
GLASNIK MATEMATIČKI
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Abstract. We offer a new proof of the classical theorem asserting
that if a positive integer n divides the order of a solvable group G and the
set Ln of solutions of the equation xn = 1 in G has cardinality n, then Ln

is a subgroup of G. The second proof of that theorem is also presented.
Next we offer an easy proof of Philip Hall’s theorem on solvable groups
independent of Schur-Zassenhaus’ theorem. In conclusion, we consider
some related questions for p-groups. For example, we study the irregular
p-groups G satisfying |Lpk | ≤ pk+p−1 for k > 1.

1. Introduction

We consider finite groups only. Section 1 of this note is a continuation of
[B1, §1]. All groups considered in §1, are solvable or π-solvable. All groups of
§2 are p-groups.

Suppose that a positive integer n divides the order |G| of a group G and
Ln the set of solutions of xn = 1 in G. By fundamental Frobenius’ theorem,
|Ln| = kn for some positive integer k. Frobenius posed the following problem:
Is it true that if k = 1, then Ln is a subgroup of G? As I think, this problem
aroused from his study of the following situation. Let H < G be of index
n and assume that H ∩ Hx = {1} for all x ∈ G − H . In that case, the set
Ln = G −

⋃
x∈G−H Hx has cardinality n. Using character theory, Frobenius

succeeded to show that Ln is a (characteristic) subgroup of G. In general,
Frobenius problem was solved in the positive only after classification of finite
simple groups (see [I] and listed there papers of the same authors).
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2. Solvable groups

This section does not contain new results. Our aim is to produce easy
proofs of some known results about solvable groups.

Very important partial case of Frobenius conjecture many years ago was
proved in elementary way in the case when G is solvable (see [H2, Theorem
9.4.1]; see also [BZ, §5.11]). Below we present two other proofs of this result.
In our proofs we use only those facts that were known before 1900 (otherwise,
Lemma 2.2 would be superfluous), namely, that sections of solvable groups
are solvable. We also use Frattini argument, an easy consequence of Sylow’s
theorem. In this sense, our exposition in this section is self contained.

Theorem 2.1. If a positive integer n is a divisor of the order of a solvable
group G and the set Ln of solutions of xn = 1 in G has cardinality n, then
Ln is a subgroup of G.

We need the following

Lemma 2.2. If p is a prime divisor of the order of a solvable group G,
then there is in G a proper subgroup whose index in G is a power of p.

Proof. We proceed by induction on |G|. Let R be a minimal normal
subgroup of G; then R is an elementary abelian q-group for some prime q.

If p divides |G/R|, then, by induction, there is in G/R a proper subgroup
H/R, whose index is a power of p. Since |G : H | = |(G/R) : (H/R)|, we are
done in this case. This is the case if q 6= p. Therefore, in what follows we
assume that G has no nonidentity normal p′-subgroup.

Now let p does not divide |G/R|. Then R is a Sylow p-subgroup of G. Let
S/R be a minimal normal subgroup of G/R; then S/R is an s-subgroup for
some prime s 6= p. Let Q be a Sylow s-subgroup of S = QR = RQ. Then the
Frattini argument yields G = SNG(Q). But SNG(Q) = RQNG(Q) = RNG(Q)
and NG(Q) < G, by the previous paragraph. Clearly, NG(Q) is maximal in
G. Since |G : NG(Q)| divides (even equals) |R|, a power of p, the proof is
complete.

Remark 2.3. Let G be a solvable group and n | |G|, |Ln| = n and R
a minimal normal subgroup of G. Let |R| = pα and write Ḡ = G/R. (i)
If |R| | n, then the set L̄ of solutions of x̄n/|R| = 1̄ in Ḡ has cardinality
n/|R| and L = Ln, where L is the inverse image of L̄ in G. Indeed, let
L̄ = {x̄1, . . . , x̄s}. Then x̄i = xiR is a coset of R so that L = x1R∪ · · · ∪ xsR.

We compute xn
i = (x

n/|R|
i )|R|| = 1 since x

n/|R|
i ∈ R. There one can take,

instead of xi, any element of the coset xiR. Thus, xiR ∈ Ln so that L ⊆
Ln. By Frobenius’ theorem, n/|R| divides s so that s ≥ n/|R|. One has
|L| = s|R| ≥ (n/|R|)|R| = n = |Ln|, and we conclude that L = Ln whence
s = n/|R|. (ii) Let p | n but R does not divide n. Set n = npnp′ . Let
L̄ be the set of all solutions of x̄np′ in Ḡ and L the inverse image of L̄ in
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G. By Frobenius, |L̄| ≥ np′ ; then |L| ≥ |R|np′ > npnp′ = n = |Ln| since
|R| > np, by assumption. If y ∈ L, then yn = (ynp′ )np = 1 since ynp′ ∈ R
and exp(R) = p | np. Thus, L ⊆ Ln, contrary to what has just been proved.
We see that if p | n, then Ln is a union of cosets of R, i.e., |R| | n. (iii)
Now suppose that p does not divide n. We claim that then the set L̄ of
solutions of x̄n = 1̄ has cardinality n. Write L̄ = {x̄1, . . . , x̄s}. By Frobenius’
theorem, s ≥ n. Let L = x1R ∪ · · · ∪ xsR be the inverse image of L̄ in G.
We have xn

i ∈ R so that xi = yizi = ziyi, where o(yi) = o(x̄i) and zi ∈ R
(note that o(x̄i) | n). Since yiR = yiziR = xiR for all i, we have yi 6= yj for
i 6= j. Therefore, the set L0 = {y1, . . . , ys} ⊆ Ln, moreover, L0 = Ln since
|L0| = s ≥ n = |Ln|, completing this case.

Proof of Theorem 2.1. We use induction on |G|+n. One may assume
that 1 < n < |G|. Write, as above, Ln = {x ∈ G | xn = 1}.

Suppose that n divides the order of a proper subgroup M of G. Then the
number of solutions of equation xn = 1 in M is a nonzero multiple of n, and
we conclude that Ln ≤ M , by induction since |Ln| = n, and we are done.

Next we assume that n does not divide orders of all M < G. Let p | |G|.
Then there is H < G such that |G : H | is a power of p (Lemma 2.2). Since
n does not divide |H |, we conclude that p divides n. Thus, π(n) = π(|G|),
where π(n) is the set of primes dividing n.

Let R be a minimal normal subgroup of G; then |R| = pα for some prime
p and positive integer α and exp(R) = p. Since, by the previous paragraph,
p | n, all elements of R satisfy xn = 1 so that R ⊆ Ln. Write Ḡ = G/R. By
Remark 2.3(i,ii), |R| = pα | n and, if L̄ is the set of solutions of x̄n/pα

= 1̄ in
Ḡ, then its inverse image coincides with Ln and |L̄| = n/pα. Therefore, by
induction, L̄ is a subgroup of Ḡ. In that case, Ln, the inverse image of L̄ in
G, is also a subgroup of G.

Remark 2.4. Suppose that G and Ln are such that Ln is a subgroup of
G of order n (here we do not assume that G is solvable). Let p ∈ π(|G : Ln|);
then P ∈ Sylp(G) is not contained in Ln (Lagrange). In that case, Ln ∩ P
is the unique subgroup of order np in P since all subgroups of P of exponent
≤ np are contained in Ln and so P ∩Ln ∈ Sylp(Ln). It follows that either P is
cyclic or p = 2 = n2 and P is a generalized quaternion group ([B2, Proposition
1.3]). In the first case, Ln is p-nilpotent, by [B1, Theorem A.28.9]. In the
second case, 4 does not divide |Ln|, so Ln is 2-nilpotent again.

Combining some arguments from the above text, one can produce another
proof of Theorem 2.1. We need two additional lemmas.

Lemma 2.5. If a prime p divides |G|/n, then the set Ln of cardinality n
does not contain a subset of cardinality pnp which is a subgroup of G.

Proof. (Independent of Theorem 2.1) One may assume that p | n (oth-
erwise, in view of Lagrange’s theorem, it is nothing to prove).
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We use induction on |G| + n. Let R be a minimal normal subgroup of G
of order, say qα. Write Ḡ = G/R.

Assume that M < G has order divisible by n. Then Ln ⊆ M , and, by
induction, there is not a subgroup of order pnp that is a subset of Ln. In what
follows we assume that n does not divide orders of all proper subgroups of G.

Then, by Lemma 2.2, q | n. By Remark 2.3(i,ii), qα | n and the set L̄ of
solutions of x̄n/qα

= 1̄ in Ḡ has cardinality n/qα.
If q 6= p, then (n/qα)p = np so, by induction, the set L̄ has no subset of

cardinality pnp which is a subgroup of G. Assume that a p-subgroup P < G
of order pnp is a subset of Ln. Then PR/R ⊆ L̄ since all elements of PR/R
satisfy x̄n = 1̄. In that case, the p-subgroup PR/R of order pnp = p(n/|R|)p

is a subset of L̄, contrary to what has just been said.
Now let q = p. By Remark 2.3(i), the set L̄ of solutions of x̄n/pα

= 1̄
has cardinality n/pα hence the inverse image L of L̄ in G has cardinality n so
coincides with Ln. If a p-subgroup P̄ is a subset of L̄n = L̄ (see Remark 2.3(i)),
then |P̄ | ≤ (n/pα)p, by induction, and we obtain |P | = |P̄ ||R| ≤ (n/pα)p ·pα =
np.

Of course, Lemma 2.5 follows from Theorem 2.1, but we prefer to give
an independent proof since our aim now is to produce another proof of The-
orem 2.1.

The following lemma is due essentially to Galois.

Lemma 2.6. Every index of a maximal subgroup of a solvable group G is
equal to some index of a principal series of G.

Proof. We proceed by induction on |G|. Let H < G be maximal. One
may assume that H is not normal in G (otherwise, it is nothing to prove).
Let R be a minimal normal subgroup of G; then |R| is an index of a principal
series of G containing R. If R < H , then |G : H | = |(G/R) : (H/R)| is equal
to an index of a principal series of G/R, by induction, completing this case.
If R is not contained in H , then G = HR, H ∩R = {1} so that |G : H | = |R|.

The second proof of Theorem 2.1. As in the first proof of Theo-
rem 2.1, it suffices to show that n divides the order of some maximal subgroup
of G. Assume that this is false. In that case, as we have noticed in the first
proof of Theorem 2.1, π(n) = π(|G|). Let p be a prime divisor of |G|/n and P
a Sylow p-subgroup of G; then P is not contained in the set Ln (Lemma 2.5).
Let P1 ≤ P be of order pnp. Since, by Lemma 2.5, P1 is not contained in
Ln, we get exp(P1) > np hence P1 is cyclic. Since p | n, we get |P1| > p.
Thus, all subgroups of order pnp in P are cyclic, whence P is either cyclic or
a generalized quaternion group and |P1| = 4 ([B2, Proposition 1.3]). In the
second case, clearly, n2 = 2. Note that all factors of a principal series of G
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are elementary abelian. It follows that all {p}-indices of a principal series of
G are equal to p in the first case and 2 or 4 in the second case.

Suppose that P ∈ Sylp(G) is cyclic. Then, by Lemma 2.6, G has a
maximal subgroup H of index p. In that case, n | |H |, contrary to the
assumption.

Now suppose that p = 2 and a Sylow 2-subgroup of G is generalized
quaternion; then n2 = 2 and all {2}-indices of a chief series of G divide 4. In
that case, by Lemma 2.6, G has a maximal subgroup H of index dividing 4.
Since |P | ≥ 8 and n2 = 2, we get n | |H |, contrary to the assumption.

Let π be a set of primes. Recall that a group G is π-solvable if all indices
of its composition series that are not primes from π, are π′-numbers.

Remark 2.7. If π is a nonempty set of prime divisors of the order of a
π-solvable group G and p ∈ π, then G has a proper subgroup whose index is a
power of p and a proper subgroup whose index is a π′-number (of course, all
this follows from an analog of Theorem 2.8, below, for π-solvable groups; that
result is due to S. A. Chunikhin). However, the proof of this result depends on
the Schur-Zassenhaus theorem. In view of Odd Order theorem, π-separable
groups, in sense of Hall-Higman, are either π- or π′-solvable, so one can state
an analog of Lemma 2.2 for such groups.

Supplement to Theorem 2.1 Suppose that G is a π-solvable group and
a positive integer n is divisible by |G|π′ . If |Ln| = n, then Ln is a subgroup
of G.

Proof. In view of Theorem 2.1, one may assume that G is nonsolvable;
then π 6= π(|G|). We also assume that n < |G| and π 6= ∅ (otherwise, it is
nothing to prove). Let H ≤ G be of order |Gπ′ |. If n = |G|π′ , then Ln = H .
Next we assume that |Gπ′ | < n; then π ∩ π(|G|) 6= ∅. Let R be a minimal
normal subgroup of G. Write Ḡ = G/R, |R| = r. Then r is either power of a
prime from π or a π′-number.

As above, we use induction on |G| + n. By Remark 2.3, for every p ∈
π∩π(G), there is M < G such that |G : M | is a power of p. As in the proof of
Theorem 2.1, if n | |M |, the result follows by induction. So one may assume
that π ⊂ π(n).

(a) Suppose that (|R| =)r = pα, where p ∈ π. By what has been said
in the previous paragraph, p | n; then R ⊂ Ln. By Remark 2.3(i,ii) (these
parts also hold if |R| is a prime power), pα | n and the set L̄ of solutions of
x̄n/pα

= 1̄ has cardinality n/pα so, by induction, L̄ is a subgroup of Ḡ; then
its inverse image L in G is also subgroup in G. Since |L| = |L̄||R| = n, we get
L = Ln, completing this case.

(b) Now let r be a π′-number. By Remark 2.3(iii) (this part holds for
arbitrary groups in the case under consideration and induction, L̄ = {x̄ ∈
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Ḡ | x̄n/r = 1̄} is a subgroup of G of order n/r. Then (the subgroup) L, the
inverse image of L̄ in G has order n so coincides with Ln.

Theorem 2.8 (P. Hall [H2]). If m is a divisor of the order of a solvable
group G such that GCD(m, |G|/m) = 1, then all largest π(m)-subgroups of G
have the same order m and are conjugate in G.

Proof. We use induction on |G| + m. Let R be a minimal normal sub-
group of G with |R| = pα for some prime p.

(i) First we prove that G contains a subgroup of order m. Let q be a
prime divisor of |G|/m; then there is H < G such that |G : H | is a power
of q (Lemma 2.2). In that case, m | |H | and GCD(m, |H |/m) = 1 so, by
induction, (the solvable subgroup) H contains a subgroup of order m.

(ii) We claim that all subgroups of order m are conjugate in G. Let
F, H < G be of order m. Then π(m)-Hall subgroups FR/R and HR/R are
conjugate in G/R, by induction, so (FR)x = HR for some x ∈ G whence
F x ≤ HR.

If p | m, then R ≤ F ∩H so FR = F , HR = H and hence F x = H . Next
assume that Oπ(m)(G) = {1}.

If HR < G, there is y ∈ HR such that (F x)y = H , by induction. Now
assume that HR = G for any choice of R; then also FR = G and R ∈ Sylp(G)
is the unique minimal normal subgroup of G so H and F are maximal in G.
Let Q/R be a minimal normal subgroup of G/R; then Q/R is a q-subgroup
for some prime q 6= p. In that case, H ∩ Q, F ∩ Q ∈ Sylq(Q) are not normal
in G, by assumption. Therefore, NG(H ∩ Q) = H and NG(F ∩ Q) = F . By
Sylow’s theorem, F ∩ Q = (H ∩ Q)y for some y ∈ Q. Then

F = NG(F ∩ Q) = NG((H ∩ Q)y) = NG(H ∩ Q)y = Hy.

(iii) It remains to show that if K < G is the greatest π(m)-subgroup, then
|K| = m. By induction, KR/R ≤ H/R, where H/R is a π(m)-Hall subgroup
of G/R.

If p divides m, then |H | = m, R ≤ K and K = H , by maximality of K.
Now let p does not divide m. We have K < KR ≤ H . If H < G, then,

by induction, K is contained in a subgroup of order m in H so |K| = m, by
maximality of K. Now let H = G. Then G = FR, where F < G is of order m
(F exists, by (i)). Set K1 = KR∩F ; then |K1| = |K|, by the product formula.
By (ii), K = Kz

1 for some z ∈ KR so K ≤ F z and, since |F z| = |F | = m, we
obtain K = F z .

3. p-groups

In this section G is a p-group always.
Let k be a positive integer and pk+1 < |G|. If |Lpk | = pk, then G has

exactly one subgroup of order pk so G is either cyclic or p = 2, k = 1 and
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G is generalized quaternion group ([B2, Proposition 1.3]). So Frobenius’ case
|Lpk | = pk is trivial for p-groups.

Next we assume that |Lpk | > pk. In that case, G is noncyclic so such group

G contains a noncyclic subgroup H of order pk+1, unless G is generalized
quaternion and k = 1. Since H ⊆ Lpk , we get |Lpk | ≥ pk+1.

A. Assume that |Lpk | = pk+1(< |G|). Then Lpk = H , where, as above,

H < G is noncyclic of order pk+1. In that case, there is in G a subgroup
F of order pk+1 that is 6= H ([B2, Proposition 1.3]). Since all subgroups of
order pk are subsets of Lpk , it follows that F is not generated by its maximal
subgroups so it is cyclic. Thus, H is the unique noncyclic subgroup of order
pk+1 in G. Then there is in G a normal abelian subgroup R of type (p, p) so
R ≤ Lpk = H .

If k = 1, then R = H = Ω1(G). In that case, G is either metacyclic or
a 3-group of maximal class or p = 2 and G has exactly three involutions (see
[B2, Theorem 13.7] and [BJ, §82]).

Now let k > 1. In that case, H/R is the unique subgroup of order pk−1

in G/R so that either G/R is cyclic or p = 2, k = 2 and G/R is a generalized
quaternion group. In both cases R = Ω1(G). In the first case, G possesses a
cyclic subgroup of index p so, by [B2, Theorem 1.2], either G ∼= Mpn or G is
noncyclic abelian group of type (pn−1, p). In the second case, k = 2, p = 2
and G is a metacyclic group as in [B2, Lemma 42.1(c)].

B. Now suppose that k = 1 and p2 < |Lp| < p3. In that case, G has
no subgroups of order p3 and exponent p. It follows that then p = 2 (see
[B2, Theorems 12.1, 13.7 and §§9,7]). In the case under consideration, if G is
of maximal class, it is easy to check that then G ∈ {D8, SD16}. Now assume
that G is not of maximal class. Then it has a normal abelian subgroup of type
(2, 2). By hypothesis, there is an involution x ∈ G−R; then H = 〈x, R〉 ∼= D8.
Since the number of involutions in G is ≡ 3 (mod 4) ([B2, Theorem 1.17(a)]),
there are exactly 7 involutions in G. In that case, |L2| = 7+|{1}| = 8, contrary
to the hypothesis. Thus, only groups D8 and SD16 satisfy 4 < |L2| < 8.

C. The case of a p-group G satisfying |Lp| = p3 is not tractable for p = 2
in this time. Now let p > 2; then Lp = Ω1(G) is of exponent p (here we use
the fact that a p-group of order ≤ pp generated by elements of order p has
exponent p). We suggest to the reader supply the case where G is a p-group,
k > 1 and |Lpk | = pk+2 (as the following part D shows, this is more or less
difficult for p = 2 only).

D. Now let G be an irregular p-group of order pm ≥ p2p, exp(G) > pk > p
and |Lpk | ≤ pk+p−1 < pm(= |G|).

D1. Suppose that G has no normal subgroup of order pp and exponent p.
Then G is of maximal class ([B2, Theorem 12.1(a)]). In that case, exp(G) =
pe, where e = [m−1

p−1 ] + ǫ with ǫ = 0 if p − 1 | m − 1 and 1 otherwise (here

[x] is the integer part of the real number x). Our G has a maximal subgroup
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G1 satisfying |G1/℧1(G)| = pp−1 (see [B2, Theorem 9.6] where such G1 are
called absolutely regular p-groups) and such that all elements of the set G−G1

have orders ≤ p2 ([B2, Theorem 13.19(b)]) so that G − G1 ⊂ Lpk . One has

|G − G1| = pm−1(p − 1). The subgroup Ωk(G1) of order pk(p−1) is contained
in Lpk . Thus, pk+p−1 ≥ |Lpk | = (p − 1)pm−1 + pk(p−1). It follows that

k + p − 1 > k(p − 1) so that p = 2. In that case, 2k+1 ≥ |L2k | = 2m−1 + 2k.
It follows that k ≥ m− 1, contrary to the hypothesis. Thus, G is not a group
of maximal class.

D2. Then, by [B2, Theorem 12.1(a)], G possesses a normal subgroup
R of order pp and exponent p. Let H/R < G/R be of order pk−1, then
|H | = pp+k−1 and exp(H) ≤ pk so that H = Lpk . It follows that all elements

of the set G−H have orders > pk so that Lpk = Ωk(G) and Lpk/R is the unique

subgroup of order pk−1 in G/R, and we conclude that G/R is either cyclic
or generalized quaternion group (in the second case, k = 2). By hypothesis,
|G/R| ≥ pp.

Suppose that G/R is cyclic. Since |G/R| > p, G is not of maximal
class. Assume that R < Ω1(G). Then |Ω1(G) = pp+1| and, by [B2, Exercise
13.10(a)], exp(Ω1(G)) = p. Let M/Ω1(G) < G/Ω1(G) be of order pk−1; then
|M | = pp+k and exp(M) = pk. It follows that M ⊆ Lpk , a contradiction since

|M | = pp+k > pp+k−1 ≥ |Lpk |. Thus, Ω1(G) = R so that G is an Lp-group
(see [B2, §17,18]).

Now suppose that G/R is a generalized quaternion group; then p = 2 and,
as we have noticed, k = 2. If Ω1(G) < R, then Ω1(G) is elementary abelian
of order 8 ([B2, Exercise 13.10(a)]). If H/Ω1(G) ≤ G/Ω1(G) is noncyclic of
order 22, then exp(H) = 22 hence H ⊆ L2k , a contradiction since |H | =
23+2 > 22+1 = |L22 |. Thus, Ω1(G) = R hence |Ω2(G)| = 8. It follows that G
is as in [B2, Lemma 42.1(c)].

We state the results obtained in this section, in the following two propo-
sitions.

Proposition 3.1. Let G be a p-group. If p < pk < |Lpk | ≤ pk+1 < |G|,
then one of the following holds:

(a) G is either abelian with cyclic subgroup of index p or isomorphic to
Mpn .

(b) k = 2, p = 2, G = 〈a, b | a2m−2

= 1, b4 = a2m−3

, ab = a−1, m > 4〉.

Here Z(G) = 〈b2〉, G′ = 〈a2〉, Φ(G) = 〈a2, b2〉, Ω2(G) = 〈a2m−4

, b4〉,
G/G′ and Ω2(G) are abelian of type (4, 2).

Proposition 3.2. Suppose that G is an irregular p-group of order pm ≥
p2p and exponent pe, 1 < k < e. If |Lpk | ≤ pp+k−1 < pm, then one of the
following holds:

(a) G is an Lp-group, i.e., |Ω1(G)| = pp and G/Ω1(G) is cyclic (of order
≥ pp).
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(b) k = 2, p = 2 and G is as in Proposition 3.1(b).

Problem 3.1. Let n be a proper divisor of the order of a solvable group
G. Study the embedding and the structure of Ln provided |Ln| = 2n (the
minimal nonabelian group G of order 32 · 22 is such that |L6| = 2 · 6).

Problem 3.2. Let p be a minimal prime divisor of the order of a group G
and n is a proper divisor of |G|. Study the embedding in G and the structure
of the set Ln provided |Ln| ≤ pn.

Problem 3.3. Let G be an irregular p-group and k > 1. Study the struc-
ture of G provided |Lpk | ≤ pk+p (see §3).

Problem 3.4. Suppose that G is a metacyclic p-group and H is a p-group
such that |Lp2(H)| = |Lp2(G)|. Study the structure of H.1
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1Mann has solved a partial case of this problem for p > 2 when s1(H) = s1(G) and
s2(H) = s2(G), where sk(G) is the number of subgroups of order pk is G (it appears
that the similar problem for p = 2 is surprisingly difficult); a small modification of Mann’s
argument allows to solve the general problem for p > 2 since, in the case under consideration,
|Ω2(G)| ≤ p4.


