \rho^{\prime}(\alpha, \psi, \xi \gamma)$. Now apply Clifford Theorem.

4. Characters, one-Dimensional Representations of U (2)

In this section we parametrize all one-dimensional representations (characters) of $U(2)$. Further, we classify all smooth irreducible representations of $U(2)$.

Lemma 4.1. The commutator group of $U(2),[U(2), U(2)]$, is equal to $D_{1}^{1} \rtimes_{\sigma}\{1\} \cong D_{1}^{1}$.

Proof. Let $x=(\delta, e), y=\left(\delta^{\prime}, e^{\prime}\right) \in U(2)$ where $\delta, \delta^{\prime} \in D^{1}$, and $e, e^{\prime} \in$ E^{1}. Then:

$$
\begin{aligned}
x y x^{-1} y^{-1} & \left.=(\delta, e)\left(\delta^{\prime}, e^{\prime}\right)\left(\sigma_{\bar{e}}(\bar{\delta}), e^{-1}\right)\left(\sigma_{\overline{e^{\prime}}} \overline{\delta^{\prime}}\right), e^{\prime-1}\right) \\
& =\left(\delta^{\prime} \sigma_{e^{\prime}}(\bar{\delta}) \sigma_{e}\left(\delta^{\prime}\right) \delta, 1\right) .
\end{aligned}
$$

So $x y x^{-1} y^{-1} \in D^{1}$, and hence $[U(2), U(2)] \subset D^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}$. On the other hand Lemma 4.2 below shows that $U(2) /\left(D_{1}^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}\right)$ is abelian and this implies that $D_{1}^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\} \subset[U(2), U(2)]$.

Lemma 4.2. $U(2) /\left(D_{1}^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}\right) \cong\left(D^{1} / D_{1}^{1}\right) \rtimes_{\sigma} E^{1}$, where the right hand side is the external semidirect product via σ.

Proof. Define $f: U(2) \rightarrow\left(D^{1} / D_{1}^{1}\right) \rtimes_{\sigma} E^{1}$, by $f(\delta, e)=\left(\delta D_{1}^{1}, e\right)$. Then f is a homomorphism because:

$$
\begin{aligned}
f\left((\delta, e)\left(\delta^{\prime}, e^{\prime}\right)\right) & =f\left(\sigma_{e}\left(\delta^{\prime}\right) \delta, e e^{\prime}\right)=\left(\sigma_{e}\left(\delta^{\prime}\right) \delta D_{1}^{1}, e e^{\prime}\right) \\
& =\left(\delta D_{1}^{1}, e\right)\left(\delta^{\prime} D_{1}^{1}, e^{\prime}\right)=f(\delta, e) f\left(\delta^{\prime}, e^{\prime}\right)
\end{aligned}
$$

f obviously is onto and one can check that ker $f=D_{1}^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}$.
Lemma 4.3. D^{1} / D_{1}^{1} is a cyclic group of order $q+1$ and we will denote it by μ_{q+1}.

Proof. See [7].
Proposition 4.4. For any character of μ_{q+1}, say η, and any character ξ of E^{1},

$$
\eta_{\xi}: \mu_{q+1} \rtimes_{\sigma} E^{1} \rightarrow \mathbb{C}^{\times}
$$

defined by

$$
\eta_{\xi}(x, \lambda)=\eta(x) \xi(\lambda)
$$

is a character of $U(2)$. Conversely any character of $U(2)$ is in this form.
Proof. Since μ_{q+1} and E^{1} are abelian it is easy to see that η_{ξ} is a character of $\mu_{q+1} \rtimes_{\sigma} E^{1}$. Now by inflation we can define η_{ξ} on $U(2)$. Conversely let Ω be a character of $U(2)$. Then for any $x, y \in U(2)$ we have:

$$
\Omega\left(x y x^{-1} y^{-1}\right)=\Omega(x) \Omega(y) \Omega\left(x^{-1}\right) \Omega\left(y^{-1}\right)=1
$$

i.e., $\Omega_{\mid D_{1}^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}}=1$. So Ω is a character of $\mu_{q+1} \rtimes_{\sigma} E^{1}$. Let $\eta=$ $\Omega_{\mid \mu_{q+1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}}$ and $\xi=\Omega_{\mid\left\{1_{D^{1}}\right\} \rtimes_{\sigma} E^{1}}$. Then one can show that $\Omega=\eta_{\xi}$.

Theorem 4.5. Any irreducible representation of $U(2)$ is either a character or is one of those determined by Theorem 3.29.

Proof. Let ρ be an irreducible representation of $U(2)$. Since the family $\left\{D_{n}^{1} \rtimes_{\sigma}\{1\}\right\}_{n \geq 1}$ is a system of unity neighborhoods in $D^{1} \rtimes_{\sigma}\{1\}$, there is a least integer $n \geq 1$ such that the restriction of ρ to $D_{n}^{1} \rtimes_{\sigma}\{1\}, \rho_{\mid D_{n}^{1} \rtimes_{\sigma}\{1\}}$, is trivial. Now we have the following cases:

1. $n=1$. Then the restriction of ρ to $D_{1}^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}, \rho_{\mid D_{1}^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}}$, is trivial. So we can look at ρ as an irreducible representation of $U(2) /\left(D_{1}^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}\right)$. But $U(2) /\left(D_{1}^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}\right)$ is abelian because by Lemma $4.2 D_{1}^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}$ is the commutator group of $U(2)$, so by Proposition 4.4ρ is a character of $U(2)$.
2. $n=2 k+1, k$ a positive integer ≥ 1. Then $\rho \cong \rho(\alpha, \psi, \xi)$ where $\alpha \in D^{\circ}$ with $v(\alpha)=-n-1, \psi$ is a character of E^{1} occurring in $\rho_{\mid E^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}}$ and ξ is a character of E^{1} occurring in $\rho_{\mid\left\{1_{D^{1}}\right\} \rtimes_{\sigma} E^{1}}$.
3. $n=2 k, k$ a positive integer ≥ 1. Then $\rho \cong \rho(\alpha, \varphi, \xi)$ where $\alpha \in D^{\circ}$ with $v(\alpha)=-n-1, \varphi$ is a character of L^{1} occurring in $\rho_{\mid L^{1} \rtimes_{\sigma}\left\{1_{E^{1}}\right\}}$ where $L=F(\alpha)$ and ξ is a character of $E_{\left[\frac{r+1}{2}\right]}^{1}$ occurring in $\rho_{\left\lvert\,\left\{1_{D^{1}}\right\} \rtimes_{\sigma} E_{\left[\frac{r+1}{2}\right]}^{1}\right.}$.

THEOREM 4.6. Irreducible representations of $U(2)$ enjoy the following equivalencies:

1. Any irreducible representations of $U(2)$ determined by Theorem 3.29, never is equivalent to a character.
2. Two characters Ω_{1}, Ω_{2} of $U(2)$ are equivalent if and only if $\Omega_{1}=\Omega_{2}$.
3. Any two irreducible representations $\rho_{1}=\rho_{1}\left(\alpha_{1}, \psi_{1}, \xi_{1}\right)$ and $\rho_{2}=$ $\rho_{2}\left(\alpha_{2}, \psi_{2}, \xi_{2}\right)$ of $U(2)$ determined by Theorem 3.29 are equivalent if and only if:

- $\xi_{1}=\xi_{2}$
- If $\psi_{1 \alpha_{1}}$ is any irreducible representation of D^{1} occurring in $\rho_{1 \mid D^{1} \rtimes_{\sigma}\{1\}}$ and $\psi_{2 \alpha_{2}}$ is any irreducible representation of D^{1} occurring in $\rho_{2 \mid D^{1} \rtimes_{\sigma}\{1\}}$, then $\psi_{1 \alpha_{1}} \cong \psi_{2 \alpha_{2}}$.
Proof. Parts 1 and 2 are clear. For last part of part 3, from [7] we know that two irreducible representations $\rho(\alpha, \varphi)$, and $\rho\left(\alpha^{\prime}, \varphi^{\prime}\right)$ of D^{1} are equivalent if and only if:
- they have same conductor, n,
- there exists $g \in D^{1}$ such that $\alpha^{\prime}-g \alpha g^{-1} \in P_{D}^{n-r}$ where $r=\left[\frac{n+1}{2}\right]$,
- $\varphi^{\prime}\left(e^{\prime}\right)=\varphi\left(\right.$ geg $\left.^{-1}\right)$ for $e^{\prime} \in E^{\prime}=F\left(\alpha^{\prime}\right)$, and $e \in E=F(\alpha)$,
- $E^{\prime}=g E g^{-1}$.

This is because if we consider the restriction of $\rho(\alpha, \varphi)$, and $\rho\left(\alpha^{\prime}, \varphi^{\prime}\right)$ to D_{r}^{1} where $r=\left[\frac{n+1}{2}\right]$, then Clifford's Theorem ([1]) gives the result. For more detail see [7].

Acknowledgements.

I would like thank referee for several valuable comments and suggestions.

References

[1] C. Curtis, I. Reiner, Representation theory and associative algebra, Wiley, New York, 1988.
[2] J. Dieudonné, La géométrie des groupes classiques, Second édition, Springer-Verlag, Berlin, 1963.
[3] I. B. Fesenko, S. Vostokov, Local fields and their extensions, AMS, Rhode Island, 1993.
[4] P. Kutzko, On the supercuspidal representations of $G l_{2}$ II, Amer. J. Math. 100 (1978), 705-716.
[5] D. Manderscheid, On the supercuspidal representations of $S L_{2}$ and its two-fold cover. II, Math. Ann. 266 (1984), 287-295.
[6] D. Manderscheid, Supercuspidal representations and the theta correspondence $I I$: SL (2) and The Anisotropic O (3), Trans. Amer. Math. Soc., 336 (1993), 805-816.
[7] M. Misaghian, Representations of D^{1}, Rocky Mountain J. Math. 35 (2005), 953-976.
[8] O. O'Meara, Introduction to quadratic forms, Springer-Verlag, New York, 1971.
[9] I. Reiner, Maximal orders, Academic Press, London 1975.
[10] Marie-France Vignéras, Arithmétique des algèbres de quaternions, Springer-Verlag, Berlin Heidelberg New York, 1980.
[11] C. Moeglin, M.-F. Vignéras, J.-L. Waldspurger, Correspondances de Howe sur un corps p-adique, Lecture Notes in Math. 1291, Springer-Verlag, Berlin/New York, 1987.
[12] S. Stevens, Intertwining and supercuspidal types for p-adic classical groups, Proc. London Math. Soc. (3) 83 (2001), 120-140.
[13] A. Weil, Basic number theory, Springer-Verlag, New York, 1967.
[14] E. Weiss, Algebraic number theory, Mc Graw-Hill Book Company, New York, 1963.
M. Misaghian

Department of Mathematics
Prairie View A \& M University
Prairie View, TX 77446
E-mail: mamisaghian@pvamu.edu
Received: 24.6.2009.
Revised: 1.12.2009.

[^0]: 2010 Mathematics Subject Classification. 11F27, 20E99, 22E50.
 Key words and phrases. Group of isometries, stabilizer, smooth representation, induction.

