A PROPERTY OF GROUPS OF ORDER $\leq p^{p(e+1)}$ and exponent p^e

YAKOV BERKOVICH

University of Haifa, Israel

To Professor Noboru Ito on the occasion of his 80th anniversary

ABSTRACT. Let G be a p-group of exponent p^e and order p^m , where m < p(e+1) if p > 2 and $m \le 2(e+1)$ if p = 2. Then, if $\mathcal{O}^{e-1}(G)$ is irregular, then p = 2, e = 2 and $\mathcal{O}^{e-1}(G) \cong D_8 \times C_2$, where $|C_2| = 2$ and D_8 is dihedral of order 8.

It is proved in [B4, Lemma 4.1] that if $G > \{1\}$ is a group of order p^m and exponent p^e , where $m \leq pe$, then $\mathcal{V}_{e-1}(G)$ is of order $\leq p^p$ and exponent p. In this note we improve this result essentially.

We use the standard notation as in [B2, B4]. In what follows, G is a pgroup, where p is a prime. For $n \in \mathbb{N} \cup \{0\}$, we set $\mathcal{O}_n(G) = \langle x^{p^n} | x \in G \rangle$ and $\Omega_n(G) = \langle x \in G | x^{p^n} = 1 \rangle$ so that $\mathcal{O}_0(G) = G$ and $\Omega_0(G) = \{1\}$. The characteristic subgroups $\mathcal{O}_n(G)$ and $\Omega_n(G)$, introduced by Philip Hall, determine the power structure of G. If G is of exponent p^e , then $\mathcal{O}_{e-1}(G) \leq \Omega_1(G)$ (the strong inequality is possible as the group $G = D_8$ shows); moreover, $\mathcal{O}_{e-1}(G)$ is generated by elements of order p so, if $\exp(\mathcal{O}_{e-1}(G)) > p$, then $\mathcal{O}_{e-1}(G)$ is irregular (see Lemma 2(f)). A p-group G satisfying $|G : \mathcal{O}_1(G)| < p^p$, is called, according to Blackburn, *absolutely regular*. By the Hall regularity criterion, absolutely regular p-groups are regular. It is easy to show that subgroups and epimorphic images of absolutely regular p-groups are absolutely regular. All these assertions are used freely in what follows.

Let d(G) stand for the minimal number of generators of G. We have $p^{d(G)} = |G: \Phi(G)|$, where $\Phi(G)$ is the Frattini subgroup of G. Next, D_{2^n} and

Key words and phrases. Pyramidal, regular, absolutely regular, irregular and metacyclic *p*-groups, *p*-groups of maximal class.

²⁰⁰⁰ Mathematics Subject Classification. 20C15.

 Q_{2^n} are dihedral and generalized quaternion groups of order 2^n , respectively. The abelian group of type (2,2) is denoted by E_4 .

We define the series $G = U^0(G) > U^1(G) > U^2(G) > \dots$ of characteristic subgroups inductively, setting

$$\mho^0(G) = G, \, \mho^1(G) = \mho_1(G), \, \mho^{i+1}(G) = \mho_1(\mho^i(G)).$$

Since $\exp(G/\mho^i(G)) \leq p^i$, we get $\mho_i(G) \leq \mho^i(G)$ for all $i \in \mathbb{N}$. For $\exp(G) = p^e > p$, the inequality $\mho^e(G) > \{1\}$ is possible as the following remark shows.

REMARK 1. We will show that the strong inequality $\mathcal{U}_2(G) < \mathcal{U}^2(G)$ is possible. Let G be the two-generator group of exponent 4 of maximal order; then $|G : \mathcal{U}_1(G)| = |G : \Phi(G)| = 4$. It is known (Burnside) that $|G| = 2^{12}$. By Schreier's Theorem on the number of generators of a subgroup, $d(\mathcal{U}_1(G)) \leq 1 + (d(G) - 1)|G : \mathcal{U}_1(G)| = 5$. Therefore, in view of $|\mathcal{U}_1(G)| = 2^{10}$, the subgroup $\mathcal{U}_1(G)$ is not elementary abelian so $\mathcal{U}^2(G) = \mathcal{U}_1(\mathcal{U}_1(G)) > \{1\} =$ $\mathcal{U}_2(G)$, as was to be shown.

However, if G is regular, then $\mathfrak{V}^i(G) = \mathfrak{V}_i(G)$ for all *i*. Moreover, the last equality holds if $\mathfrak{V}_i(H) = \{x^{p^i} \mid x \in H\}$ for all $i \in \mathbb{N}$ and all sections H of G (or, what is the same, if G is a \mathcal{P}_1 -group [Man]). Indeed, suppose we have proved that $\mathfrak{V}^{i-1}(G) = \mathfrak{V}_{i-1}(G)$. Take $x \in \mathfrak{V}^i(G)$. Then $x = y^p$ for some $y \in \mathfrak{V}^{i-1}(G) = \mathfrak{V}_{i-1}(G) = \{z^{p^{i-1}} \mid z \in G\}$. It follows that, for some $z \in G$, we get $y = z^{p^{i-1}}$ so $x = z^{p^i} \in \mathfrak{V}_i(G)$. Thus, $\mathfrak{V}^i(G) \leq \mathfrak{V}_i(G)$, and we are done, since the reverse inclusion is true. Note that \mathcal{P}_1 -groups are not necessary regular (all 2-groups of maximal class are irregular \mathcal{P}_1 -groups).

Recall [B3] that a *p*-group *G* is said to be *pyramidal* if $|\Omega_i(G) : \Omega_{i-1}(G)| \ge |\Omega_{i+1}(G) : \Omega_i(G)|$ and $|\mho_{i-1}(G) : \mho_i(G)| \ge |\mho_i(G) : \mho_{i+1}(G)|$ for all $i = 1, 2, \ldots$

In this note we prove the following

MAIN THEOREM Let G be a p-group of order p^m and exponent p^e , where m < p(e+1) if p > 2 and $m \le 2(e+1)$ if p = 2. Then

- (a) $|\mathcal{O}_{e-1}(G)| < p^{2p}$ if p > 2 and $|\mathcal{O}_{e-1}(G)| \le 2^4$ if p = 2.
- (b) If $\mathbb{O}^{e-1}(G)$ is irregular, then p = 2, e = 2, $|G| = 2^6$ and $\mathbb{O}^1(G) = C \times M$, where |C| = 2 and $M \cong D_8$.

Part (a) of the Main Theorem is trivial for pyramidal *p*-groups. Some known results are collected in the following

LEMMA 2. Let G be a p-group.

- (a) (Hall) If G is regular, it is pyramidal and $|\Omega_1(G)| = |G/\mho_1(G)|$.
- (b) Suppose that G is a noncyclic group of order p³ and P a Sylow p-subgroup of Aut(G). Then P is nonabelian of order p³ (moreover, if p > 2, then exp(P) = p and if p = 2, then P is dihedral).
- (c) (Hall) If G is of class < p, it is regular. Next, G is regular if p > 2and G' is cyclic.

- (d) (Burnside) Let $R < \Phi(G)$ be normal in G. If Z(R) is cyclic so is R.
- (e) [B2, Theorem 4.1] If $R \leq \Phi(G)$ is normal in G and R is generated by two elements, it is metacyclic.
- (f) (Hall) If G is regular, then $\exp(\Omega_i(G)) \leq p^i$ for all $i \in \mathbb{N}$.
- (g) [B1, Lemma 1.4] Let $N \leq G$. If N has no G-invariant abelian subgroup of type (p, p), it is either cyclic or a 2-group of maximal class.
- (h) [B2, §7, Remark 2] Suppose that a p-group G is neither absolutely regular nor of maximal class. Then the number of subgroups of order p^p and exponent p in G is $\equiv 1 \pmod{p}$.

Let us show that if G is noncyclic of order p^3 , p > 2, then $\exp(P) = p$, where $P \in \operatorname{Syl}_p(\operatorname{Aut}(G))$. Take $\mu \in P^{\#}$. In that case, G has a μ -invariant subgroup F of type (p, p) and F has a μ -invariant subgroup $H \triangleleft G$ of order p. Given $g \in G$, we have $g^{\mu} = gf$ for some $f \in F$, and let $f^{\mu} = fh$ for some $h \in H$. Then, by induction, we get $g^{\mu^n} = gf^n h^{(n-1)n/2}$. Taking, in the last formula, n = p, we get $g^{\mu^p} = gf^p h^{(p-1)p/2} = g$ in view of $\exp(F) = \exp(H) =$ p and p > 2. Thus, $\mu^p = \operatorname{id}_G$ for all $\mu \in P^{\#}$ so $\exp(P) = p$. It is easy to check that a Sylow p-subgroup of the automorphism group of a noncyclic abelian p-group is nonabelian.

If, in the Main Theorem, p > 2, then $\mathcal{O}_{e-1}(G)$ is of exponent p. Indeed, $\mathcal{O}_{e-1}(G)$ is generated by elements of order p and, by the Main Theorem, regular so the assertion follows from Lemma 2(f).

REMARK 3 ([J]). There exists a group G of order 2^6 with $\exp(G) = 4$ and $\mathcal{O}_1(G)(=\Phi(G)) = D_8 \times C_2$. Indeed, let

$$G = \langle x, s \mid s^2 = t, \ x^s = y, \ y^s = xu, \ u^s = uz,$$
$$u^2 = z^2 = t^2 = s^4 = [x, y] = [x, u] = [x, z] = [y, u] = [y, z] =$$
$$[u, z] = [u, t] = [z, t] = [z, x] = 1, \ x^2 = u, \ y^2 = uz \rangle.$$

Here $|G| = 2^6$, $\Phi(G) = \langle t, z, u, xy \rangle = D_8 \times C_2$, $G' = \langle xy, u \rangle$ and $M = \langle x, y \rangle = C_4 \times C_4$ is a normal (even characteristic) abelian subgroup of G and the involution t inverts M, $Z(G) = \langle z \rangle$ is of order 2 and $\exp(G) = 4$. Let us check these assertions. It follows from $\Phi(G) = \mathcal{O}_1(G)G'$ that elements $t = s^2, u = x^2, z = [u, s], xy = u[x, s]$ are contained in $\Phi(G)$. Since $G = \langle x, y \rangle$ and $\langle t, xy \rangle \times \langle u \rangle \cong D_8 \times C_2$, we get $\Phi(G) \cong D_8 \times C_2$. We compute

$$\begin{aligned} x^t &= (x^s)^s = y^s = xu = xx^2 = x^3 = x^{-1}, \\ y^t &= (y^s)^s = (xu)^s = yuz = yy^2 = y^3 = y^{-1} \end{aligned}$$

so t inverts $M = \langle x, y \rangle \cong C_4 \times C_4$. We have

$$[x,t] = x^{-1}x^{t} = x^{2} = u, [y,t] = y^{-1}y^{t} = y^{2}.$$

$$[y, s] = y^{-1}xu = x^3y^3 = xuyuz = xyz, x^2y^2 = z.$$

Since |G:G'| > 4 (Taussky's Theorem), we get $G' = \langle xy, u \rangle \cong C_4 \times C_2$.

Y. BERKOVICH

Clearly, $G = \langle s \rangle \cdot M$ is a semidirect product with kernel M so $|G| = 2^2|M| = 2^6$. Thus, M is a maximal abelian subgroup of G so Z(G) < M and $Z(G) \leq \Omega_1(M)$. Since $(x^2)^s = y^2 \neq x^2$ and $(y^2)^s = (xu)^2 = x^2 \neq y^2$, it follows that $Z(G) = \langle z \rangle$, in view of $\Omega_1(M) = \{1, x^2, y^2, x^2y^2 = z\}$. If $a \in M^{\#}$, then $h = (sa)^2 = ta^s a \in \langle t, M \rangle - M$ is an involution so $(sa)^4 = h^2 = 1$, and we conclude that $\exp(G) = 4$.

We find this group G as a subgroup of the symmetric group S_8 , if we set:

$$s = (1,5)(2,8,4,7)(3,6), x = (5,7,6,8)$$

and check that these permutations satisfy all above relations, and since

$$z = uu^{s} = (1,3)(2,4)(5,6)(7,8)$$

is a nontrivial permutation (where $\langle z \rangle = Z(G)$), we have obtained a faithful permutation representation of our group G and so G exists.

Our theorem follows easily from Lemmas 4–7.

LEMMA 4. Suppose that G is a p-group of order p^{s+pe} and exponent p^e , $s \ge 0, e > 1$. If $|\mathcal{U}^{e-1}(G)| > p^{s+p}$, then there is $i \le e-2$ such that $\mathcal{U}^i(G)$ is absolutely regular; in particular, in that case we have $|\mathcal{U}_{e-1}(G)| < p^p$.

PROOF. We have

(1)
$$p^{s+pe} = |G| = (\prod_{i=0}^{e-2} |\mathcal{U}^i(G) : \mathcal{U}^{i+1}(G)|)|\mathcal{U}^{e-1}(G)|$$

so that, by hypothesis,

(2)
$$\prod_{i=0}^{e-2} |\mathcal{O}^i(G) : \mathcal{O}^{i+1}(G)| < p^{p(e-1)}$$

It follows from (2) that $|\mho^i(G) : \mho^{i+1}(G)| < p^p$ for some $i \leq e-2$, whence $\mho^i(G)$ is absolutely regular so regular, and we have $|\Omega_1(\mho^i(G))| < p^p$. Then $\mho_{e-1}(G) = \Omega_1(\mho_{e-1}(G)) \leq \Omega_1(\mho^i(G))$ (Lemma 2(a,f)), and the proof is complete.

COROLLARY 5. Suppose that G is a p-group of order p^{s+pe} and exponent p^e , $s \ge 0$, e > 1. Then $|\mathcal{O}_{e-1}(G)| \le p^{s+p}$.

PROOF. Assume that $|\mathcal{U}_{e-1}(G)| > p^{s+p}$; then $|\mathcal{U}^{e-1}(G)| > p^{s+p}$. In that case, $\mathcal{U}_{e-1}(G)$ is absolutely regular (Lemma 4) so $|\mathcal{U}_{e-1}(G)| = |\Omega_1(\mathcal{U}_{e-1}(G))| < p^p < p^{s+p}$ (Lemma 2(a,f)), contrary to the assumption.

LEMMA 6. Suppose that G is a group of order p^{s+pe} and exponent p^e , $s \ge 0$, e > 1. If $|\mathcal{O}_{e-1}(G)| = p^{s+p}$, then $|\mathcal{O}^i(G) : \mathcal{O}^{i+1}(G)| = p^p$ for $i = 1, \ldots, e-2$ so $\mathcal{O}^{e-1}(G) = \mathcal{O}_{e-1}(G)$.

PROOF. Since the subgroup $\mathcal{V}_{e-1}(G)$ of order $p^{s+p} > p^{p-1}$ is generated by elements of order p, it is not absolutely regular so is $\mathcal{V}^{e-1}(G)$ as it contains $\mathcal{U}_{e-1}(G)$. It follows from Lemma 4 that $|\mathcal{U}^{e-1}(G)| \leq p^{s+p} = |\mathcal{U}_{e-1}(G)|$ so that $\mathcal{U}_{e-1}(G) = \mathcal{U}^{e-1}(G)$. In particular, $|\mathcal{U}^{i-1}(G) : \mathcal{U}^i(G)| \geq p^p$ for $i \leq e-1$ since, for these $i, \mathcal{U}^{i-1}(G)$ is not absolutely regular. Then, by (1),

$$p^{s+pe} = (\prod_{i=0}^{e-2} |\mathcal{O}^i(G) : \mathcal{O}^{i+1}(G)|)p^{s+p} \ge p^{p(e-1)}p^{s+p} = p^{s+pe}$$

so $|\mathcal{O}^i(G) : \mathcal{O}^{i+1}(G)| = p^p$ for $i = 0, 1, \dots, e-2$.

Π

In the sequel we use freely the following known fact. If $K < L \le \Phi(G)$ are normal subgroups of a *p*-group *G* and $|L/K| = p^2$, then $L/K \le \mathbb{Z}(\Phi(G/K))$.

LEMMA 7. Let $N \leq \Phi(G)$ be a normal irregular subgroup of order p^n in a p-group G, where n < 2p if p > 2 and $n \leq 2p$ if p = 2. Then p = 2 and $N = C \times M$, where |C| = 2 and M is nonabelian of order 8.

PROOF. Assume that d(N) = 2. Then N, by Lemma 2(e), is metacyclic. By hypothesis, N is irregular so p = 2 (Lemma 2(c)) and $|N| \le 2^4$. In that case, by Lemma 2(d), the center of N is noncyclic so $|N| = 2^4$ and $\exp(N) = 4$. It is known that there exists only one nonabelian metacyclic group of order 2^4 and exponent 4 and so $N = \langle a, b \mid a^4 = b^4 = 1, a^b = a^{-1} \rangle$. It is easy to see that N contains exactly three involutions, namely, a^2 , b^2 and a^2b^2 , and all of them lie in Z(N). Since $N/\langle a^2b^2 \rangle \cong Q_8$ and N has no cyclic subgroup of index 2, we conclude that a^2b^2 is the unique involution of N which is not a square in N. It follows that $L = \langle a^2b^2 \rangle$ is a characteristic subgroup of N so L is normal in G. However, the nonabelian subgroup N/L with cyclic center is normal in G/N and contained in $\Phi(G/L)$, contrary to Lemma 2(d). Thus, d(N) > 2.

Assume that p > 2. Then, by the previous paragraph, $|N'| \le p^{n-3} \le p^{2p-4}$ so the class of N does not exceed $1 + \frac{2p-4}{2} = p - 1$ (see the paragraph, preceding the lemma). Then N is regular (Lemma 2(c)), a contradiction.

Thus, p = 2 so $|N| = 2^4$. In view of d(N) > 2, N is neither of maximal class nor minimal nonabelian. In that case, N has a G-invariant abelian subgroup R of type (2, 2) (Lemma 2(g)); then $R \leq Z(N)$ in view of $R \leq \Phi(G)$. Let M be a minimal nonabelian subgroup of N; then |M| = 8. Let C < R be such that $C \leq M$ (C exists since Z(M) has order 2). Then |C| = 2 and $N = C \times M$, completing the proof.

Now we are ready to prove our main result.

PROOF OF THE MAIN THEOREM. (a) follows from Corollary 5 since $|G| = p^{s+pe}$, where $s \leq p$ and s < p if p > 2.

(b) Since $\mathcal{U}^{e-1}(G)$ is irregular, its order is at least p^{2p} (Lemma 7). On the other hand, $|\mathcal{U}^{e-1}(G)| \leq p^{2p}$ (Lemma 4). It follows that $|\mathcal{U}^{e-1}(G)| = p^{2p}$,

and then, by Lemma 7, we must have p = 2. In that case, $|\mathcal{U}^{e-1}(G)| = 2^4$, and we have $N = C \times M$, where |C| = 2 and M is nonabelian of order 8 (Lemma 7).

It remains to prove that e = 2 and $M \cong D_8$.

Assume that e > 2. By Lemma 6, we have $|\mathcal{U}^1(G) : \mathcal{U}^2(G)| = p^p = 2^2$ so $d(\mathcal{U}^1(G)) = 2$. It follows that $\Phi(G) = \mathcal{U}^1(G)$ is metacyclic (Lemma 2(e)), a contradiction since it contains, by what has been proved already, a nonmetacyclic subgroup $\mathcal{U}^{e-1}(G)$. Thus, e = 2 so that $\exp(G) = 2^e = 4$.

Now assume that $M \not\cong D_8$; then $M \cong Q_8$. Since the subgroup $\mathcal{O}_1(G) = \mathcal{O}^1(G) = \mathbb{C}_2 \times \mathbb{Q}_8$ is not generated by involutions, it contains an element x of order 4 which is a square in G, i.e., $x = y^2$ for some $y \in G$. It follows that $\exp(G) \ge o(y) = 2^3 > 2^2 = 2^e$, a final contradiction. The proof is complete. (In Remark 3 the group, satisfying part (b) of the theorem, is presented.)

COROLLARY 8. Suppose that G is a p-group of order $p^{p(e+t+1)}$ and exponent $p^e, e > 1, t \ge 0$. If $\exp(\mho_{e-1}(G)) > p^{t+1}$, then $|\mho_{e-1}(G)| = p^{p(t+2)}$.

PROOF. We proceed by induction on t. Set $H = \mathcal{O}_{e-1}(G)$.

We have $|G| = p^{p(e+t+1)} = p^{p(t+1)+pe}$ so, by Corollary 5, $|H| \leq p^{p(t+1)+p} = p^{p(t+2)}$. By hypothesis, $\exp(H) > p^{t+1} \geq p$ so, since H is generated by elements of order p, it is irregular (Lemma 2(f)). Since H is not of maximal class (Lemma 2(d)), it has a G-invariant subgroup R of order p^p and exponent p (Lemma 2(h)).

- (i) Let t = 0. Since H is irregular, then, by Lemma 7, $|H| \ge p^{2p}$ so, by the previous paragraph (take there t = 0), we get $|H| = p^{2p} = p^{p(t+2)}$. Thus, the corollary is true for t = 0.
- (ii) Now let t > 0. In that case, we have $|G/R| = p^{p[e+(t-1)+1]}$. The subgroup $H/R = \mathcal{O}_{e-1}(G/R)$ has exponent $\geq \frac{\exp(G)}{\exp(R)} > \frac{p^{t+1}}{p} = p^{(t-1)+1}$. Therefore, by induction, $|H/R| = p^{p[(t-1)+2]} = p^{p(t+1)}$ so $|H| = |H/R||R| = p^{p(t+2)}$.

REMARK 9. Let N be a normal subgroup of order p^3 in a p-group G. We claim that if $N \leq \Phi(\Phi(G))$, then $N \leq Z(\Phi(\Phi(G)))$. Set $N_1 = N \cap Z(\Phi(G))$ and $C = C_{\Phi(G)}(N)$; then C is normal in G and $|N_1| \geq p^2$ since each G-invariant subgroup of order p^2 in $\Phi(G)$ is contained in the center of $\Phi(G)$ (see the paragraph preceding Lemma 7); in particular, N is abelian. We have to prove that $\Phi(\Phi(G)) \leq C$. (i) Let N be cyclic; then Aut(N) is abelian so $\Phi(G)/C$ is. If p = 2, then $G/C_G(N)$ is isomorphic to a subgroup of Aut(N) \cong E_4. It follows that $\Phi(G)$ centralizes N; in particular, $N \leq Z(\Phi(G))$ so $N \leq Z(\Phi(\Phi(G)))$. Now let p > 2. Set $N = \langle x \rangle$ and take $y \in \Phi(G)$; then $x^y = x^r$ for some $r \in \mathbb{N}$. Since $x^p \in N_1 \leq Z(\Phi(G))$, we get $x^{pr} = (x^p)^y = x^p$ so $x^{p(r-1)} = 1$. It follows that $r = 1 + kp^2$ for some nonnegative integer k since

 $o(x) = p^3$. In that case, $(1 + kp^2)^p \equiv 1 \pmod{o(x)}$ so $x^{y^p} = x^{(1+kp^2)^p} = x$ and $y^p \in C$, and we conclude that $\Phi(G)/C$ is abelian of exponent p. It follows that $\Phi(\Phi(G)) \leq C$, completing the case where N is cyclic. (ii) Now let N be noncyclic. Then N_1 must be noncyclic since N has a noncyclic G-invariant subgroup of order p^2 , and the last one is contained in $Z(\Phi(G))$. Then $\Phi(G)/C$ is isomorphic to a subgroup of a nonabelian group of order p^3 (Lemma 2(b)). By Lemma 2(d), however, $\Phi(G)/C$ must be abelian. If $\exp(\Phi(G)/C) = p$, then $\Phi(\Phi(G)) \leq C$, and we are done. Now assume that $\exp(\Phi(G)/C) > p$. Then p = 2 and $\Phi(G)/C$ is cyclic of order 4 (Lemma 2(b)). Let $n \in N$ and let $g \in \Phi(G)$ be such that $g^2 \notin C$. Then $n^g = nn_1$ for some $n_1 \in N_1$ since $N/N_1 \in Z(\Phi(G)/N_1)$. Next, $n^{g^2} = nn_1^2 = n$ since $N_1 \leq Z(\Phi(G))$ and $\exp(N_1) = 2$. It follows that g^2 centralizes N so $g^2 \in C$, contrary to the choice of g. Thus, $\exp(\Phi(G)/C) \leq 2$ so $\Phi(\Phi(G)) \leq C$, completing the proof. It follows from what has just been proved that if $M \leq \Phi(\Phi(G))$ is a normal subgroup of order p^4 in a p-group G, then M must be abelian.

It follows from Remark 9 that e = 2 in part (b) of the Main Theorem. Indeed, otherwise $\mathcal{O}^{e-1}(G)$, as a *G*-invariant subgroup of order 2^4 in $\Phi(\Phi(G))$, must be abelian so regular.

REMARK 10. Let e > 2 and let G be a p-group of order $p^{p(e+2)-2}$ and exponent p^e . We claim that then $D = \mathbb{O}^{e-1}(G)$ is regular. Indeed, we have $|G| = p^{(2p-2)+pe}$. If $|D| > p^{(2p-2)+p}$, then D is absolutely regular, by Lemma 4. It remains to show that if $|D| \le p^{(2p-2)+p} = p^{3p-2}$, then D is also regular. Since e > 2, we get $D \le \Phi(\Phi(G))$. If p = 2, then D is of order 2^4 so it is abelian, by Remark 9. Now let p > 2. Let $D > K_2(D) = D' > K_3(D) > \ldots$ be the lower central series of D. If $|D/K_2(D)| < p^4$, then $|D| < p^4$ so D is abelian, by Remark 9. Therefore, one may assume that $|K_2(D)| \le \frac{|D|}{p^4} \le p^{3p-6}$. It follows from Remark 9 that the length of the lower central series of D is at most $1 + \frac{3p-6}{3} = p - 1$, so D is regular, by Lemma 2(c). In particular, if G is a group of order p^m , m = p(e+2) - 2, and exponent $p^e > p$ and $\mathbb{O}^{e-1}(G)$ is irregular, then e = 2. This supplements part (b) of the theorem.

B. Wilkens [W] has showed that if p > 2, then, for given numbers e > 1and $n \in \mathbb{N}$, there exists a finite group G of exponent p^e such that $\mathcal{O}^n(G) > \{1\}$, thereby solving Question 12 in [B4].

QUESTION 1. Let G be a p-group. Suppose that $N \leq \Phi(G)$ is an irregular G-invariant subgroup of order p^{2p} if p > 2 and 2^5 if p = 2. Describe the structure of N. (If p > 2 and N exists, then indices of its lower central series are $p^3, p^2, p^2, \ldots, p^2, p$.)

QUESTION 2. Suppose that a *p*-group *G* is such that $|\mathcal{O}_{i-1}(G) : \mathcal{O}_1(\mathcal{O}_{i-1}(G))| = p^p$ for some $i \in \mathbb{N}$. Does there exist a constant c = c(p) such that $|\mathcal{O}_{i-1}(G) : \mathcal{O}_i(G)| \le p^c$?

Y. BERKOVICH

As Mann noticed, if, in Question 2, $|\mho_{i-1}(G) : \mho_1(\mho_{i-1}(G))| < p^p$, then c < p. Indeed, one may assume, without loss of generality, that $\mho_i(G) = \{1\}$ so $\exp(G) = p^i$. In the case under consideration, $\mho_{i-1}(G)$, which is generated by elements of order p, is absolutely regular, by hypothesis. It follows that $|\mho_{i-1}(G)| < p^p$, proving our claim.

QUESTION 3. Let a *p*-group $G = A \operatorname{wr} B$ be a standard wreath product. Find $\operatorname{U}^n(G)$ in terms of A, B and n.

QUESTION 4. Let $G = UT(n, p) \in Syl_p(GL(n, p))$. (i) Find the maximal a = a(n) such that $\mathcal{O}^a(G) > \{1\}$. (ii) Find the minimal b = b(n) such that $\mathcal{O}^b(G)$ is regular.

QUESTION 5. Let e > 2. Does there exist c = c(e) such that $\exp(\mathbb{O}^{c(e)}(G)) < p^e$ for all groups G of exponent p^e ? (According to Wilkens [W], c(2) does not exist if p > 2.)

QUESTION 6. Given e > 1 and $n \in \mathbb{N}$, does there exist a *p*-group *G* of exponent p^e such that $\Omega_e^*(G) = \langle x \in G \mid o(x) = p^e \rangle \leq \mathcal{O}_n(G)$?

QUESTION 7. Let G be a p-group, p > 2, and let $N \leq \Phi(G)$ be a G-invariant subgroup of exponent p and order p^n . Suppose that the class of N equals $1 + [\frac{n-3}{2}] + \epsilon$, where $\epsilon = 0$ if n is odd and $\epsilon = 1$ if n is even. Describe the structure of N.

ACKNOWLEDGEMENTS.

I am indebted to Zvonimir Janko for example in Remark 3 and Avinoam Mann for useful discussion allowing to improve the main result.

References

- [B1] Y. Berkovich, Groups of Prime Power Order, Part I, in preparation.
- [B2] Y. Berkovich, On subgroups and epimorphic images of finite p-groups, J. Algebra 248 (2002), 472–553.
- [B3] Y. Berkovich, Some consequences of Maschke's theorem, Algebra Coll. 5, 2 (1998), 143–158.
- [B4] Y. Berkovich, On subgroups of finite p-groups, J. Algebra 224 (2000), 198–240.

[J] Z. Janko, private communication.

[Man] A. Mann, The power structure of p-groups, J. Algebra 42, 1 (1976), 121-135.

[S] M. Suzuki, Group Theory II, Springer, New York, 1986.

[W] B. Wilkens, On the upper exponent of a finite p-group, J. Algebra 277 (2004), 349–363.

Y. Berkovich Department of Mathematics University of Haifa Haifa 31905 Israel *E-mail*: berkov@mathcs2.haifa.ac.il

Received: 12.5.2004. Revised: 22.11.2004.