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Abstract. Let G be a p-group of exponent pe and order pm, where
m < p(e + 1) if p > 2 and m ≤ 2(e + 1) if p = 2. Then, if fe−1(G) is
irregular, then p = 2, e = 2 and fe−1(G) ∼= D8 × C2, where |C2| = 2 and
D8 is dihedral of order 8.

It is proved in [B4, Lemma 4.1] that if G > {1} is a group of order pm

and exponent pe, where m ≤ pe, then fe−1(G) is of order ≤ pp and exponent
p. In this note we improve this result essentially.

We use the standard notation as in [B2, B4]. In what follows, G is a p-
group, where p is a prime. For n ∈ N∪{0}, we set fn(G) = 〈xpn | x ∈ G〉 and
Ωn(G) = 〈x ∈ G | xpn

= 1〉 so that f0(G) = G and Ω0(G) = {1}. The char-
acteristic subgroups fn(G) and Ωn(G), introduced by Philip Hall, determine
the power structure of G. If G is of exponent pe, then fe−1(G) ≤ Ω1(G) (the
strong inequality is possible as the group G = D8 shows); moreover, fe−1(G)
is generated by elements of order p so, if exp(fe−1(G)) > p, then fe−1(G) is
irregular (see Lemma 2(f)). A p-groupG satisfying |G : f1(G)| < pp, is called,
according to Blackburn, absolutely regular. By the Hall regularity criterion,
absolutely regular p-groups are regular. It is easy to show that subgroups and
epimorphic images of absolutely regular p-groups are absolutely regular. All
these assertions are used freely in what follows.

Let d(G) stand for the minimal number of generators of G. We have
pd(G) = |G : Φ(G)|, where Φ(G) is the Frattini subgroup of G. Next, D2n and
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Q2n are dihedral and generalized quaternion groups of order 2n, respectively.
The abelian group of type (2, 2) is denoted by E4.

We define the series G = f0(G) > f1(G) > f2(G) > . . . of characteristic
subgroups inductively, setting

f0(G) = G, f1(G) = f1(G), fi+1(G) = f1(f
i(G)).

Since exp(G/fi(G)) ≤ pi, we get fi(G) ≤ fi(G) for all i ∈ N. For exp(G) =
pe > p, the inequality fe(G) > {1} is possible as the following remark shows.

Remark 1. We will show that the strong inequality f2(G) < f2(G)
is possible. Let G be the two-generator group of exponent 4 of maximal
order; then |G : f1(G)| = |G : Φ(G)| = 4. It is known (Burnside) that
|G| = 212. By Schreier’s Theorem on the number of generators of a subgroup,
d(f1(G)) ≤ 1+(d(G)−1)|G : f1(G)| = 5. Therefore, in view of |f1(G)| = 210,
the subgroup f1(G) is not elementary abelian so f2(G) = f1(f1(G)) > {1} =
f2(G), as was to be shown.

However, if G is regular, then fi(G) = fi(G) for all i. Moreover, the

last equality holds if fi(H) = {xpi | x ∈ H} for all i ∈ N and all sections
H of G (or, what is the same, if G is a P1-group [Man]). Indeed, suppose
we have proved that fi−1(G) = fi−1(G). Take x ∈ fi(G). Then x = yp for

some y ∈ fi−1(G) = fi−1(G) = {zpi−1 | z ∈ G}. It follows that, for some

z ∈ G, we get y = zpi−1

so x = zpi ∈ fi(G). Thus, fi(G) ≤ fi(G), and
we are done, since the reverse inclusion is true. Note that P1-groups are not
necessary regular (all 2-groups of maximal class are irregular P1-groups).

Recall [B3] that a p-groupG is said to be pyramidal if |Ωi(G) : Ωi−1(G)| ≥
|Ωi+1(G) : Ωi(G)| and |fi−1(G) : fi(G)| ≥ |fi(G) : fi+1(G)| for all i =
1, 2, . . . .

In this note we prove the following

Main Theorem Let G be a p-group of order pm and exponent pe, where
m < p(e+ 1) if p > 2 and m ≤ 2(e+ 1) if p = 2. Then

(a) |fe−1(G)| < p2p if p > 2 and |fe−1(G)| ≤ 24 if p = 2.
(b) If fe−1(G) is irregular, then p = 2, e = 2, |G| = 26 and f1(G) =

C ×M , where |C| = 2 and M ∼= D8.

Part (a) of the Main Theorem is trivial for pyramidal p-groups.
Some known results are collected in the following

Lemma 2. Let G be a p-group.

(a) (Hall) If G is regular, it is pyramidal and |Ω1(G)| = |G/f1(G)|.
(b) Suppose that G is a noncyclic group of order p3 and P a Sylow p-

subgroup of Aut(G). Then P is nonabelian of order p3 (moreover, if
p > 2, then exp(P ) = p and if p = 2, then P is dihedral).

(c) (Hall) If G is of class < p, it is regular. Next, G is regular if p > 2
and G′ is cyclic.
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(d) (Burnside) Let R < Φ(G) be normal in G. If Z(R) is cyclic so is R.
(e) [B2, Theorem 4.1] If R ≤ Φ(G) is normal in G and R is generated by

two elements, it is metacyclic.
(f) (Hall) If G is regular, then exp(Ωi(G)) ≤ pi for all i ∈ N.
(g) [B1, Lemma 1.4] Let N E G. If N has no G-invariant abelian subgroup

of type (p, p), it is either cyclic or a 2-group of maximal class.
(h) [B2, §7, Remark 2] Suppose that a p-group G is neither absolutely

regular nor of maximal class. Then the number of subgroups of order
pp and exponent p in G is ≡ 1 (mod p).

Let us show that if G is noncyclic of order p3, p > 2, then exp(P ) = p,
where P ∈ Sylp(Aut(G)). Take µ ∈ P#. In that case, G has a µ-invariant
subgroup F of type (p, p) and F has a µ-invariant subgroup H / G of order
p. Given g ∈ G, we have gµ = gf for some f ∈ F , and let fµ = fh for some
h ∈ H . Then, by induction, we get gµn

= gfnh(n−1)n/2. Taking, in the last
formula, n = p, we get gµp

= gfph(p−1)p/2 = g in view of exp(F ) = exp(H) =
p and p > 2. Thus, µp = idG for all µ ∈ P# so exp(P ) = p. It is easy to check
that a Sylow p-subgroup of the automorphism group of a noncyclic abelian
p-group is nonabelian.

If, in the Main Theorem, p > 2, then fe−1(G) is of exponent p. Indeed,
fe−1(G) is generated by elements of order p and, by the Main Theorem,
regular so the assertion follows from Lemma 2(f).

Remark 3 ([J]). There exists a group G of order 26 with exp(G) = 4
and f1(G)(= Φ(G)) = D8 × C2. Indeed, let

G = 〈x, s | s2 = t, xs = y, ys = xu, us = uz,

u2 = z2 = t2 = s4 = [x, y] = [x, u] = [x, z] = [y, u] = [y, z] =

[u, z] = [u, t] = [z, t] = [z, x] = 1, x2 = u, y2 = uz〉.
Here |G| = 26, Φ(G) = 〈t, z, u, xy〉 = D8×C2, G

′ = 〈xy, u〉 and M = 〈x, y〉 =
C4 × C4 is a normal (even characteristic) abelian subgroup of G and the
involution t inverts M , Z(G) = 〈z〉 is of order 2 and exp(G) = 4. Let us
check these assertions. It follows from Φ(G) = f1(G)G′ that elements t =
s2 , u = x2, z = [u, s], xy = u[x, s] are contained in Φ(G). Since G = 〈x, y〉
and 〈t, xy〉 × 〈u〉 ∼= D8 × C2, we get Φ(G) ∼= D8 × C2. We compute

xt = (xs)s = ys = xu = xx2 = x3 = x−1,

yt = (ys)s = (xu)s = yuz = yy2 = y3 = y−1

so t inverts M = 〈x, y〉 ∼= C4 × C4. We have

[x, t] = x−1xt = x2 = u, [y, t] = y−1yt = y2.

[y, s] = y−1xu = x3y3 = xuyuz = xyz, x2y2 = z.

Since |G : G′| > 4 (Taussky’s Theorem), we get G′ = 〈xy, u〉 ∼= C4 × C2.
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Clearly, G = 〈s〉 · M is a semidirect product with kernel M so |G| =
22|M | = 26. Thus, M is a maximal abelian subgroup of G so Z(G) < M
and Z(G) ≤ Ω1(M). Since (x2)s = y2 6= x2 and (y2)s = (xu)2 = x2 6= y2, it
follows that Z(G) = 〈z〉, in view of Ω1(M) = {1, x2, y2, x2y2 = z}. If a ∈M#,
then h = (sa)2 = tasa ∈ 〈t,M〉 −M is an involution so (sa)4 = h2 = 1, and
we conclude that exp(G) = 4.

We find this group G as a subgroup of the symmetric group S8, if we set:

s = (1, 5)(2, 8, 4, 7)(3, 6), x = (5, 7, 6, 8)

and check that these permutations satisfy all above relations, and since

z = uus = (1, 3)(2, 4)(5, 6)(7, 8)

is a nontrivial permutation (where 〈z〉 = Z(G)), we have obtained a faithful
permutation representation of our group G and so G exists.

Our theorem follows easily from Lemmas 4–7.

Lemma 4. Suppose that G is a p-group of order ps+pe and exponent pe,
s ≥ 0, e > 1. If |fe−1(G)| > ps+p, then there is i ≤ e− 2 such that fi(G) is
absolutely regular; in particular, in that case we have |fe−1(G)| < pp.

Proof. We have

(1) ps+pe = |G| = (

e−2
∏

i=0

|fi(G) : fi+1(G)|)|fe−1(G)|

so that, by hypothesis,

(2)

e−2
∏

i=0

|fi(G) : fi+1(G)| < pp(e−1).

It follows from (2) that |fi(G) : fi+1(G)| < pp for some i ≤ e − 2, whence
fi(G) is absolutely regular so regular, and we have |Ω1(fi(G))| < pp. Then
fe−1(G) = Ω1(fe−1(G)) ≤ Ω1(fi(G)) (Lemma 2(a,f)), and the proof is com-
plete.

Corollary 5. Suppose that G is a p-group of order ps+pe and exponent
pe, s ≥ 0, e > 1. Then |fe−1(G)| ≤ ps+p.

Proof. Assume that |fe−1(G)| > ps+p; then |fe−1(G)| > ps+p.
In that case, fe−1(G) is absolutely regular (Lemma 4) so |fe−1(G)| =
|Ω1(fe−1(G))| < pp < ps+p (Lemma 2(a,f)), contrary to the assumption.

Lemma 6. Suppose that G is a group of order ps+pe and exponent pe, s ≥
0, e > 1. If |fe−1(G)| = ps+p, then |fi(G) : fi+1(G)| = pp for i = 1, . . . , e−2
so fe−1(G) = fe−1(G).
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Proof. Since the subgroup fe−1(G) of order ps+p > pp−1 is generated
by elements of order p, it is not absolutely regular so is fe−1(G) as it contains
fe−1(G). It follows from Lemma 4 that |fe−1(G)| ≤ ps+p = |fe−1(G)| so
that fe−1(G) = fe−1(G). In particular, |fi−1(G) : fi(G)| ≥ pp for i ≤ e− 1
since, for these i, fi−1(G) is not absolutely regular. Then, by (1),

ps+pe = (

e−2
∏

i=0

|fi(G) : fi+1(G)|)ps+p ≥ pp(e−1)ps+p = ps+pe

so |fi(G) : fi+1(G)| = pp for i = 0, 1, . . . , e− 2.

In the sequel we use freely the following known fact. If K < L ≤ Φ(G) are
normal subgroups of a p-group G and |L/K| = p2, then L/K ≤ Z(Φ(G/K)).

Lemma 7. Let N ≤ Φ(G) be a normal irregular subgroup of order pn in
a p-group G, where n < 2p if p > 2 and n ≤ 2p if p = 2. Then p = 2 and
N = C ×M , where |C| = 2 and M is nonabelian of order 8.

Proof. Assume that d(N) = 2. Then N , by Lemma 2(e), is metacyclic.
By hypothesis, N is irregular so p = 2 (Lemma 2(c)) and |N | ≤ 24. In that
case, by Lemma 2(d), the center ofN is noncyclic so |N | = 24 and exp(N) = 4.
It is known that there exists only one nonabelian metacyclic group of order
24 and exponent 4 and so N = 〈a, b | a4 = b4 = 1, ab = a−1〉. It is easy to
see that N contains exactly three involutions, namely, a2, b2 and a2b2, and
all of them lie in Z(N). Since N/〈a2b2〉 ∼= Q8 and N has no cyclic subgroup
of index 2, we conclude that a2b2 is the unique involution of N which is not
a square in N . It follows that L = 〈a2b2〉 is a characteristic subgroup of N so
L is normal in G. However, the nonabelian subgroup N/L with cyclic center
is normal in G/N and contained in Φ(G/L), contrary to Lemma 2(d). Thus,
d(N) > 2.

Assume that p > 2. Then, by the previous paragraph, |N ′| ≤ pn−3 ≤
p2p−4 so the class of N does not exceed 1 + 2p−4

2 = p− 1 (see the paragraph,
preceding the lemma). Then N is regular (Lemma 2(c)), a contradiction.

Thus, p = 2 so |N | = 24. In view of d(N) > 2, N is neither of maximal
class nor minimal nonabelian. In that case, N has a G-invariant abelian
subgroup R of type (2, 2) (Lemma 2(g)); then R ≤ Z(N) in view of R ≤ Φ(G).
Let M be a minimal nonabelian subgroup of N ; then |M | = 8. Let C < R
be such that C � M (C exists since Z(M) has order 2). Then |C| = 2 and
N = C ×M , completing the proof.

Now we are ready to prove our main result.

Proof of the Main Theorem. (a) follows from Corollary 5 since
|G| = ps+pe, where s ≤ p and s < p if p > 2.

(b) Since fe−1(G) is irregular, its order is at least p2p (Lemma 7). On
the other hand, |fe−1(G)| ≤ p2p (Lemma 4). It follows that |fe−1(G)| = p2p,



56 Y. BERKOVICH

and then, by Lemma 7, we must have p = 2. In that case, |fe−1(G)| = 24,
and we have N = C ×M , where |C| = 2 and M is nonabelian of order 8
(Lemma 7).

It remains to prove that e = 2 and M ∼= D8.
Assume that e > 2. By Lemma 6, we have |f1(G) : f2(G)| = pp = 22 so

d(f1(G)) = 2. It follows that Φ(G) = f1(G) is metacyclic (Lemma 2(e)), a
contradiction since it contains, by what has been proved already, a nonmeta-
cyclic subgroup fe−1(G). Thus, e = 2 so that exp(G) = 2e = 4.

Now assume that M 6∼= D8; then M ∼= Q8. Since the subgroup f1(G) =
f1(G) = C2×Q8 is not generated by involutions, it contains an element x of
order 4 which is a square in G, i.e., x = y2 for some y ∈ G. It follows that
exp(G) ≥ o(y) = 23 > 22 = 2e, a final contradiction. The proof is complete.
(In Remark 3 the group, satisfying part (b) of the theorem, is presented.)

Corollary 8. Suppose that G is a p-group of order pp(e+t+1) and expo-
nent pe, e > 1, t ≥ 0. If exp(fe−1(G)) > pt+1, then |fe−1(G)| = pp(t+2).

Proof. We proceed by induction on t. Set H = fe−1(G).
We have |G| = pp(e+t+1) = pp(t+1)+pe so, by Corollary 5, |H | ≤

pp(t+1)+p = pp(t+2). By hypothesis, exp(H) > pt+1 ≥ p so, since H is gen-
erated by elements of order p, it is irregular (Lemma 2(f)). Since H is not
of maximal class (Lemma 2(d)), it has a G-invariant subgroup R of order pp

and exponent p (Lemma 2(h)).

(i) Let t = 0. Since H is irregular, then, by Lemma 7, |H | ≥ p2p so, by
the previous paragraph (take there t = 0), we get |H | = p2p = pp(t+2).
Thus, the corollary is true for t = 0.

(ii) Now let t > 0. In that case, we have |G/R| = pp[e+(t−1)+1]. The sub-

group H/R = fe−1(G/R) has exponent ≥ exp(G)
exp(R) >

pt+1

p = p(t−1)+1.

Therefore, by induction, |H/R| = pp[(t−1)+2] = pp(t+1) so |H | =
|H/R||R| = pp(t+2).

Remark 9. Let N be a normal subgroup of order p3 in a p-group G. We
claim that if N ≤ Φ(Φ(G)), then N ≤ Z(Φ(Φ(G)). Set N1 = N ∩ Z(Φ(G))
and C = CΦ(G)(N); then C is normal in G and |N1| ≥ p2 since each G-

invariant subgroup of order p2 in Φ(G) is contained in the center of Φ(G)
(see the paragraph preceding Lemma 7); in particular, N is abelian. We have
to prove that Φ(Φ(G)) ≤ C. (i) Let N be cyclic; then Aut(N) is abelian
so Φ(G)/C is. If p = 2, then G/CG(N) is isomorphic to a subgroup of
Aut(N) ∼= E4. It follows that Φ(G) centralizes N ; in particular, N ≤ Z(Φ(G))
so N ≤ Z(Φ(Φ(G)). Now let p > 2. Set N = 〈x〉 and take y ∈ Φ(G); then
xy = xr for some r ∈ N. Since xp ∈ N1 ≤ Z(Φ(G)), we get xpr = (xp)y = xp

so xp(r−1) = 1. It follows that r = 1+kp2 for some nonnegative integer k since
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o(x) = p3. In that case, (1 + kp2)p ≡ 1 (mod o(x)) so xyp

= x(1+kp2)p

= x
and yp ∈ C, and we conclude that Φ(G)/C is abelian of exponent p. It follows
that Φ(Φ(G)) ≤ C, completing the case where N is cyclic. (ii) Now let N be
noncyclic. Then N1 must be noncyclic since N has a noncyclic G-invariant
subgroup of order p2, and the last one is contained in Z(Φ(G)). Then Φ(G)/C
is isomorphic to a subgroup of a nonabelian group of order p3 (Lemma 2(b)).
By Lemma 2(d), however, Φ(G)/C must be abelian. If exp(Φ(G)/C) = p,
then Φ(Φ(G)) ≤ C, and we are done. Now assume that exp(Φ(G)/C) > p.
Then p = 2 and Φ(G)/C is cyclic of order 4 (Lemma 2(b)). Let n ∈ N
and let g ∈ Φ(G) be such that g2 6∈ C. Then ng = nn1 for some n1 ∈ N1

since N/N1 ∈ Z(Φ(G)/N1). Next, ng2

= nn2
1 = n since N1 ≤ Z(Φ(G)) and

exp(N1) = 2. It follows that g2 centralizes N so g2 ∈ C, contrary to the
choice of g. Thus, exp(Φ(G)/C) ≤ 2 so Φ(Φ(G)) ≤ C, completing the proof.
It follows from what has just been proved that if M ≤ Φ(Φ(G)) is a normal
subgroup of order p4 in a p-group G, then M must be abelian.

It follows from Remark 9 that e = 2 in part (b) of the Main Theorem.
Indeed, otherwise fe−1(G), as a G-invariant subgroup of order 24 in Φ(Φ(G)),
must be abelian so regular.

Remark 10. Let e > 2 and let G be a p-group of order pp(e+2)−2

and exponent pe. We claim that then D = fe−1(G) is regular. Indeed,
we have |G| = p(2p−2)+pe. If |D| > p(2p−2)+p, then D is absolutely reg-
ular, by Lemma 4. It remains to show that if |D| ≤ p(2p−2)+p = p3p−2,
then D is also regular. Since e > 2, we get D ≤ Φ(Φ(G)). If p = 2,
then D is of order 24 so it is abelian, by Remark 9. Now let p > 2. Let
D > K2(D) = D′ > K3(D) > . . . be the lower central series of D. If
|D/K2(D)| < p4, then |D| < p4 so D is abelian, by Remark 9. Therefore,

one may assume that |K2(D)| ≤ |D|
p4 ≤ p3p−6. It follows from Remark 9 that

the length of the lower central series of D is at most 1 + 3p−6
3 = p − 1, so

D is regular, by Lemma 2(c). In particular, if G is a group of order pm,
m = p(e+ 2)− 2, and exponent pe > p and fe−1(G) is irregular, then e = 2.
This supplements part (b) of the theorem.

B. Wilkens [W] has showed that if p > 2, then, for given numbers e > 1
and n ∈ N, there exists a finite groupG of exponent pe such that fn(G) > {1},
thereby solving Question 12 in [B4].

Question 1. Let G be a p-group. Suppose that N ≤ Φ(G) is an
irregular G-invariant subgroup of order p2p if p > 2 and 25 if p = 2. Describe
the structure of N . (If p > 2 and N exists, then indices of its lower central
series are p3, p2, p2, . . . , p2, p.)

Question 2. Suppose that a p-group G is such that |fi−1(G) :
f1(fi−1(G))| = pp for some i ∈ N. Does there exist a constant c = c(p)
such that |fi−1(G) : fi(G)| ≤ pc?
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As Mann noticed, if, in Question 2, |fi−1(G) : f1(fi−1(G))| < pp, then
c < p. Indeed, one may assume, without loss of generality, that fi(G) = {1}
so exp(G) = pi. In the case under consideration, fi−1(G), which is generated
by elements of order p, is absolutely regular, by hypothesis. It follows that
|fi−1(G)| < pp, proving our claim.

Question 3. Let a p-group G = AwrB be a standard wreath product.
Find fn(G) in terms of A, B and n.

Question 4. Let G = UT(n, p) ∈ Sylp(GL(n, p)). (i) Find the maximal
a = a(n) such that fa(G) > {1}. (ii) Find the minimal b = b(n) such that
fb(G) is regular.

Question 5. Let e > 2. Does there exist c = c(e) such that
exp(fc(e)(G)) < pe for all groups G of exponent pe? (According to Wilkens
[W], c(2) does not exist if p > 2.)

Question 6. Given e > 1 and n ∈ N, does there exist a p-group G of
exponent pe such that Ω∗

e(G) = 〈x ∈ G | o(x) = pe〉 ≤ fn(G)?

Question 7. Let G be a p-group, p > 2, and let N ≤ Φ(G) be a G-
invariant subgroup of exponent p and order pn. Suppose that the class of N
equals 1 + [n−3

2 ] + ε, where ε = 0 if n is odd and ε = 1 if n is even. Describe
the structure of N .
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