A PROPERTY OF GROUPS OF ORDER $\leq p^{p(e+1)}$ AND EXPONENT p^{e}

Yakov Berkovich

University of Haifa, Israel

To Professor Noboru Ito on the occasion of his 80th anniversary

Abstract

Let G be a p-group of exponent p^{e} and order p^{m}, where $m<p(e+1)$ if $p>2$ and $m \leq 2(e+1)$ if $p=2$. Then, if $\mathcal{J}^{e-1}(G)$ is irregular, then $p=2, e=2$ and $\mho^{e-1}(G) \cong \mathrm{D}_{8} \times \mathrm{C}_{2}$, where $\left|\mathrm{C}_{2}\right|=2$ and D_{8} is dihedral of order 8.

It is proved in [B4, Lemma 4.1] that if $G>\{1\}$ is a group of order p^{m} and exponent p^{e}, where $m \leq p e$, then $\mho_{e-1}(G)$ is of order $\leq p^{p}$ and exponent p. In this note we improve this result essentially.

We use the standard notation as in [B2, B4]. In what follows, G is a p group, where p is a prime. For $n \in \mathbb{N} \cup\{0\}$, we set $\mho_{n}(G)=\left\langle x^{p^{n}} \mid x \in G\right\rangle$ and $\Omega_{n}(G)=\left\langle x \in G \mid x^{p^{n}}=1\right\rangle$ so that $\mho_{0}(G)=G$ and $\Omega_{0}(G)=\{1\}$. The characteristic subgroups $\mho_{n}(G)$ and $\Omega_{n}(G)$, introduced by Philip Hall, determine the power structure of G. If G is of exponent p^{e}, then $\mho_{e-1}(G) \leq \Omega_{1}(G)$ (the strong inequality is possible as the group $G=\mathrm{D}_{8}$ shows); moreover, $\mho_{e-1}(G)$ is generated by elements of order p so, if $\exp \left(\mho_{e-1}(G)\right)>p$, then $\mho_{e-1}(G)$ is irregular (see Lemma 2(f)). A p-group G satisfying $\left|G: \mho_{1}(G)\right|<p^{p}$, is called, according to Blackburn, absolutely regular. By the Hall regularity criterion, absolutely regular p-groups are regular. It is easy to show that subgroups and epimorphic images of absolutely regular p-groups are absolutely regular. All these assertions are used freely in what follows.

Let $\mathrm{d}(G)$ stand for the minimal number of generators of G. We have $p^{\mathrm{d}(G)}=|G: \Phi(G)|$, where $\Phi(G)$ is the Frattini subgroup of G. Next, $\mathrm{D}_{2^{n}}$ and

[^0]$\mathrm{Q}_{2^{n}}$ are dihedral and generalized quaternion groups of order 2^{n}, respectively. The abelian group of type $(2,2)$ is denoted by E_{4}.

We define the series $G=\mho^{0}(G)>\mho^{1}(G)>\mho^{2}(G)>\ldots$ of characteristic subgroups inductively, setting

$$
\mho^{0}(G)=G, \mho^{1}(G)=\mho_{1}(G), \mho^{i+1}(G)=\mho_{1}\left(\mho^{i}(G)\right)
$$

Since $\exp \left(G / \mho^{i}(G)\right) \leq p^{i}$, we get $\mho_{i}(G) \leq \mho^{i}(G)$ for all $i \in \mathbb{N}$. For $\exp (G)=$ $p^{e}>p$, the inequality $\mho^{e}(G)>\{1\}$ is possible as the following remark shows.

REMARK 1. We will show that the strong inequality $\mho_{2}(G)<\mho^{2}(G)$ is possible. Let G be the two-generator group of exponent 4 of maximal order; then $\left|G: \mho_{1}(G)\right|=|G: \Phi(G)|=4$. It is known (Burnside) that $|G|=2^{12}$. By Schreier's Theorem on the number of generators of a subgroup, $\mathrm{d}\left(\mho_{1}(G)\right) \leq 1+(\mathrm{d}(G)-1)\left|G: \mho_{1}(G)\right|=5$. Therefore, in view of $\left|\mho_{1}(G)\right|=2^{10}$, the subgroup $\mho_{1}(G)$ is not elementary abelian so $\mho^{2}(G)=\mho_{1}\left(\mho_{1}(G)\right)>\{1\}=$ $\mho_{2}(G)$, as was to be shown.

However, if G is regular, then $\mho^{i}(G)=\mho_{i}(G)$ for all i. Moreover, the last equality holds if $\mho_{i}(H)=\left\{x^{p^{2}} \mid x \in H\right\}$ for all $i \in \mathbb{N}$ and all sections H of G (or, what is the same, if G is a \mathcal{P}_{1}-group [Man]). Indeed, suppose we have proved that $\mho^{i-1}(G)=\mho_{i-1}(G)$. Take $x \in \mho^{i}(G)$. Then $x=y^{p}$ for some $y \in \mho^{i-1}(G)=\mho_{i-1}(G)=\left\{z^{p^{i-1}} \mid z \in G\right\}$. It follows that, for some $z \in G$, we get $y=z^{p^{i-1}}$ so $x=z^{p^{i}} \in \mho_{i}(G)$. Thus, $\mho^{i}(G) \leq \mho_{i}(G)$, and we are done, since the reverse inclusion is true. Note that \mathcal{P}_{1}-groups are not necessary regular (all 2 -groups of maximal class are irregular \mathcal{P}_{1}-groups).

Recall [B3] that a p-group G is said to be pyramidal if $\left|\Omega_{i}(G): \Omega_{i-1}(G)\right| \geq$ $\left|\Omega_{i+1}(G): \Omega_{i}(G)\right|$ and $\left|\mho_{i-1}(G): \mho_{i}(G)\right| \geq\left|\mho_{i}(G): \mho_{i+1}(G)\right|$ for all $i=$ $1,2, \ldots$

In this note we prove the following
Main Theorem Let G be a p-group of order p^{m} and exponent p^{e}, where $m<p(e+1)$ if $p>2$ and $m \leq 2(e+1)$ if $p=2$. Then
(a) $\left|\mho_{e-1}(G)\right|<p^{2 p}$ if $p>2$ and $\left|\mho_{e-1}(G)\right| \leq 2^{4}$ if $p=2$.
(b) If $\mho^{e-1}(G)$ is irregular, then $p=2, e=2,|G|=2^{6}$ and $\mho^{1}(G)=$ $C \times M$, where $|C|=2$ and $M \cong D_{8}$.
Part (a) of the Main Theorem is trivial for pyramidal p-groups.
Some known results are collected in the following
Lemma 2. Let G be a p-group.
(a) (Hall) If G is regular, it is pyramidal and $\left|\Omega_{1}(G)\right|=\left|G / \mho_{1}(G)\right|$.
(b) Suppose that G is a noncyclic group of order p^{3} and P a Sylow p subgroup of $\operatorname{Aut}(G)$. Then P is nonabelian of order p^{3} (moreover, if $p>2$, then $\exp (P)=p$ and if $p=2$, then P is dihedral).
(c) (Hall) If G is of class $<p$, it is regular. Next, G is regular if $p>2$ and G^{\prime} is cyclic.
(d) (Burnside) Let $R<\Phi(G)$ be normal in G. If $Z(R)$ is cyclic so is R.
(e) [B2, Theorem 4.1] If $R \leq \Phi(G)$ is normal in G and R is generated by two elements, it is metacyclic.
(f) (Hall) If G is regular, then $\exp \left(\Omega_{i}(G)\right) \leq p^{i}$ for all $i \in \mathbb{N}$.
(g) [B1, Lemma 1.4] Let $N \unlhd G$. If N has no G-invariant abelian subgroup of type (p, p), it is either cyclic or a 2-group of maximal class.
(h) [B2, §7, Remark 2] Suppose that a p-group G is neither absolutely regular nor of maximal class. Then the number of subgroups of order p^{p} and exponent p in G is $\equiv 1(\bmod p)$.
Let us show that if G is noncyclic of order $p^{3}, p>2$, then $\exp (P)=p$, where $P \in \operatorname{Syl}_{p}(\operatorname{Aut}(G))$. Take $\mu \in P^{\#}$. In that case, G has a μ-invariant subgroup F of type (p, p) and F has a μ-invariant subgroup $H \triangleleft G$ of order p. Given $g \in G$, we have $g^{\mu}=g f$ for some $f \in F$, and let $f^{\mu}=f h$ for some $h \in H$. Then, by induction, we get $g^{\mu^{n}}=g f^{n} h^{(n-1) n / 2}$. Taking, in the last formula, $n=p$, we get $g^{\mu^{p}}=g f^{p} h^{(p-1) p / 2}=g$ in view of $\exp (F)=\exp (H)=$ p and $p>2$. Thus, $\mu^{p}=\operatorname{id}_{G}$ for all $\mu \in P^{\#}$ so $\exp (P)=p$. It is easy to check that a Sylow p-subgroup of the automorphism group of a noncyclic abelian p-group is nonabelian.

If, in the Main Theorem, $p>2$, then $\mho_{e-1}(G)$ is of exponent p. Indeed, $\mho_{e-1}(G)$ is generated by elements of order p and, by the Main Theorem, regular so the assertion follows from Lemma 2(f).

Remark 3 ([J]). There exists a group G of order 2^{6} with $\exp (G)=4$ and $\mho_{1}(G)(=\Phi(G))=\mathrm{D}_{8} \times \mathrm{C}_{2}$. Indeed, let

$$
\begin{gathered}
G=\langle x, s| s^{2}=t, x^{s}=y, y^{s}=x u, u^{s}=u z \\
u^{2}=z^{2}=t^{2}=s^{4}=[x, y]=[x, u]=[x, z]=[y, u]=[y, z]= \\
\left.[u, z]=[u, t]=[z, t]=[z, x]=1, x^{2}=u, y^{2}=u z\right\rangle
\end{gathered}
$$

Here $|G|=2^{6}, \Phi(G)=\langle t, z, u, x y\rangle=\mathrm{D}_{8} \times \mathrm{C}_{2}, G^{\prime}=\langle x y, u\rangle$ and $M=\langle x, y\rangle=$ $\mathrm{C}_{4} \times \mathrm{C}_{4}$ is a normal (even characteristic) abelian subgroup of G and the involution t inverts $M, \mathrm{Z}(G)=\langle z\rangle$ is of order 2 and $\exp (G)=4$. Let us check these assertions. It follows from $\Phi(G)=\mho_{1}(G) G^{\prime}$ that elements $t=$ $s^{2}, u=x^{2}, z=[u, s], x y=u[x, s]$ are contained in $\Phi(G)$. Since $G=\langle x, y\rangle$ and $\langle t, x y\rangle \times\langle u\rangle \cong \mathrm{D}_{8} \times \mathrm{C}_{2}$, we get $\Phi(G) \cong \mathrm{D}_{8} \times \mathrm{C}_{2}$. We compute

$$
\begin{gathered}
x^{t}=\left(x^{s}\right)^{s}=y^{s}=x u=x x^{2}=x^{3}=x^{-1} \\
y^{t}=\left(y^{s}\right)^{s}=(x u)^{s}=y u z=y y^{2}=y^{3}=y^{-1}
\end{gathered}
$$

so t inverts $M=\langle x, y\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{4}$. We have

$$
\begin{gathered}
{[x, t]=x^{-1} x^{t}=x^{2}=u,[y, t]=y^{-1} y^{t}=y^{2}} \\
{[y, s]=y^{-1} x u=x^{3} y^{3}=x u y u z=x y z, x^{2} y^{2}=z}
\end{gathered}
$$

Since $\left|G: G^{\prime}\right|>4$ (Taussky's Theorem), we get $G^{\prime}=\langle x y, u\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{2}$.

Clearly, $G=\langle s\rangle \cdot M$ is a semidirect product with kernel M so $|G|=$ $2^{2}|M|=2^{6}$. Thus, M is a maximal abelian subgroup of G so $\mathrm{Z}(G)<M$ and $\mathrm{Z}(G) \leq \Omega_{1}(M)$. Since $\left(x^{2}\right)^{s}=y^{2} \neq x^{2}$ and $\left(y^{2}\right)^{s}=(x u)^{2}=x^{2} \neq y^{2}$, it follows that $\mathrm{Z}(G)=\langle z\rangle$, in view of $\Omega_{1}(M)=\left\{1, x^{2}, y^{2}, x^{2} y^{2}=z\right\}$. If $a \in M^{\#}$, then $h=(s a)^{2}=t a^{s} a \in\langle t, M\rangle-M$ is an involution so $(s a)^{4}=h^{2}=1$, and we conclude that $\exp (G)=4$.

We find this group G as a subgroup of the symmetric group S_{8}, if we set:

$$
s=(1,5)(2,8,4,7)(3,6), x=(5,7,6,8)
$$

and check that these permutations satisfy all above relations, and since

$$
z=u u^{s}=(1,3)(2,4)(5,6)(7,8)
$$

is a nontrivial permutation (where $\langle z\rangle=\mathrm{Z}(G)$), we have obtained a faithful permutation representation of our group G and so G exists.

Our theorem follows easily from Lemmas 4-7.
Lemma 4. Suppose that G is a p-group of order $p^{s+p e}$ and exponent p^{e}, $s \geq 0, e>1$. If $\left|\mho^{e-1}(G)\right|>p^{s+p}$, then there is $i \leq e-2$ such that $\mho^{i}(G)$ is absolutely regular; in particular, in that case we have $\left|\mho_{e-1}(G)\right|<p^{p}$.

Proof. We have

$$
\begin{equation*}
p^{s+p e}=|G|=\left(\prod_{i=0}^{e-2}\left|\mho^{i}(G): \mho^{i+1}(G)\right|\right)\left|\mho^{e-1}(G)\right| \tag{1}
\end{equation*}
$$

so that, by hypothesis,

$$
\begin{equation*}
\prod_{i=0}^{e-2}\left|\mho^{i}(G): \mho^{i+1}(G)\right|<p^{p(e-1)} \tag{2}
\end{equation*}
$$

It follows from (2) that $\left|\mho^{i}(G): \mho^{i+1}(G)\right|<p^{p}$ for some $i \leq e-2$, whence $\mho^{i}(G)$ is absolutely regular so regular, and we have $\left|\Omega_{1}\left(\mho^{i}(G)\right)\right|<p^{p}$. Then $\mho_{e-1}(G)=\Omega_{1}\left(\mho_{e-1}(G)\right) \leq \Omega_{1}\left(\mho^{i}(G)\right)$ (Lemma $\left.2(\mathrm{a}, \mathrm{f})\right)$, and the proof is complete.

Corollary 5. Suppose that G is a p-group of order $p^{s+p e}$ and exponent $p^{e}, s \geq 0, e>1$. Then $\left|\mho_{e-1}(G)\right| \leq p^{s+p}$.

Proof. Assume that $\left|\mho_{e-1}(G)\right|>p^{s+p}$; then $\left|\mho^{e-1}(G)\right|>p^{s+p}$. In that case, $\mho_{e-1}(G)$ is absolutely regular (Lemma 4) so $\left|\mho_{e-1}(G)\right|=$ $\left|\Omega_{1}\left(\mho_{e-1}(G)\right)\right|<p^{p}<p^{s+p}$ (Lemma 2(a,f)), contrary to the assumption.

Lemma 6. Suppose that G is a group of order $p^{s+p e}$ and exponent $p^{e}, s \geq$ $0, e>1$. If $\left|\mho_{e-1}(G)\right|=p^{s+p}$, then $\left|\mho^{i}(G): \mho^{i+1}(G)\right|=p^{p}$ for $i=1, \ldots, e-2$ so $\mho^{e-1}(G)=\mho_{e-1}(G)$.

Proof. Since the subgroup $\mho_{e-1}(G)$ of order $p^{s+p}>p^{p-1}$ is generated by elements of order p, it is not absolutely regular so is $\mho^{e-1}(G)$ as it contains $\mho_{e-1}(G)$. It follows from Lemma 4 that $\left|\mho^{e-1}(G)\right| \leq p^{s+p}=\left|\mho_{e-1}(G)\right|$ so that $\mho_{e-1}(G)=\mho^{e-1}(G)$. In particular, $\left|\mho^{i-1}(G): \mho^{i}(G)\right| \geq p^{p}$ for $i \leq e-1$ since, for these $i, \mho^{i-1}(G)$ is not absolutely regular. Then, by (1),

$$
p^{s+p e}=\left(\prod_{i=0}^{e-2}\left|\mho^{i}(G): \mho^{i+1}(G)\right|\right) p^{s+p} \geq p^{p(e-1)} p^{s+p}=p^{s+p e}
$$

so $\left|\mho^{i}(G): \mho^{i+1}(G)\right|=p^{p}$ for $i=0,1, \ldots, e-2$.
In the sequel we use freely the following known fact. If $K<L \leq \Phi(G)$ are normal subgroups of a p-group G and $|L / K|=p^{2}$, then $L / K \leq \mathrm{Z}(\Phi(G / K))$.

Lemma 7. Let $N \leq \Phi(G)$ be a normal irregular subgroup of order p^{n} in a p-group G, where $n<2 p$ if $p>2$ and $n \leq 2 p$ if $p=2$. Then $p=2$ and $N=C \times M$, where $|C|=2$ and M is nonabelian of order 8 .

Proof. Assume that $\mathrm{d}(N)=2$. Then N, by Lemma 2(e), is metacyclic. By hypothesis, N is irregular so $p=2$ (Lemma $2(\mathrm{c})$) and $|N| \leq 2^{4}$. In that case, by Lemma $2(\mathrm{~d})$, the center of N is noncyclic so $|N|=2^{4}$ and $\exp (N)=4$. It is known that there exists only one nonabelian metacyclic group of order 2^{4} and exponent 4 and so $N=\left\langle a, b \mid a^{4}=b^{4}=1, a^{b}=a^{-1}\right\rangle$. It is easy to see that N contains exactly three involutions, namely, a^{2}, b^{2} and $a^{2} b^{2}$, and all of them lie in $\mathrm{Z}(N)$. Since $N /\left\langle a^{2} b^{2}\right\rangle \cong \mathrm{Q}_{8}$ and N has no cyclic subgroup of index 2 , we conclude that $a^{2} b^{2}$ is the unique involution of N which is not a square in N. It follows that $L=\left\langle a^{2} b^{2}\right\rangle$ is a characteristic subgroup of N so L is normal in G. However, the nonabelian subgroup N / L with cyclic center is normal in G / N and contained in $\Phi(G / L)$, contrary to Lemma 2(d). Thus, $\mathrm{d}(N)>2$.

Assume that $p>2$. Then, by the previous paragraph, $\left|N^{\prime}\right| \leq p^{n-3} \leq$ $p^{2 p-4}$ so the class of N does not exceed $1+\frac{2 p-4}{2}=p-1$ (see the paragraph, preceding the lemma). Then N is regular (Lemma 2(c)), a contradiction.

Thus, $p=2$ so $|N|=2^{4}$. In view of $\mathrm{d}(N)>2, N$ is neither of maximal class nor minimal nonabelian. In that case, N has a G-invariant abelian subgroup R of type (2,2) (Lemma $2(\mathrm{~g})$); then $R \leq \mathrm{Z}(N)$ in view of $R \leq \Phi(G)$. Let M be a minimal nonabelian subgroup of N; then $|M|=8$. Let $C<R$ be such that $C \not \leq M$ (C exists since $\mathrm{Z}(M)$ has order 2$)$. Then $|C|=2$ and $N=C \times M$, completing the proof.

Now we are ready to prove our main result.
Proof of the Main Theorem. (a) follows from Corollary 5 since $|G|=p^{s+p e}$, where $s \leq p$ and $s<p$ if $p>2$.
(b) Since $\mho^{e-1}(G)$ is irregular, its order is at least $p^{2 p}$ (Lemma 7). On the other hand, $\left|\mho^{e-1}(G)\right| \leq p^{2 p}$ (Lemma 4). It follows that $\left|\mho^{e-1}(G)\right|=p^{2 p}$,
and then, by Lemma 7 , we must have $p=2$. In that case, $\left|\mho^{e-1}(G)\right|=2^{4}$, and we have $N=C \times M$, where $|C|=2$ and M is nonabelian of order 8 (Lemma 7).

It remains to prove that $e=2$ and $M \cong \mathrm{D}_{8}$.
Assume that $e>2$. By Lemma 6, we have $\left|\mho^{1}(G): \mho^{2}(G)\right|=p^{p}=2^{2}$ so $\mathrm{d}\left(\mho^{1}(G)\right)=2$. It follows that $\Phi(G)=\mho^{1}(G)$ is metacyclic (Lemma 2(e)), a contradiction since it contains, by what has been proved already, a nonmetacyclic subgroup $\mho^{e-1}(G)$. Thus, $e=2$ so that $\exp (G)=2^{e}=4$.

Now assume that $M \nVdash \mathrm{D}_{8}$; then $M \cong \mathrm{Q}_{8}$. Since the subgroup $\mho_{1}(G)=$ $\mho^{1}(G)=\mathrm{C}_{2} \times \mathrm{Q}_{8}$ is not generated by involutions, it contains an element x of order 4 which is a square in G, i.e., $x=y^{2}$ for some $y \in G$. It follows that $\exp (G) \geq o(y)=2^{3}>2^{2}=2^{e}$, a final contradiction. The proof is complete. (In Remark 3 the group, satisfying part (b) of the theorem, is presented.)

Corollary 8. Suppose that G is a p-group of order $p^{p(e+t+1)}$ and exponent $p^{e}, e>1, t \geq 0$. If $\exp \left(\mho_{e-1}(G)\right)>p^{t+1}$, then $\left|\mho_{e-1}(G)\right|=p^{p(t+2)}$.

Proof. We proceed by induction on t. Set $H=\mho_{e-1}(G)$.
We have $|G|=p^{p(e+t+1)}=p^{p(t+1)+p e}$ so, by Corollary $5,|H| \leq$ $p^{p(t+1)+p}=p^{p(t+2)}$. By hypothesis, $\exp (H)>p^{t+1} \geq p$ so, since H is generated by elements of order p, it is irregular (Lemma 2(f)). Since H is not of maximal class (Lemma 2(d)), it has a G-invariant subgroup R of order p^{p} and exponent p (Lemma 2(h)).
(i) Let $t=0$. Since H is irregular, then, by Lemma $7,|H| \geq p^{2 p}$ so, by the previous paragraph (take there $t=0$), we get $|H|=p^{2 p}=p^{p(t+2)}$. Thus, the corollary is true for $t=0$.
(ii) Now let $t>0$. In that case, we have $|G / R|=p^{p[e+(t-1)+1]}$. The subgroup $H / R=\mho_{e-1}(G / R)$ has exponent $\geq \frac{\exp (G)}{\exp (R)}>\frac{p^{t+1}}{p}=p^{(t-1)+1}$. Therefore, by induction, $|H / R|=p^{p[(t-1)+2]}=p^{p(t+1)}$ so $|H|=$ $|H / R||R|=p^{p(t+2)}$.

Remark 9. Let N be a normal subgroup of order p^{3} in a p-group G. We claim that if $N \leq \Phi(\Phi(G))$, then $N \leq \mathrm{Z}\left(\Phi(\Phi(G))\right.$. Set $N_{1}=N \cap \mathrm{Z}(\Phi(G))$ and $C=\mathrm{C}_{\Phi(G)}(N)$; then C is normal in G and $\left|N_{1}\right| \geq p^{2}$ since each G invariant subgroup of order p^{2} in $\Phi(G)$ is contained in the center of $\Phi(G)$ (see the paragraph preceding Lemma 7); in particular, N is abelian. We have to prove that $\Phi(\Phi(G)) \leq C$. (i) Let N be cyclic; then $\operatorname{Aut}(N)$ is abelian so $\Phi(G) / C$ is. If $p=2$, then $G / \mathrm{C}_{G}(N)$ is isomorphic to a subgroup of Aut $(N) \cong \mathrm{E}_{4}$. It follows that $\Phi(G)$ centralizes N; in particular, $N \leq \mathrm{Z}(\Phi(G))$ so $N \leq \mathrm{Z}(\Phi(\Phi(G))$. Now let $p>2$. Set $N=\langle x\rangle$ and take $y \in \Phi(G)$; then $x^{y}=x^{r}$ for some $r \in \mathbb{N}$. Since $x^{p} \in N_{1} \leq \mathrm{Z}(\Phi(G))$, we get $x^{p r}=\left(x^{p}\right)^{y}=x^{p}$ so $x^{p(r-1)}=1$. It follows that $r=1+k p^{2}$ for some nonnegative integer k since
$o(x)=p^{3}$. In that case, $\left(1+k p^{2}\right)^{p} \equiv 1(\bmod o(x))$ so $x^{y^{p}}=x^{\left(1+k p^{2}\right)^{p}}=x$ and $y^{p} \in C$, and we conclude that $\Phi(G) / C$ is abelian of exponent p. It follows that $\Phi(\Phi(G)) \leq C$, completing the case where N is cyclic. (ii) Now let N be noncyclic. Then N_{1} must be noncyclic since N has a noncyclic G-invariant subgroup of order p^{2}, and the last one is contained in $\mathrm{Z}(\Phi(G))$. Then $\Phi(G) / C$ is isomorphic to a subgroup of a nonabelian group of order p^{3} (Lemma 2(b)). By Lemma 2(d), however, $\Phi(G) / C$ must be abelian. If $\exp (\Phi(G) / C)=p$, then $\Phi(\Phi(G)) \leq C$, and we are done. Now assume that $\exp (\Phi(G) / C)>p$. Then $p=2$ and $\Phi(G) / C$ is cyclic of order 4 (Lemma 2(b)). Let $n \in N$ and let $g \in \Phi(G)$ be such that $g^{2} \notin C$. Then $n^{g}=n n_{1}$ for some $n_{1} \in N_{1}$ since $N / N_{1} \in \mathrm{Z}\left(\Phi(G) / N_{1}\right)$. Next, $n^{g^{2}}=n n_{1}^{2}=n$ since $N_{1} \leq \mathrm{Z}(\Phi(G))$ and $\exp \left(N_{1}\right)=2$. It follows that g^{2} centralizes N so $g^{2} \in C$, contrary to the choice of g. Thus, $\exp (\Phi(G) / C) \leq 2$ so $\Phi(\Phi(G)) \leq C$, completing the proof. It follows from what has just been proved that if $M \leq \Phi(\Phi(G))$ is a normal subgroup of order p^{4} in a p-group G, then M must be abelian.

It follows from Remark 9 that $e=2$ in part (b) of the Main Theorem. Indeed, otherwise $\mho^{e-1}(G)$, as a G-invariant subgroup of order 2^{4} in $\Phi(\Phi(G))$, must be abelian so regular.

Remark 10. Let $e>2$ and let G be a p-group of order $p^{p(e+2)-2}$ and exponent p^{e}. We claim that then $D=\mho^{e-1}(G)$ is regular. Indeed, we have $|G|=p^{(2 p-2)+p e}$. If $|D|>p^{(2 p-2)+p}$, then D is absolutely regular, by Lemma 4. It remains to show that if $|D| \leq p^{(2 p-2)+p}=p^{3 p-2}$, then D is also regular. Since $e>2$, we get $D \leq \Phi(\Phi(G))$. If $p=2$, then D is of order 2^{4} so it is abelian, by Remark 9 . Now let $p>2$. Let $D>\mathrm{K}_{2}(D)=D^{\prime}>\mathrm{K}_{3}(D)>\ldots$ be the lower central series of D. If $\left|D / \mathrm{K}_{2}(D)\right|<p^{4}$, then $|D|<p^{4}$ so D is abelian, by Remark 9 . Therefore, one may assume that $\left|\mathrm{K}_{2}(D)\right| \leq \frac{|D|}{p^{4}} \leq p^{3 p-6}$. It follows from Remark 9 that the length of the lower central series of D is at most $1+\frac{3 p-6}{3}=p-1$, so D is regular, by Lemma $2(\mathrm{c})$. In particular, if G is a group of order p^{m}, $m=p(e+2)-2$, and exponent $p^{e}>p$ and $\mho^{e-1}(G)$ is irregular, then $e=2$. This supplements part (b) of the theorem.
B. Wilkens [W] has showed that if $p>2$, then, for given numbers $e>1$ and $n \in \mathbb{N}$, there exists a finite group G of exponent p^{e} such that $\mho^{n}(G)>\{1\}$, thereby solving Question 12 in [B4].

Question 1. Let G be a p-group. Suppose that $N \leq \Phi(G)$ is an irregular G-invariant subgroup of order $p^{2 p}$ if $p>2$ and 2^{5} if $p=2$. Describe the structure of N. (If $p>2$ and N exists, then indices of its lower central series are $p^{3}, p^{2}, p^{2}, \ldots, p^{2}, p$.)

Question 2. Suppose that a p-group G is such that $\mid \mho_{i-1}(G)$: $\mho_{1}\left(\mho_{i-1}(G)\right) \mid=p^{p}$ for some $i \in \mathbb{N}$. Does there exist a constant $c=c(p)$ such that $\left|\mho_{i-1}(G): \mho_{i}(G)\right| \leq p^{c}$?

As Mann noticed, if, in Question 2, $\left|\mho_{i-1}(G): \mho_{1}\left(\mho_{i-1}(G)\right)\right|<p^{p}$, then $c<p$. Indeed, one may assume, without loss of generality, that $\mho_{i}(G)=\{1\}$ so $\exp (G)=p^{i}$. In the case under consideration, $\mho_{i-1}(G)$, which is generated by elements of order p, is absolutely regular, by hypothesis. It follows that $\left|\mho_{i-1}(G)\right|<p^{p}$, proving our claim.

Question 3. Let a p-group $G=A$ wr B be a standard wreath product. Find $\mho^{n}(G)$ in terms of A, B and n.

Question 4. Let $G=\mathrm{UT}(n, p) \in \operatorname{Syl}_{p}(\operatorname{GL}(n, p))$. (i) Find the maximal $a=a(n)$ such that $\mho^{a}(G)>\{1\}$. (ii) Find the minimal $b=b(n)$ such that $\mho^{b}(G)$ is regular.

Question 5. Let $e>2$. Does there exist $c=c(e)$ such that $\exp \left(\mho^{c(e)}(G)\right)<p^{e}$ for all groups G of exponent p^{e} ? (According to Wilkens [W], $c(2)$ does not exist if $p>2$.)

Question 6. Given $e>1$ and $n \in \mathbb{N}$, does there exist a p-group G of exponent p^{e} such that $\Omega_{e}^{*}(G)=\left\langle x \in G \mid o(x)=p^{e}\right\rangle \leq \mho_{n}(G)$?

Question 7. Let G be a p-group, $p>2$, and let $N \leq \Phi(G)$ be a G invariant subgroup of exponent p and order p^{n}. Suppose that the class of N equals $1+\left[\frac{n-3}{2}\right]+\epsilon$, where $\epsilon=0$ if n is odd and $\epsilon=1$ if n is even. Describe the structure of N.

Acknowledgements.
I am indebted to Zvonimir Janko for example in Remark 3 and Avinoam Mann for useful discussion allowing to improve the main result.

References

[B1] Y. Berkovich, Groups of Prime Power Order, Part I, in preparation.
[B2] Y. Berkovich, On subgroups and epimorphic images of finite p-groups, J. Algebra 248 (2002), 472-553.
[B3] Y. Berkovich, Some consequences of Maschke's theorem, Algebra Coll. 5, 2 (1998), 143-158.
[B4] Y. Berkovich, On subgroups of finite p-groups, J. Algebra 224 (2000), 198-240.
[J] Z. Janko, private communication.
[Man] A. Mann, The power structure of p-groups, J. Algebra 42, 1 (1976), 121-135.
[S] M. Suzuki, Group Theory II, Springer, New York, 1986.
[W] B. Wilkens, On the upper exponent of a finite p-group, J. Algebra 277 (2004), 349-363.
Y. Berkovich

Department of Mathematics
University of Haifa
Haifa 31905
Israel
E-mail: berkov@mathcs2.haifa.ac.il
Received: 12.5.2004.
Revised: 22.11.2004.

[^0]: 2000 Mathematics Subject Classification. 20C15.
 Key words and phrases. Pyramidal, regular, absolutely regular, irregular and metacyclic p-groups, p-groups of maximal class.

