ON SQUARES OF IRREDUCIBLE CHARACTERS

Emmanuel Zhmud
Kharkiv State University, Ukraine

Abstract

We study the finite groups G with a faithful irreducible character whose square is a linear combination of algebraically conjugate irreducible characters of G. In conclusion, we offer another proof of one theorem of Isaacs-Zisser.

There are a few papers treating the finite groups possessing an irreducible character whose powers are linear combinations of appropriate irreducible characters, for example, $[\mathrm{BC}]$ and [IZ]. Our note is inspired by these two papers, especially, the second one.

In what follows, G is a finite group. We use standard notation of finite group theory (see [BZ]). Recall that if $\chi \in \operatorname{Irr}(G)$, then the generalized character $\chi^{(2)}$ (see [BZ, Chapter 4]) is defined as follows:

$$
\chi^{(2)}(g)=\chi\left(g^{2}\right)(g \in G) .
$$

Next, $\operatorname{Char}(G)$ denotes the set of characters of a group G and, if θ is a generalized character of G, then

$$
\operatorname{Irr}(\theta)=\{\chi \in \operatorname{Irr}(G) \mid\langle\theta, \chi\rangle \neq 0\}
$$

The quasikernel $\mathrm{Z}(\chi)$ of $\chi \in \operatorname{Char}(G)$ is defined as follows:

$$
\mathrm{Z}(\chi)=\{g \in G| | \chi(g) \mid=\chi(1)\} .
$$

It is known that $\mathrm{Z}(\chi)$ is a normal subgroup of G containing $\operatorname{ker}(\chi)$ and $\mathrm{Z}(G / \operatorname{ker}(\chi)) \leq \mathrm{Z}(\chi) / \operatorname{ker}(\chi)$ with equality if, in addition, $\chi \in \operatorname{Irr}(G)$. In what follows, we use freely results stated in this paragraph.

[^0]Let $\chi \in \operatorname{Irr}(G)$. It is known that

$$
\begin{equation*}
\operatorname{Irr}\left(\chi^{(2)}\right) \subseteq \operatorname{Irr}\left(\chi^{2}\right) \tag{1}
\end{equation*}
$$

Indeed, $\chi^{(2)}=\chi^{2}-2 \bigwedge^{2} \chi$ (see formula (22) in [BZ, §4.6]) so it suffices to show that $\operatorname{Irr}\left(\bigwedge^{2} \chi\right) \subseteq \operatorname{Irr}\left(\chi^{2}\right)$. Next, $\chi^{2}=\Lambda^{2} \chi+\theta$, where θ is the exterior square of χ (see [BZ, Lemma 4.16, formula (17)]) so $\operatorname{Irr}\left(\bigwedge^{2} \chi\right) \subseteq \operatorname{Irr}\left(\chi^{2}\right)$, as desired. Therefore, if $\operatorname{Irr}\left(\chi^{2}\right)=\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ and

$$
\begin{equation*}
\chi^{2}=\sum_{j=1}^{n} a_{j} \psi_{j}, \text { where all } a_{j} \text { are positive integers, } \tag{2}
\end{equation*}
$$

then, by (1), we have

$$
\begin{equation*}
\chi^{(2)}=\sum_{j=1}^{n} b_{j} \psi_{j}, \text { where all } b_{i} \text { are integers. } \tag{3}
\end{equation*}
$$

Set

$$
\begin{equation*}
a=a_{1}+\cdots+a_{n}, \quad b=b_{1}+\cdots+b_{n} . \tag{4}
\end{equation*}
$$

Let ϵ be a $|G|$-th primitive root of $1, \mathcal{G}=\operatorname{Gal}(Q(\epsilon) / Q)$, where Q is the field of rational numbers. The group \mathcal{G} acts in the natural way on the set $\operatorname{Irr}(G)$ as follows: if $\chi \in \operatorname{Irr}(G)$ and $\sigma \in \mathcal{G}$, then $(\sigma \chi)(g)=\sigma(\chi(g))$ for all $g \in G$ (see [BZ, Chapter 3]). Characters $\psi, \psi^{\prime} \in \operatorname{Irr}(G)$ are said to be algebraically conjugate if $\psi^{\prime}=\sigma \psi$ for some $\sigma \in \mathcal{G}$. In that case, as it is easy to check, $\psi(1)=\psi^{\prime}(1), \operatorname{ker}(\psi)=\operatorname{ker}\left(\psi^{\prime}\right)$ and $\mathrm{Z}(\psi)=\mathrm{Z}\left(\psi^{\prime}\right) .{ }^{1}$ In what follows we will retain the notation introduced above and in this paragraph.

Definition 1. A group G with an irreducible character χ possesses a property \mathcal{A}, if it satisfies the following conditions:
$(\mathcal{A} 1)|G|$ is even.
(A2) χ is faithful.
($\mathcal{A} 3) ~ n \geq 2$ and $\psi_{j}(j=1, \ldots, n)$ are algebraically conjugate with $\psi=\psi_{1}$ (see decomposition (2)), i.e., $\psi_{j}=\sigma_{j} \psi$ for some $\sigma_{j} \in \mathcal{G}(j=1, \ldots, n)$.
$(\mathcal{A} 4) \chi$ and $\psi_{1}, \ldots, \psi_{n}$ satisfy (2) and (3).
Our main result is the following
Theorem 2. If the group G satisfies condition \mathcal{A}, then the following assertions hold (here, as in part ($\mathcal{A} 3$) of the definition, $\psi=\psi_{1}$):
(a) G is nonabelian and $\chi(1)>1$.
(b) G has only one involution u.
(c) $\operatorname{ker}(\psi)=\langle u\rangle$.
(d) $\mathrm{Z}(\psi)$ is abelian.
(e) Sylow 2-subgroups of G are cyclic.

[^1](f) $G=P \cdot N$, a semidirect product, where $P \in \operatorname{Syl}_{2}(G)$ and $\{1\}<N \triangleleft G$.
(g) $\chi(1)=\psi(1)$ and $b=1$.
(h) $\chi_{N} \in \operatorname{Irr}(N)$.
(i) All $\left(\psi_{j}\right)_{N}$ are irreducible and nonreal for $j=1, \ldots, n$.
(j) If $w \in G$ with $o(w)=8$, then $\psi(w)=m \sqrt{-1}$, where m is an integer dividing $\chi(1)$.

Proof. (a) It follows from (2) and (4) that $\chi(1)^{2}=a \psi(1)$ so $\chi(1)>1$ since $a \geq n>1$. Therefore, G is nonabelian.
(b) Let u be an involution in G. Since $\psi(u)$ is a rational integer, it follows that $\psi_{j}(u)=\psi(u)$ since the ψ_{j} 's are algebraically conjugate. Therefore, $\chi^{(2)}(u)=b \psi(u)$ (see (3) and (4)). Since $\chi^{(2)}(u)=\chi\left(u^{2}\right)=\chi(1)$, we get

$$
\begin{equation*}
\chi(1)=b \psi(u) \tag{5}
\end{equation*}
$$

On the other hand, $\chi(1)=\chi^{(2)}(1)=b \psi(1)$ so, taking into account that $b \neq 0$, we get $\psi(u)=\psi(1)$, by (5), i.e., $u \in \operatorname{ker}(\psi)=\operatorname{ker}\left(\psi_{j}\right)$ for $j=1, \ldots, n$. Therefore, it follows from (2) that $\operatorname{ker}\left(\chi^{2}\right)=\operatorname{ker}(\psi)$ so $u \in \operatorname{ker}\left(\chi^{2}\right)$, i.e., $\chi(u)^{2}=\chi(1)^{2}$. In that case, $\chi(u)= \pm \chi(1)$, and we obtain

$$
\begin{equation*}
\chi(u)=-\chi(1) \tag{6}
\end{equation*}
$$

since our character χ is faithful. It follows that $u \in \mathrm{Z}(\chi)=\mathrm{Z}(G)$ since χ is faithful, i.e., $\mathrm{Z}(G)$ contains all involutions of G. Since $\mathrm{Z}(G)$ is cyclic (χ is faithful), we conclude that u is the unique involution in G, and (b) is proven.
(c) As we have proved in (b) (see the sentence after formula (5)), $u \in$ $\operatorname{ker}(\psi)$. It suffices to show that u is the unique nonidentity element of $\operatorname{ker}(\psi)$. Take $x \in \operatorname{ker}(\psi)^{\#}$. Then $\psi_{j}(x)=\psi(1)$ for all j so, by $(2), x \in \operatorname{ker}\left(\chi^{2}\right)$ so that, again by (2), we have

$$
\chi(1)^{2}=\chi(x)^{2}=a \psi(1), \text { and hence } \chi(x)=-\chi(1)
$$

since χ is faithful. In particular, $x \in \mathrm{Z}(\chi)$ so that $\chi\left(x^{2}\right)=\chi(1)$ and $x^{2} \in$ $\operatorname{ker}(\chi)=\{1\}$, i.e., x is an involution. It follows from this and (b), that $x=u$. Thus $\operatorname{ker}(\psi)=\{1, u\}=\langle u\rangle$, as required.
(d) It follows from (c), that $\mathrm{Z}(\psi)$ is abelian since $\mathrm{Z}(\psi) / \operatorname{ker}(\psi)$ is cyclic (in view of irreducibility of ψ) and $|\operatorname{ker}(\psi)|=2$.
(e) Let $P \in \operatorname{Syl}_{2}(G)$. By (b), P is either cyclic or generalized quaternion. Assume, by way of contradiction, that P is generalized quaternion. Take in P an element v of order 4 . Then, by (b),

$$
\begin{equation*}
v^{2}=u \tag{7}
\end{equation*}
$$

Let $j \in\{1, \ldots, n\}$. Then, by $(\mathcal{A} 2), \psi_{j}=\sigma_{j} \psi$ so that $\psi_{j}(v)=\left(\sigma_{j} \psi\right)(v)=$ $\sigma_{j}(\psi(v))$. We have $\sigma_{j} \epsilon=\epsilon^{\nu_{j}}$ for some rational integer ν_{j} such that $\operatorname{GCD}\left(\nu_{j},|G|\right)=1$ (recall that ϵ is the primitive $|G|$-th root of 1 chosen above); then ν_{j} is odd in view of $(\mathcal{A} 1)$. Setting $\nu_{j}=2 \lambda_{j}+1$ and taking into account
that $\psi(v)$ is a sum of powers of ϵ, we get

$$
\psi_{j}(v)=\sigma_{j}(\psi(v))=\psi\left(v^{\nu_{j}}\right)=\psi\left(v^{2 \lambda_{j}+1}\right)=\psi\left(u^{\lambda_{j}} v\right)=\psi(v)
$$

since $u \in \operatorname{ker}(\psi)$, by (c). Thus

$$
\begin{equation*}
\psi_{j}(v)=\psi(v) \quad(j=1, \ldots, n) \tag{8}
\end{equation*}
$$

Then, by (6), (8), (3) and (4), we obtain

$$
-\chi(1)=\chi(u)=\chi\left(v^{2}\right)=\chi^{(2)}(v)=\sum_{j=1}^{n} b_{j} \psi_{j}(v)=b \psi(v) .
$$

On the other hand, $\chi(1)=\chi^{(2)}(1)=b \psi(1)$ so $\psi(v)=-\psi(1)$. It follows from this and (8), that

$$
\begin{equation*}
\psi_{j}(v)=-\psi(1) \quad(j=1, \ldots, n) \tag{9}
\end{equation*}
$$

It follows from (9) that, if T is a representation of G affording the character ψ_{j}, then $T(v)=-I_{\psi(1)}$, where $I_{\psi(1)}$ is a $\psi(1) \times \psi(1)$ identity matrix. Therefore, by (2), we get

$$
\chi(v)^{2}=\sum_{j=1}^{n} a_{j} \psi_{j}(v)=-a \psi(1)=-\chi(1)^{2},
$$

and we conclude that

$$
\begin{equation*}
\chi(v)=\operatorname{ci} \chi(1), \tag{10}
\end{equation*}
$$

where $c= \pm 1$ and $i=\sqrt{-1}$. It follows from $|\chi(v)|=\chi(1)$ that $v \in \mathrm{Z}(\chi)=$ $\mathrm{Z}(G)$, a contradiction, since the center of P, which is a generalized quaternion group, has order 2. Thus, $P \in \operatorname{Syl}_{2}(G)$ is cyclic.
(f) By (e), G is 2-nilpotent so $G=P \cdot N$, and $N>\{1\}$ since G is nonabelian.
(g) Since $G / N \cong P$ is cyclic, then χ is not ramified over N (Burnside; see [BZ, Exercise 7 in Chapter 7]) so we get the following Clifford decomposition:

$$
\begin{equation*}
\chi_{N}=\sum_{k=1}^{l} \phi_{k} . \tag{11}
\end{equation*}
$$

It follows from (11) that

$$
\begin{equation*}
\left(\chi^{(2)}\right)_{N}=\sum_{k=1}^{l} \phi_{k}^{(2)} \tag{12}
\end{equation*}
$$

Since $|N|$ is odd, it follows that $\phi_{k}^{(2)}$ are distinct irreducible characters of N for all k, and $\left(\chi^{(2)}\right)_{N}$ is a character of $N .{ }^{2}$ By (9), we have

$$
\left(\chi^{(2)}\right)_{N}=\sum_{j=1}^{n} b_{j}\left(\psi_{j}\right)_{N}
$$

Let $\phi_{1}=\phi$. Since

$$
1=\left\langle\left(\chi^{(2)}\right)_{N}, \phi^{(2)}\right\rangle=\sum_{j=1}^{n} b_{j}\left\langle\left(\psi_{j}\right)_{N}, \phi^{(2)}\right\rangle
$$

we get $\left\langle\left(\psi_{s}\right)_{N}, \phi^{(2)}\right\rangle \neq 0$ for some $s \in\{1, \ldots, n\}$. This means that $\phi^{(2)} \in$ $\operatorname{Irr}\left(\left(\psi_{s}\right)_{N}\right)$. By Clifford's theorem, $\operatorname{Irr}\left(\left(\psi_{s}\right)_{N}\right)$ is a G-orbit of $\phi^{(2)}$, i.e.,

$$
\operatorname{Irr}\left(\left(\psi_{s}\right)_{N}\right)=\left\{\phi_{1}^{(2)}, \ldots, \phi_{l}^{(2)}\right\}, \text { where } \phi_{1}=\phi
$$

We conclude that $\left(\psi_{s}\right)_{N}=\sum_{k=1}^{l} \phi_{k}^{(2)}$ so, by (12), $\left(\chi^{(2)}\right)_{N}=\left(\psi_{s}\right)_{N}$. It follows, in particular, that $\chi(1)=\psi_{s}(1)=\psi(1)$. Since $\chi(1)=\chi^{(2)}(1)=b \psi(1)$, we get $b=1$, completing the proof.
(h) It follows from (2) and (3) that

$$
\chi^{2}-\chi^{(2)}=\sum_{j=1}^{n}\left(a_{j}-b_{j}\right) \psi_{j}
$$

Since

$$
\frac{1}{2}\left(\chi^{2}-\chi^{(2)}\right)=\bigwedge^{2} \chi \in \operatorname{Char}(G)
$$

(see formula (22) in $[\mathrm{BZ}, \S 4.6]$), we get $a_{j} \equiv b_{j}(\bmod 2)$ for $j=1, \ldots, n$. Summing up over all j, one obtains $a \equiv b(\bmod 2)$ so a is odd since $b=1$, by (g). As we have noticed in the proof of (a), $\chi(1)^{2}=a \psi(1)$. Therefore, since $\chi(1)=\psi(1)$, by (g), we have $\chi(1)=a$, and hence $\chi(1)$ is odd. It follows from (11) that $l=\left|\operatorname{Irr}\left(\chi_{N}\right)\right|=\left|G: \mathrm{I}_{G}(\phi)\right|$, where $\mathrm{I}_{G}(\phi)$ is the inertia group of ϕ in G, and $\chi(1)=l \phi(1)$ so l is odd. Since $\mathrm{I}_{G}(\phi) \geq N$ and $|G: N|=|P|$ is a power of 2 , we get $l=1$, i.e., $\chi_{N} \in \operatorname{Irr}(N)$, proving (h).
(i) Since $l=1$, there exists $s \in\{1, \ldots, n\}$ such that $\left(\psi_{s}\right)_{N}=\phi^{(2)} \in$ $\operatorname{Irr}(N)$. Since all ψ_{j} are algebraically conjugate, we get $\left(\psi_{j}\right)_{N} \in \operatorname{Irr}(N)$. If $\left(\psi_{j}\right)_{N}$ is real for some j, it is the principal character 1_{G} of G since $|N|$ is odd. It follows that $\psi(1)=\psi_{j}(1)=1$. Then, by $(\mathrm{g}), \chi(1)=1$, a contradiction. Thus, all ψ_{j} are not real.
(j) Let $w \in G$ be of order 8. Setting $v=w^{2}$, we get $o(v)=4$. By (b), $v^{2}=u$. It follows from (10) that $\operatorname{ci\chi }(1)=\chi(v)=\chi\left(w^{2}\right)=\chi^{(2)}(w)$ so, in view

[^2]of (9), we get
\[

$$
\begin{equation*}
\sum_{j=1}^{n} b_{j} \psi_{j}(w)=\chi^{(2)}(w)=c i \chi(1) \tag{13}
\end{equation*}
$$

\]

(here $i=\sqrt{-1}$). Recall, that $\psi_{j}(w)=\psi\left(w^{\nu_{j}}\right)$, where ν_{j} is odd integer (see the proof of (e)). It follows from $o(w)=8$ that $\nu_{j} \in\{1,3,5,7\}$. Since $u \in \operatorname{ker}(\psi)$ and $\psi(v)=-\psi(1)$ (see (9)), we have (consider a representation of G affording the character ψ; see two line after formula (9))

$$
\begin{gathered}
\psi\left(w^{3}\right)=\psi(v w)=-\psi(w) \\
\psi\left(w^{5}\right)=\psi(u w)=\psi(w) \\
\psi\left(w^{7}\right)=\psi(u v w)=-\psi(w)
\end{gathered}
$$

Thus, $\psi_{j}(w) \in\{\psi(w),-\psi(w)\}$. Setting $\psi_{j}(w)=c_{j} \psi(1)$, where $c_{j}= \pm 1$, one can rewrite (13) in the form

$$
\begin{equation*}
c i \chi(1)=d \psi(w), \tag{14}
\end{equation*}
$$

where $d=\sum_{j=1}^{n} b_{j} c_{j}$ is a rational integer. Note that

$$
\overline{\psi(w)}=\psi\left(w^{-1}\right)=\psi\left(w^{7}\right)=-\psi(w) .
$$

Therefore, $\psi(w)=i m$, where m is a real number. Now, (14) yields $\chi(1)=c d m$. Therefore, $m=c \cdot \frac{\chi(1)}{d}$ is rational. Since $m=-i \psi(w)$ is an algebraic integer, it follows that m is a rational integer so m divides $\chi(1)$. This completes the proof of our theorem.

Now we are ready to offer another proof of the following
Theorem 3 (Isaacs-Zisser [IZ]). Let $G>\{1\}$ be a group and suppose that there is a faithful $\chi \in \operatorname{Irr}(G)$ such that

$$
\begin{equation*}
\chi^{2}=a \psi+b \bar{\psi} \tag{15}
\end{equation*}
$$

where a, b are positive integers and $\psi \in \operatorname{Irr}(G)$. Then G is a direct product of a cyclic 2-group of order not exceeding 4 and a group of odd order.

Proof. Since $\psi_{1}=\psi$ and $\psi_{2}=\bar{\psi}_{1}$ are algebraically conjugate, one can apply Theorem 2 to our group G. By that theorem, P is cyclic. It remains to prove that $|P| \leq 4$ and P is normal in G. We claim that $\left|\operatorname{Irr}\left(\chi^{(2)}\right)\right|=1$ (recall that $\chi^{(2)}: x \mapsto \chi\left(x^{2}\right)$). Otherwise, $\chi^{(2)}=b_{1} \psi_{1}+b_{2} \psi_{2}$, where b_{1}, b_{2} are nonzero rational integers. It follows that

$$
\left(\chi^{(2)}\right)_{N}=b_{1}\left(\psi_{1}\right)_{N}+b_{2}\left(\psi_{2}\right)_{N}
$$

(recall that $\left(\chi^{(2)}\right)_{N},\left(\psi_{1}\right)_{N},\left(\psi_{2}\right)_{N}$ are irreducible, by Theorem $\left.2(\mathrm{~h}, \mathrm{i})\right)$. We have $\left(\chi^{(2)}\right)_{N}=\left(\psi_{s}\right)_{N}$ for some $s \in\{1,2\}$ (see the proof of Theorem $2(\mathrm{~g})$). Using this and the equality $b_{1}+b_{2}=1$, we get $\left(\psi_{1}\right)_{N}=\left(\psi_{2}\right)_{N}$. It follows that $\left(\psi_{1}\right)_{N}=\overline{\left(\psi_{1}\right)_{N}}$, i.e., character $\left(\psi_{1}\right)_{N}$ is real, contrary to Theorem 2(i). Thus,
one of numbers b_{1}, b_{2} equals 0 so our claim is proven, i.e., $\chi^{(2)} \in\left\{\psi_{1}, \psi_{2}\right\}$. Assume, for definiteness, that $\chi^{(2)}=\psi_{1}$. Thus,

$$
\chi^{2}=a_{1} \psi_{1}+a_{2} \psi_{2} \text { and } \chi^{(2)}=\psi_{1}
$$

As above, set $\psi=\psi_{1}$. Assume that $|P|>4$. Take in P an element w of order 8. Set $v=w^{2}$. Then, by (10),

$$
\psi(w)=\chi^{(2)}(w)=\chi(v)=c i \chi(1), \text { where } c= \pm 1
$$

Since χ and ψ have the same degree, we get $\psi(w)=\operatorname{ci\psi }(1)$ so $|\psi(w)|=\psi(1)$ whence $w \in \mathrm{Z}(\psi)$. Let $H \in \operatorname{Syl}_{2}(\mathrm{Z}(\psi))$; then H is normal in G so $H N=H \times N$ and w centralizes N. Since w centralizes $P \in \operatorname{Syl}_{2}(G)$, by Theorem 2(e), we see that $w \in \mathrm{Z}(G)$ since $G=P \cdot N$, and so $|\chi(w)|=\chi(1)$. Then equalities

$$
\psi_{2}(w)=\overline{\psi_{1}(w)}=-\psi(w) \text { and }|\psi(w)|=\chi(1)
$$

imply

$$
\begin{gathered}
\chi(1)^{2}=|\chi(w)|^{2}=\left|a_{1} \psi(w)+a_{2} \psi_{2}(w)\right|=\left|\left(a_{1}-a_{2}\right) \psi(w)\right| \\
=\left|a_{1}-a_{2}\right||\psi(w)|=\left|a_{1}-a_{2}\right| \chi(1) .
\end{gathered}
$$

Hence $\chi(1)=\left|a_{1}-a_{2}\right|$. On the other hand, $\chi(1)=a=a_{1}+a_{2}$. Thus $a_{1}+a_{2}=\left|a_{1}-a_{2}\right|$, a contradiction since $a_{1}, a_{2}>0$. Thus $|P| \leq 4$.

Let us prove that the subgroup P is normal in G. In view of Theorem 2(b), one may assume that $|P|=4$ and $P=\langle v\rangle$. Then, by $(9), \psi(v)=-\psi(1)$ so $v \in \mathrm{Z}(\psi)$ and hence $P \leq \mathrm{Z}(\psi)$. Since P is characteristic in $\mathrm{Z}(\psi)$ (indeed, P is a Sylow 2-subgroup of the abelian group Z (ψ); see Theorem 2(d)), it follows that P is normal in G, and the proof is complete.

Acknowledgements.

We are indebted to the referee for useful remarks.

References

[BZ] Y. Berkovich and E. Zhmud, Characters of Finite Groups, Parts 1, 2, AMS, Providence, 1998.
[BC] H. Blau and D. Chillag, On powers of characters and powers of conjugacy classes of a finite group, Proc. Amer. Math. Soc. 98 (1986), 7-10.
[IZ] I. M. Isaacs and I. Zisser, Squares of characters with few irreducible constituents in finite groups, Arch. Math. (Basel) 63 (1994), 197-207.

Received: 2.12.2009.
Revised: 29.12.2009.

[^0]: 2010 Mathematics Subject Classification. 20C15.
 Key words and phrases. Generalized character, algebraic conjugate, irreducible characters, quasikernel, exterior power.

 Professor Zhmud (1918-2007) died in 29 December 2007. This note was prepared by Y. Berkovich, based on a letter dated March 14, 2000.

[^1]: ${ }^{1}$ Let us prove the second equality. Take $g \in \operatorname{ker}(\psi)$. We have $\psi^{\prime}(g)=\sigma(\psi(g))=$ $\sigma(\psi(1))=\psi(1)$ so $\operatorname{ker}(\psi) \leq \operatorname{ker}\left(\psi^{\prime}\right)$. Since $\sigma^{-1} \in \mathcal{G}$, the reverse inclusion holds as well.

[^2]: ${ }^{2}$ Indeed, assume that $\phi_{i}^{(2)}=\phi_{j}^{(2)}$. Then, for $x \in N$ we have $\phi_{i}\left(x^{2}\right)=\phi_{i}^{(2)}(x)=\phi_{j}^{(2)}=$ $\phi_{j}\left(x^{2}\right)$, and so $\phi_{i}=\phi_{j}$ since $\left\{x^{2} \mid x \in N\right\}=N$. This proves the first assertion. Now the second assertion is obvious.

