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Abstract. Let G be a connected real reductive Lie group with a
maximal compact subgroup K corresponding to a Cartan involution Θ of
G. Let q = l ⊕ u be a θ-stable parabolic subalgebra of the complexified
Lie algebra g of G, where θ = dΘ. Let L be the centralizer of q in G. We
show that, under certain dominance assumptions, cohomological induction
with respect to q takes irreducible unitary (l, L∩K)-modules with nonzero
Dirac cohomology to irreducible unitary (g, K)-modules which also have
nonzero Dirac cohomology.

1. Introduction

Let G be a connected real reductive Lie group with a Cartan involution
Θ, such that the group K = GΘ of fixed points of Θ is a maximal compact
subgroup of G. In [P], Parthasarathy introduced a Dirac operator D acting
on sections of homogeneous spin bundles on G/K, and used it successfully
to construct the discrete series representations of G. The nice properties of
D include a nice expression for the “spin Laplacean” D2. Parthasarathy’s
Dirac inequality asserts that for a unitary Harish-Chandra module M , one
has D2 ≥ 0. This can be translated into an inequality involving the infinites-
imal character of M and the K-types that appear in M . This inequality was
crucial in several classification results, like the classification of unitary high-
est weight modules ([EHW]) and the classification of unitary modules with
nonzero (g, K)-cohomology ([VZ]).
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In [V2], Vogan studied an algebraic version of D and introduced the
concept of Dirac cohomology of a Harish-Chandra module M , as the quotient
of KerD by ImD ∩ KerD (see the next section for more details). If M is
unitary, this is precisely the space of solutions to D2 = 0. So unitary modules
with nonzero Dirac cohomology just barely satisfy the Dirac inequality, hence
they are in some sense extremal.

The unitary modules with nonzero Dirac cohomology form an interesting
class of unitary modules. For example, they include the discrete series, and
most of the more general so called Aq(λ) modules. In particular, all modules
with nonzero (g, K)-cohomology also have nonzero Dirac cohomology, and the
two notions are in fact related (see [HP1] and [HKP]). Other unitary modules
with nonzero Dirac cohomology include all unitary highest weight modules,
for which the Dirac cohomology is the same as p+-cohomology (see [HPR]),
and some of the unipotent representations (work in progress with Barbasch).

It is therefore an interesting problem to classify all unitary modules with
nonzero Dirac cohomology. This note provides a step towards the solution of
this problem. Namely, it shows that under certain (rather strong) dominance
assumptions, cohomological induction with respect to a θ-stable parabolic
subalgebra q of g takes unitary modules for the Levi subgroup with nonzero
Dirac cohomology to unitary modules for G with nonzero Dirac cohomology.
The main idea is to use the bottom layer K-types. Since these do not al-
ways exist, we need to put dominance assumptions on our module. Further
assumptions are made to make the analysis of certain tensor products easier.
We will also assume that the infinitesimal character of our modules is real,
i.e., in the real span of roots. Since we are interested only in representations
with nonzero Dirac cohomology, this assumption is not restrictive in view of
Theorem 2.1 below.

Our main result partially overlaps with the results of [HKP], where much
more is proved, with weaker assumptions, but only in the case of Aq(λ) mod-
ules. We hope that the results of this note can be extended by using a trans-
lation principle for Dirac cohomology, which we hope to develop in future.

In Section 2 we give a brief review of the definition and main properties of
Dirac cohomology. In Section 3 we give a brief overview of the definition and
basic properties of cohomological induction. Finally in Section 4 we prove the
main result, Theorem 4.1.

2. Dirac cohomology

Let us first quickly review the setting. More details can be found for
example in [HP2]. Other good sources for Clifford algebras and spinors are
for example [C], [K1] and [W].

Let G be a connected real reductive Lie group with a Cartan involution
Θ such that the group K = GΘ of fixed points of Θ is a maximal compact
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subgroup of G. We denote the Lie algebras of G and K by g0 respectively k0,
and their complexifications by g respectively k. The Cartan decompositions
of g0 and g with respect to θ = dΘ are

g0 = k0 ⊕ p0; g = k ⊕ p.

These decompositions are orthogonal with respect to any non-degenerate in-
variant symmetric bilinear form B on g0 and g. We fix such a form in the
following.

Let U(g) be the universal enveloping algebra of g and let C(p) be the
Clifford algebra of p with respect to B. Let b1, . . . , bp be any basis of p and
let d1, . . . , dp be the dual basis with respect to B. In other words,

B(bi, dj) = δij , i, j = 1, . . . , p.

The Dirac operator is

D =

p∑

i=1

bi ⊗ di ∈ U(g) ⊗ C(p).

It is an easy exercise to see that D is independent of the basis bi, and K-
invariant for the adjoint K-action on U(g)⊗C(p) in both factors. This Dirac
operator was first introduced in [P] in the analytic setting of spin bundles on
G/K. For the algebraic setting, see [V2], [HP1] and [K2].

If M is a (g, K)-module, and if S is a spin module for C(p), then M ⊗ S

is a module for the algebra U(g) ⊗ C(p) and for the spin double cover K̃ of
K. In particular, the Dirac operator D acts, and we can define the Dirac
cohomology of M to be the K̃-module

HD(M) = KerD/ Im D ∩ KerD.

In this paper we are only interested in unitary modules M . In that case,
HD(M) is simply KerD = KerD2. Moreover, let h = t⊕ a be a fundamental
Cartan subalgebra of g, so that t is a Cartan subalgebra of k and a is the
centralizer of t in p. We embed t∗ into h∗ by extending functionals on t to
functionals on h which are zero on a. We fix compatible choices of positive
roots for g and k, and we denote by ρg, respectively ρk, the half sums of positive
roots for g respectively k. Then by [HP1, Corollary 2.4 and Proposition 2.6],
we see

Theorem 2.1. Let M be an admissible unitary (g, K)-module with infin-

itesimal character Λ ∈ h∗. Then the irreducible K̃-module E(τ) with highest
weight τ ∈ t∗ appears in HD(M) if and only if the following conditions hold:

1. E(τ) appears in the K̃-module M ⊗ S;
2. Λ is conjugate to τ + ρk by an element of the Weyl group Wg.

It will be important in our calculations that in fact the only way a K̃-type
E(τ) contributing to HD(M) can appear in M ⊗S is as a PRV component in
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the tensor product of a K-type E(µ) of M and a K̃-type E(γ) of S. Recall
that the PRV component ([PRV]) of E(µ) ⊗ E(γ) is the component with
highest weight conjugate to µ + γ̄, where γ̄ is the lowest weight of E(γ).
This component always appears in the tensor product with multiplicity one.
It can be characterized among the components of the tensor product as the
one having the shortest infinitesimal character. See [W, Lemma 9.1.4]. Our
assertion follows from this last characterization and Parthasarathy’s Dirac
inequality D2 ≥ 0. For a more detailed explanation, see [HPP, Proposition
3.2].

Since all the lowest weights in S are of the form −ρ(n ∩ p) for some θ-
stable Borel subalgebra b = h⊕ n containing a fixed Borel subalgebra of k, we
conclude

Corollary 2.2. Keeping the notation and assumptions of Theorem 2.1,
assume that E(τ) appears in HD(M). Then

τ = w(µ − ρ(n ∩ p))

for some µ such that E(µ) appears in M , some choice of b, and some w ∈ Wk

making µ − ρ(n ∩ p) dominant.

3. Cohomological induction

Let q = l⊕u be a θ-stable Cartan subalgebra of g. Let L be the centralizer
of q in G. Then L is a closed connected subgroup of G, and we can assume that
the maximal compact subgroup of L is L∩K. By cohomological induction one
means a collection of functors that construct (g, K)-modules starting from an
(l, L ∩ K)-module Z. The module Z is first twisted to the module

Z♯ = Z ⊗
∧top

u,

where l and L ∩ K act on
∧top

u by the adjoint action.
Now Z♯ is viewed as a (q, L∩K) module by letting u act trivially, and as a

(q̄, L∩K) module by letting ū act trivially. Here the bar refers to conjugation
with respect to the real form g0 of g, and q̄ = l⊕ ū is the parabolic subalgebra
of g opposite to q.

Next one constructs the produced and induced (g, L ∩ K)-modules

pro(Z♯) = HomU(q)(U(g), Z♯)L∩K−finite; ind(Z♯) = U(g) ⊗U(q̄) Z♯.

Here g acts on pro(Z♯) by right multiplication in the first variable of Hom,
and on ind(Z♯) by left multiplication in the first factor. The group L ∩ K
acts both on pro(Z♯) and on ind(Z♯) by the adjoint action on U(g) and by
the given action on Z♯.

Finally, one applies the right derived Zuckerman functors RiΓ to pro(Z♯)
to obtain the right cohomologically induced modules

Ri(Z) = RiΓ(pro(Z♯))
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and the left derived Bernstein functors LiΠ to ind(Z♯) to obtain the left
cohomologically induced modules

Li(Z) = LiΠ(ind(Z♯)).

The Zuckerman functor Γ is defined on a (g, L ∩ K)-module V as the largest
g-submodule of V on which the action of k0 exponentiates to K. Alternatively,

Γ(V ) = (R(K) ⊗ V )(k,L∩K),

where R(K) is the space of smooth left and right K-finite functions on K.
The (k, L ∩ K)-invariants are taken with respect to the tensor product of the
left regular action in R(K) and the given action πV on V . The K-action
on Γ(V ) is given by the right regular action in R(K). Finally, to describe
the g-action on Γ(V ), we first identify R(K) ⊗ V with the space R(K, V ) of
finite-range smooth V -valued left and right K-finite functions on K, via

f ⊗ v 7−→ (k 7→ f(k)v).

Then for X in g and F ∈ R(K, V )(k,L∩K),

(XF )(k) = πV (Ad(k)X)(F (k)), k ∈ K.

For more details, see [HP2, Section 5.4]. See also [KV, Chapter II and Chapter
V], but the definitions there are slightly different.

The Bernstein functor Π is defined on a (g, L ∩ K)-module V as

Π(V ) = (R(K) ⊗ V )(k,L∩K),

where we are now taking coinvariants with respect to the same (k, L ∩ K)-
action on R(K) ⊗ V as above. The (g, K)-action on Π(V ) is defined in a
similar way as on Γ(V ).

The following version of the vanishing, irreducibility and unitarity results
is not the strongest possible, but it will suffice for our purposes. We can
assume that l contains our fixed fundamental Cartan subalgebra h of g. We
also assume that our positive root system ∆+(g, h), which was chosen to
be compatible with ∆+(k, t), is also compatible with q, i.e., that it contains
∆(u). We now choose positive roots for l, again in a compatible way, i.e., we
set ∆+(l, h) = ∆(l, h) ∩ ∆+(g, h).

This can all be described in terms of the choice of a θ-stable Borel subal-
gebra b = h⊕ n of g contained in q. The choice of b corresponds to the choice
of ∆+(g, h) = ∆(n). Then b ∩ k = t ⊕ (n ∩ k) is a Borel subalgebra of k and
it corresponds to the choice ∆+(k, t) in the sense that ∆+(k, t) = ∆(n∩ k). In
the same way, b ∩ l = h⊕ (n ∩ l) is a Borel subalgebra of l and it corresponds
to the choice ∆+(l, h). We can include in this picture also the pair (l ∩ k, t).
As usual, if o ⊂ g is an h-invariant subspace, we will denote by ρ(o) the half
sum of the roots of h in o. Likewise, if o ⊂ g is t-invariant, we will denote by
ρ(o) the half sum of the roots of t in o, counted with multiplicity. In this way,
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we have ρg = ρ(n), ρk = ρ(n∩ k), ρl = ρ(n∩ l) and ρl∩k = ρ(n∩ l∩ k), but also
ρ(u), ρ(u ∩ k), ρ(n ∩ l ∩ p), etc.

We denote by 〈 , 〉 the usual Wg-invariant inner product on h∗ induced by
the form B.

Theorem 3.1. Let Z be an irreducible unitary (l, L ∩ K)-module with
infinitesimal character λ. Assume that λ is real (i.e., in the real span of
∆(g, h)), and in the good range, i.e.,

(3.1) 〈λ + ρ(u), α〉 > 0, ∀α ∈ ∆(u).

Then

1. Li(Z) = Ri(Z) = 0 for all i 6= S, where S = dim(u ∩ k);
2. LS(Z) ∼= RS(Z) is a nonzero irreducible unitary (g, K)-module with

infinitesimal character λ + ρ(u).

For the proofs, see [KV, Chapters V, VIII and IX].
We are skipping most of the results about K-types of cohomologically

induced modules, like upper bounds for their multiplicities and alternating
formulas. We will however need the following result about some specific K-
types, the so called bottom layer K-types. See [KV, V.6].

Theorem 3.2. Let Z be an irreducible (l, L ∩ K)-module. Let µL be the
highest weight of an L ∩ K-type E(µL) appearing in Z with multiplicity m.
Assume that

(3.2) µG = µL + 2ρ(u ∩ p) is dominant for K.

Then the K-type E(µG) appears in LS(Z) and RS(Z) with multiplicity m.

4. Dirac cohomology of cohomologically induced modules

Let Z be an irreducible unitary (l, L ∩ K)-module with real infinitesimal
character λ satisfying the condition (3.1). Assume that Z has nonzero Dirac
cohomology, and assume that the L ∩ K-type E(τL) with highest weight τL

contributes to HD(Z). By Corollary 2.2,

(4.1) τL = w(µL − ρ(n ∩ l ∩ p)),

where µL is the highest weight of an L ∩ K-type appearing in Z and w is
an element of Wl∩k making µL − ρ(n ∩ l ∩ p) dominant for L ∩ K. Here, if
necessary, we change our choice of positive roots so that it matches the choice
in Corollary 2.2.

We are going to assume that

(4.2) µL − 2ρ(n ∩ l ∩ p) is dominant for K.

Then clearly µL − ρ(n∩ l∩ p) is dominant for L∩K, so we can take w = 1 in
(4.1), i.e.,

(4.3) τL = µL − ρ(n ∩ l ∩ p).
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On the other hand, by Theorem 2.1, we have

(4.4) τL = w1λ − ρl∩k, for some w1 ∈ Wl.

Using (4.3) and (4.4) we can express µL as w1λ−ρl∩k +ρ(n∩ l∩p), and hence
the weight µG = µL + 2ρ(u ∩ p) defined in Theorem 3.2 is

(4.5) µG = w1λ − ρl∩k + ρ(n ∩ l ∩ p) + 2ρ(u ∩ p) = w1λ − ρl + 2ρ(n ∩ p).

Since we can write µG = µL − 2ρ(n∩ l∩ p) + 2ρ(n∩ p), µG is K-dominant by
the assumption (4.2), and the obvious fact that 2ρ(n ∩ p) is K-dominant. It
now follows from Theorem 3.2 that the K-type E(µG) appears in the bottom
layer of LS(Z) ∼= RS(Z).

Furthermore, the weight µG − ρ(n ∩ p) = µL − 2ρ(n ∩ l ∩ p) + ρ(n ∩ p) is
still K-dominant. It follows that

(4.6) τG = µG − ρ(n ∩ p)

appears in LS(Z) ⊗ Sp as the PRV component of E(µG) tensored with the
component of the spin module Sp for (g, k) with lowest weight −ρ(n ∩ p).

Theorem 4.1. Let Z be an irreducible unitary (l, L∩K)-module with real
infinitesimal character λ satisfying the condition (3.1). Let τL, µL, µG and
τG be as above. Assume that E(τL) contributes to the Dirac cohomology of Z,
and that (4.2) holds.

Then the Dirac cohomology of the irreducible unitary (g, K)-module

LS(Z) contains the K̃-type E(τG). In particular, it is not zero.

Proof. We have already seen that E(τG) appears in LS(Z)⊗Sp. There-
fore, by Theorem 2.1, we only need to check that

τG + ρk = w(λ + ρ(u)), for some w ∈ Wg.

Namely, the infinitesimal character of LS(Z) is Λ = λ + ρ(u).
Using (4.6) and (4.5), we can write

τG+ρk = µG−ρ(n∩p)+ρk = w1λ−ρl+ρ(n∩p)+ρk = w1λ−ρl+ρg = w1λ+ρ(u).

Therefore the following simple and well known lemma shows that we can take
w = w1 and this finishes the proof of the theorem.

Lemma 4.2. Let q = l ⊕ u be a θ-stable parabolic subalgebra of g. Let
w1 ∈ Wl. Then w1ρ(u) = ρ(u).

Proof. Recall that we have chosen positive roots for g to consist of
positive roots for l and roots for u. The Weyl group Wl ⊂ Wg is generated
by reflections with respect to positive roots for l. If α is a positive root for l,
then the reflection sα sends α to −α and permutes other positive roots. In
particular, sα permutes ∆(u) and hence leaves ρ(u) invariant. Since w1 is a
product of such sα, the lemma follows.
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