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ON INVERSE LIMITS OF COMPACT SPACES.

CORRECTION OF A PROOF

Sibe Mardešić

University of Zagreb, Croatia

Abstract. For a compact Hausdorff space X and an ANR for metriz-
able spaces M , one considers the space MX of all mappings from X to M ,
endowed with the compact-open topology. Since a mapping f : X′

→ X in-

duces a natural mapping Mf : MX
→ MX′

, an inverse system of compact
Hausdorff spaces X determines a direct system MX of spaces as well as
the corresponding direct system of singular homology groups Hn(MX ; G).
There is a natural isomorphism between the direct limit dir lim Hn(MX ; G)
and the singular homology group Hn(MX ; G), where X = inv lim X. This
continuity theorem, used by some authors, was published more than 50
years ago. Unfortunately, the author discovered a serious error in the
proofs of two lemmas on which the result depended. The present paper
gives new correct proofs of these lemmas.

1. Introduction

A compact Hausdorff space X and a metrizable space M determine
the space MX of all (continuous) mappings φ : X → M , endowed with
the compact-open topology. Every mapping f : X ′ → X between compact
Hausdorf spaces induces a mapping Mf : MX → MX′

, which assigns to
φ ∈ MX the composition Mf (φ) = φf . Therefore, if one has an inverse
system X = (Xλ, pλλ′ , Λ) of compact Hausdorff spaces and a metrizable
space M , the connecting mappings pλλ′ : Xλ′ → Xλ, λ ≤ λ′, induce map-
pings Pλλ′ = Mf (pλλ′) : MXλ → MX

λ′ and one obtains a direct system
MX = (MXλ , Pλλ′ , Λ). If X is the limit of X and pλ : X → Xλ, λ ∈ Λ, are
the corresponding canonical projections, then they induce mappings Pλ =
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Mpλ : MXλ → MX such that Pλ′Pλλ′ = Pλ. Denote by Hn(.; G) the functor
of singular n-dimensional homology group with coefficients in an abelian group
G. Denote by Pλλ′n : Hn(MXλ ; G) → Hn(MX

λ′ ; G) the homomorphism in-
duced by Pλλ′ : MXλ → MX

λ′ . Then, MX determines the direct system
Hn(MX ; G) = (Hn(MXλ ; G), Pλλ′n, Λ) of homology groups. Moreover, the
mappings Pλ induce homomorphisms Pλn : Hn(MXλ ; G) → Hn(MX ; G) such
that Pλ′nPλλ′n = Pλn. Clearly, these homomorphisms induce a homomor-
phism Pn from the direct limit dir lim Hn(MX ; G) to the homology group
Hn(MX ; G).

A straightforward verification shows that Pn : dir lim Hn(MX ; G) →
Hn(MX ; G) is a natural homomorphism, i.e., if X ′ = (X ′

λ, p′λλ′ , Λ) is an-
other system of compact Hausdorff spaces and g = (gλ, Λ): X

′ → X is a
level-preserving mapping of inverse systems, then the following diagram com-
mutes.

dir lim Hn(MX ; G) Hn(MX ; G)

dir lim Hn(MX′

; G) Hn(MX′

; G),

-

?

-

?

Pn

P
′

n

Hn(Mg ; G)dir lim Hn(Mg ; G)

where Hn(Mg; G) : Hn(MX ; G) → Hn(MX′

; G) is the homomorphism in-
duced by g = lim g : X ′ → X and dir lim Hn(Mg ; G) : dir lim Hn(MX ; G) →

dir lim Hn(MX′

; G) is the homomorphism induced by Mg : MX → MX′

.
The main result of the present paper is the following theorem.

Theorem 1.1. If X = (Xλ, pλλ′ , Λ) is an inverse system of compact

Hausdorff spaces with limit X = lim X and M is an ANR for metriz-

able spaces, then the natural homomorphism Pn : dir lim Hn(MX ; G) →
Hn(MX ; G) is an isomomorphism.

The special case when X is an inverse sequence of metrizable compacta
and M is a compact ANR was proved already in [11] as Theorem 13 on page
200. The generalization to inverse systems of compact Hausdorff spaces and
arbitrary ANRs appears in [12] as Theorem 6 on page 254. It follows the
proof of the theorem in the special case, given in [11]. However, two lemmas
used in that proof, i.e., a lemma due to M. Abe and Lemma 8, stated on page
199 of [12], had to be generalized as follows.

Lemma 1.2. Let X = (Xλ, pλλ′ , Λ) be an inverse system of compact Haus-

dorff spaces with limit X = lim X and canonical projections pλ : X → Xλ,

λ ∈ Λ. If M is an ANR for metrizable spaces, then every mapping f : X → M

admits a λ ∈ Λ such that, for every µ ≥ λ, there exists a mapping fµ : X → M ,

having the property that fµpµ ≃ f . Moreover, if ν ≥ µ ≥ λ, then fµpµν = fν .
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Lemma 1.3. Let (Y , X) = ((Yλ, Xλ), qλλ′ , Λ) be an inverse system of

compact Hausdorff pairs, Xλ ⊆ Yλ, with limit (Y, X) = lim (Y , X) and

canonical projections qλ : (Y, X) → (Yλ, Xλ), λ ∈ Λ. Let pλλ′ : Xλ′ → Xλ

and pλ : X → Xλ be the restrictions of the mappings qλλ′ and qλ to Xλ′ and

X, respectively. If M is an ANR for metrizable spaces and for a given λ ∈ Λ,

fλ : Xλ → M is a mapping such that fλpλ : X → M admits an extension

g : Y → M to all of Y , then there is a µ ≥ λ such that fλpλµ : Xµ → M

admits an extension gµ : Yµ → M to all of Yµ.

By an extension we always mean a continuous extension. Lemmas 1.2 and
1.3 appear in [12] as Theorems 4 and 5. Unfortunately, the proofs given in
that paper are not correct. Indeed, they are based on the following theorem
of R. Arens (see [3, Theorem 4.1]).

Let C be a closed convex subset of a Banach space L. Every mapping

f : A → C of a closed subset A of a (Hausdorff) paracompact space X to C

admits an extension g : X → C to the whole space X.

The assumption that C is closed in L is not fulfilled in the application
made in [12]. In fact, there the Arens’ theorem was misstated, because “closed
convex” was replaced by “convex”.

In the present paper we give correct proofs of Lemmas 1.2 and 1.3 and
thus, we obtain a correct proof of Theorem 1.1. The new proof of Lemma 1.3
uses the following proposition.

Proposition 1.4. Every ANR for metrizable spaces is an ANE for com-

pact Hausdorff spaces.

Yu.T. Lisica proved the following theorem (see [10, Theorem 1]).

Every convex subset of a Banach space is an AE for paracompact p-spaces.

By the well-known Kuratowski-Wojdis lawski embedding theorem, every
metrizable space embeds in a Banach space as a closed subset of its convex
hull ([17], also see [14, I.3.1, Theorem 2]). Therefore, the following proposition
holds.

Proposition 1.5. Every ANR for metrizable spaces is an ANE for para-

compact p-spaces.

p-spaces were introduced by A.V. Arhangelskĭı ([4]), who proved that
paracompact p-spaces coincide with spaces which admit perfect mappings to
metrizable spaces ([4, Theorem 16]). It is clear from this characterization, that
compact Hausdorff spaces are paracompact p-spaces. Consequently, Propo-
sition 1.4 is an immediate consequence of Proposition 1.5. In fact, Proposi-
tion 1.4 is an immediate consequence of the Kuratowski-Wojdis lawski embed-
ding theorem and the following special case of the theorem of Lisica.
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Proposition 1.6. Every convex subset C of a Banach space is an AE

for compact Hausdorff spaces.

Although the paper [12] has been published more than 50 years ago, to
the author it appears justified to correct the faulty proofs, because the paper
has been cited at least in the papers [1,2,5,8,9,15] and [16] and Theorem 1.1
was used in an essential way in [15] and [16].

2. Proofs of Lemmas 1.2 and 1.3

In the proofs we will use the fact that the limit p = (pλ, Λ): X → X

of an inverse system of compact Hausdorff spaces X = (Xλ, pλλ′ , Λ) is a
resolution ([13, Theorem 6.20]) and a homotopy expansion ([13, Corollary
7.8]). This allows us to use property (R1) (see [13, page 104 and Lemma
6.3]), property (B2′) (see [13, page 107, Theorem 6.7 and Remark 6.13]) and
Morita’s property (M1) ([13, page 129]).

Proof of Lemma 1.2. Since p : X → X is a homotopy expansion, it
has Morita’s property (M1). Therefore, for a mapping f : X → M into an
ANR for metrizable spaces M , there exist a λ ∈ Λ and a mapping fλ : Xλ →
M such that fλpλ ≃ f . For µ ≥ λ, put fµ = fλpλµ. Note that fµpµ =
fλpλµpµ = fλpλ ≃ f . If ν ≥ µ, then ν ≥ λ and thus, fν = fλpλν =
fλpλµpµν = fµpµν .

Proof of Lemma 1.3. For λ ∈ Λ, let fλ : Xλ → M and g : Y → M be
mappings such that g|X = fλpλ. Since M is an ANR for metrizable spaces and
Xλ is a closed subset of the compact Hausdorff space Yλ, Proposition 1.4 yields
an open neighborhood Uλ of Xλ in Yλ and an extension fλ : Uλ → M of fλ.
Since M is an ANR for metrizable spaces, there exists an open covering V of M

such that any two V-near mappings into M are homotopic ([14, I.3.2, Corollary
1]). Since q is a resolution, by property (R1) for q, there exist a λ′ ∈ Λ and a
mapping gλ′ : Yλ′ → M such that the mappings gλ′qλ′ , g : Y → M are V-near.
There is no loss of generality in assuming that λ′ ≥ λ.

Let us show that gλ′ |pλ′(X) and fλpλλ′ |pλ′(X) are V-near mappings.
Indeed, if xλ′ ∈ pλ′(X), there is a point x ∈ X such that xλ′ = pλ′(x). Note
that gλ′(xλ′ ) = gλ′pλ′(x) = gλ′qλ′(x). Therefore, there is a V ∈ V such
that gλ′(xλ′ ), g(x) ∈ V . The assertion follows, because g(x) = fλpλ(x) =
fλpλλ′pλ′(x) = fλpλλ′(xλ′ ) and thus, gλ′(xλ′), fλpλλ′(xλ′) ∈ V .

Now put Uλ′ = (qλλ′)−1(Uλ) ⊆ Yλ′ and note that pλ′(X) ⊆ Uλ′ , be-
cause qλλ′(pλ′(X)) = pλλ′pλ′(X) = pλ(X) ⊆ Xλ ⊆ Uλ. Also note that for

yλ′ ∈ Uλ′ , one has qλλ′(yλ′) ∈ Uλ and therefore, fλqλλ′ : Uλ′ → M is well
defined. Moreover, since the restrictions gλ′ |pλ′(X) and fλqλλ′ |pλ′(X) =
fλpλλ′ |pλ′(X) = fλpλλ′ |pλ′(X) are V-near mappings, there exists an open
neighborhood U ′

λ′ ⊆ Uλ′ of pλ′(X) in Yλ′ such that the mappings gλ′ |U ′

λ′ and

fλqλλ′ |U ′

λ′ are also V-near mappings.
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Since U ′

λ′ ∩ Xλ′ is an open neighborhood of pλ′(X) in Xλ′ , property
(B2)′ of the inverse limit p = (pλ, Λ): X → X yields a µ ≥ λ′ such that
pλ′µ(Xµ) ⊆ U ′

λ′ ∩ Xλ′ ⊆ U ′

λ′ . We now define a mapping gµ : Yµ → M by the
formula gµ = gλ′qλ′µ. Let us show that gµ|Xµ and fλpλµ are V-near mappings
and therefore,

gµ|Xµ ≃ fλpλµ.

Indeed, if xµ ∈ Xµ, then pλ′µ(xµ) ∈ U ′

λ′ and therefore, there is a

V ∈ V such that the points gλ′pλ′µ(xµ), fλ′qλλ′pλ′µ(xµ) ∈ V . However,

gλ′pλ′µ(xµ) = gµ(xµ) and fλqλλ′pλ′µ(xµ) = fλpλµ(xµ) = fλpλµ(xµ), because
pλ′µ(xµ) ∈ Xλ′ and thus, qλλ′pλ′µ(xµ) = pλλ′pλ′µ(xµ) = pλµ(xµ).

Clearly, the mapping gµ|Xµ : Xµ → M admits an extension to all of
Yµ, because gµ : Yµ → M is such a mapping. Now the homotopy extension
property (HEP) shows that the mapping fλpλµ, being homotopic to gµ|Xµ,
also admits an extension to all of Yµ.

Remark 2.1. Recall that a pair of spaces (Z, B), where B is a closed
subset of Z, is said to have the HEP with respect to a space M , provided every
mapping F : (B×I)∪(Z×0) → M admits an extension H : (Z×I) → M . The
well-known Dowker lemma asserts that this is the case, whenever Z is normal
and there is a neighborhood U of B in Z such that F admits an extension
G : (U × I) ∪ (Z × 0) → M ([7, Lemma IV.2.1]). Consequently, if C is a class
of normal spaces, having the property that Z ∈ C implies Z × I ∈ C, it follows
that every pair (Z, B), where Z ∈ C, has the HEP with respect to any space
M , which is an absolute neighborhood extensor for the class C. In particular,
Proposition 1.4 shows that this is the case when C is the class of compact
Hausdorff spaces and M is an ANR for metrizable spaces.

3. A more elementary proof of Proposition 1.6

Proof. Let (X, A) be a pair of compact Hausdorff spaces and let f : A →
C be a mapping to a convex subset C of a Banach space L. We must exhibit
an extension g : X → C of f to all of X . First note that there is an extension
f : X → L of f : A → C ⊆ L. It suffices to apply the Arens theorem to
L, viewed as a closed convex subset of L. Now note that (L, f(A)) is a pair
of metrizable spaces; f(A) is closed in L, because it is compact. Consider
the inclusion mapping i : f(A) → C. Applying the well-known Dugundji
extension theorem ([6], also see [14, I.3.1, Theorem 3]) to (L, f(A)) and C ⊆ L,
one obtains a mapping h : L → C such that h|f(A) = i. Clearly, g = hf : X →
C is a mapping which extends g, because g(a) = hf(a) = hf(a) = f(a), for
a ∈ A.
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