SECOND-METACYCLIC FINITE 2-GROUPS Vladimir Ćepulić, Marijana Ivanković and Elizabeta Kovač Striko University of Zagreb, Croatia ABSTRACT. Second-metacyclic finite 2-groups are finite 2-groups with some non-metacyclic maximal subgroup and with all second-maximal subgroups being metacyclic. According to a known result there are only four non-metacyclic finite 2-groups with all maximal subgroups being metacyclic. The groups pointed in the title should contain some of these groups as a subgroup of index 2. There are seventeen second-maximal finite 2groups, four among them being of order 16, ten of order 32 and three of order 64. ## 1. Introduction A group G is called *metacyclic* if there exists a cyclic normal subgroup N of G with cyclic factorgroup G/N. A group with some non-metacyclic maximal subgroup and with all second-maximal subgroups being metacyclic we call a second-metacyclic group. The aim of this article is to determine all second-metacyclic finite 2-groups. The starting point is the following result of N. Blackburn. THEOREM 1.1. (see Janko [1, Th. 7.1]) Let G be a minimal non-metacyclic 2-group. Then G is one of the following groups: - (a) The elementary abelian group E_8 of order 8, - (b) The direct product $Q_8 \times Z_2$, - (c) The central product $Q_8 * Z_4$ of order 2^4 , (d) $G = \langle a, b, c \mid a^4 = b^4 = [a, b] = 1, \ c^2 = a^2b^2, \ a^c = a^{-1}, \ b^c = a^2b^3 \rangle$, ²⁰⁰⁰ Mathematics Subject Classification. 20D15. Key words and phrases. Finite group, p-group, metacyclic, second-maximal subgroup, second-metacyclic group. where G is special of order 2^5 with $\exp(G) = 4$, $\Omega_1(G) = G' = Z(G) = \Phi(G) = \langle a^2, b^2 \rangle \cong E_4$ and $M = \langle a \rangle \times \langle b \rangle \cong Z_4 \times Z_4$ is the unique abelian maximal subgroup of G. For brevity, we denote the second-metacyclic groups as MC(2)-groups. It is clear that their non-metacyclic maximal subgroups are minimal non-metacyclic groups and thus each MC(2)-group contains some group from Th. 1.1 as maximal subgroup. Especially, an MC(2)-group G is of order 16, 32 or 64. Our main result is stated in the following theorem. Theorem 1.2. Let G be a second-metacyclic group. Then G is one of the following 17 groups: - (a) four groups of order 16: $E_{16}, Z_4 \times E_4, D_8 \times Z_2, \text{ or the semidirect product } E_4 \cdot Z_4;$ - (b) ten groups of order 32: (b1) G contains a subgroup H isomorphic with $Q_8 \times Z_2$ so that $$\begin{split} H &= \langle a,b,c | a^4 = 1, b^2 = a^2, c^2 = 1, a^b = a^{-1}, a^c = a, b^c = b \rangle \\ &= \langle a,b \rangle \times \langle c \rangle : \\ G_1 &= \langle H,d \mid d^2 = 1, [a,d] = [b,d] = 1, c^d = a^2c \rangle \\ &= \langle a,b \rangle * \langle c,d \rangle \cong Q_8 * D_8, \\ G_2 &= \langle H,d \mid d^2 = 1, a^d = a, b^d = abc, c^d = a^2c \rangle, \\ G_3 &= \langle H,d \mid d^2 = a^2, a^d = a^{-1}, b^d = ab, c^d = c \rangle, \\ G_4 &= \langle H,d \mid d^2 = a^2, a^d = a^{-1}, b^d = bc, c^d = c \rangle, \\ G_5 &= \langle H,d \mid d^2 = c, a^d = a^{-1}, b^d = ab, c^d = c \rangle, \\ G_6 &= \langle H,d \mid d^2 = c, [a,d] = [b,d] = [c,d] = 1 \rangle \\ &= \langle a,b \rangle \times \langle d \rangle \cong Q_8 \times Z_4, \\ G_7 &= \langle H,d \mid d^2 = a, a^d = a, b^d = bc, c^d = a^2c \rangle; \end{split}$$ (b2) G contains a subgroup H isomorphic with $Q_8 * Z_4$ so that $$H = \langle a, b, c \mid a^4 = 1, b^2 = c^2 = a^2, a^b = a^{-1}, a^c = a, b^c = b \rangle$$ $$= \langle a, b \rangle * \langle c \rangle$$ and if L < G, then $L \ncong Q_8 \times Z_2$: $$G_8 = \langle H, d \mid d^2 = c, [a, d] = [b, d] = [c, d] = 1 \rangle,$$ $G_9 = \langle H, d \mid d^2 = 1, a^d = a^{-1}, b^d = ab, c^d = c \rangle,$ $G_{10} = \langle H, d \mid d^2 = ac, a^d = a, b^d = ab, c^d = c \rangle;$ (c) three groups of order 64: $$G > H = \langle a, b, c \mid a^4 = b^4 = 1, c^2 = a^2 b^2, a^b = a, a^c = a^{-1}, b^c = a^2 b^3 \rangle :$$ $$G_1 = \langle H, d \mid d^2 = a^2, a^d = a^3 b^2, b^d = b^{-1}, c^d = c \rangle,$$ $$G_2 = \langle H, d \mid d^2 = b^2, a^d = a^{-1}, b^d = a^2 b^3, c^d = ac \rangle,$$ $$G_3 = \langle H, d \mid d^2 = b, a^d = ab^2, b^d = b, c^d = ac \rangle.$$ We proceed by recalling some useful known results. LEMMA 1.3. Let E be an elementary abelian subgroup of a 2-group G, and $g \in G$, $g^2 \in E$. Then $|C_E(g)|^2 \ge |E|$. PROOF. Because of $g^2 \in E$ and E abelian, $x^{g^2} = x$ for any $x \in G$. Thus $(xx^g)^g = x^gx^{g^2} = x^gx = xx^g$, for all $x \in G$, and so $xx^g \in C_E(g)$. Now, for $y \in G$, we have $xx^g = yy^g$ if and only if $xy \in C_E(g)$, which is equivalent with $C_E(g)x = C_E(g)y$. Therefore $xx^g \neq yy^g$ if and only if $C_E(g)x \neq C_E(g)y$, and so $|C_E(g)| \geq |E| : C_E(g)|$. It follows $|C_E(g)|^2 \geq |E|$. Theorem 1.4. (see Janko [1, Proposition 1.9]) Let G be a p-group with a non-abelian subgroup P of order p^3 . If $C_G(P) \leq P$, then G is of maximal class. Especially, if p = 2, G is metacyclic. THEOREM 1.5. (see Janko [1, Proposition 1.14]) A 2-group G is metacyclic if and only if G and all its subgroups are generated by two elements. Theorem 1.6. Let G be a group of order 16. Then G is isomorphic to some of the following groups: - (α) abelian groups: $Z_{16}, Z_8 \times Z_2, Z_4 \times Z_4, Z_4 \times E_4, E_{16}$; - (β) non-abelian groups containing a cyclic maximal subgroup: $$G = \langle a, b \mid a^8 = b^2 = 1, a^b = a^{-1} \rangle \cong D_{16} - dihedral \ group,$$ $$G = \langle a, b \mid a^8 = b^4 = 1, a^b = a^{-1} \rangle \cong Q_{16} - quaternion group,$$ $$G = \langle a, b \mid a^8 = b^2 = 1, a^b = a^3 \rangle \cong SD_{16} - semidihedral\ group,$$ $$G = \langle a, b \mid a^8 = b^2 = 1, a^b = a^5 \rangle \cong M_{16}$$ - M-group, which is minimal non-abelian; - (γ) non-abelian groups with exp(G) = 4: - (γ_1) G containing a subgroup isomorphic with E_8 : $$G \cong D_8 \times Z_2$$, $$G \cong E_4 \cdot Z_4$$, the semidirect product of E_4 by Z_4 ; (γ_2) G being E_8 -free. Then G contains $H \cong Z_4 \times Z_2$. If $\Omega_1(G) \nleq H$, then $G \cong Q_8 * Z_4$. If $\Omega_1(G) \leqslant H$, then either $G \cong Q_8 \times Z_2$ or $G \cong Z_4 \cdot Z_4$, the semidirect product of Z_4 by Z_4 , which is minimal non-abelian. ### 2. Proof of the Theorem 1.2 ### (a) Groups of order 16. As group E_8 is the only (minimal) nonmetacyclic group of order 8, the second metacyclic groups of order 16 are those among them which contain E_8 . According to Th. 1.6, we have four such groups: $Z_4 \times E_4$, E_{16} , $D_8 \times Z_2$ and $E_4 \cdot Z_4$, the semidirect product of E_4 by Z_4 . # (b) Groups of order 32. According to Th. 1.1, such a group contains a subgroup isomorphic to $Q_8 \times Z_2$, or to $Q_8 * Z_4$, the central product of Q_8 by Z_4 . $\begin{array}{l} (b1) \ G \ {\rm contains} \ {\rm a} \ {\rm subgroup} \ H \ {\rm isomorphic} \ {\rm with} \ Q_8 \times Z_2 : \\ {\rm Let} \ H = \langle a,b,c \ | \ a^4 = 1,b^2 = a^2,c^2 = 1,a^b = a^{-1}, [a,c] = [b,c] = 1 \rangle = \langle a,b \rangle \times \langle c \rangle \cong Q_8 \times Z_2. \ {\rm Now}, \ |G:H| = 2, \ G = \langle H,d \rangle, \ d^2 \in H. \ {\rm Since} \ \Phi(H) = \mho_1(H) = \langle x^2 \ | \ x \in H \rangle = \langle a^2 \rangle \ {\rm and} \ \Omega_1(H) = \langle x \in H \ | \ x^2 = 1 \rangle = \langle a^2,c \rangle, \ {\rm thus} \ \langle a^2 \rangle, \langle a^2,c \rangle \lhd H \ {\rm and} \ {\rm so} \ \langle a^2 \rangle, \langle a^2,c \rangle \lhd G. \ {\rm The} \ {\rm maximal} \ {\rm subgroups} \ {\rm of} \ H \ {\rm are} \ {\rm the} \ {\rm following} \ {\rm ones:} \ \langle a,b \rangle \cong \langle a,bc \rangle \cong \langle ac,b \rangle \cong \langle ac,bc \rangle \cong Q_8, \ {\rm and} \ \langle a,c \rangle \cong \langle b,c \rangle \cong \langle ab,c \rangle \cong \langle ab,c \rangle \cong Z_4 \times Z_2. \end{array}$ We use the bar convention for subgroups and elements of factor groups. For $\overline{G} = G/\langle a^2 \rangle$, we have $\overline{H} = H/\langle a^2 \rangle = \langle \overline{a}, \overline{b}, \overline{c} \rangle \cong E_8$, and $\overline{G} = \langle \overline{H}, \overline{d} \rangle, \overline{d}^2 \in \overline{H}$. By Lemma 1.3, it is $|C_{\overline{H}}(\overline{d})|^2 \geq |H| = 8$, and so $|C_{\overline{H}}(\overline{d})| \geq 4$. On the other hand, $\langle a^2, c \rangle \lhd G$ implies $\langle \overline{c} \rangle \lhd \overline{G}$ and $\overline{c} \in C_{\overline{H}}(\overline{d})$. As $|C_{\overline{E}}(\overline{d}) \cap \langle \overline{a}, \overline{b} \rangle| \geq 2$, some of the elements \overline{a} , \overline{b} , or \overline{ab} is contained in $C_{\overline{E}}(\overline{d})$, and we can assume without loss that $\overline{a} \in C_{\overline{E}}(\overline{d})$. Now, $\overline{b}^{\overline{d}} \in \overline{H} \setminus \langle \overline{a}, \overline{c} \rangle = \langle \overline{a}, \overline{c} \rangle \cdot \overline{b}$, and so: $G = \langle H, d \mid d^2 \in H, a^d = az_1, b^d = a^\varepsilon c^\eta bz_2, c^d = cz_3 \rangle$, $\varepsilon, \eta \in \{0, 1\}, z_1, z_2, z_3 \in \{1, a^2\}$. There are 3 cases with respect to the element d. 1) $\exists d \in G \backslash H$, s.th. $d^2 = 1$. Since $\langle a^2,c,d\rangle \ncong E_8$ it must be $c^d \ne c$, and so $c^d = a^2c$. If $a^d = a^3$, then $(ac)^d = a^dc^d = a^3a^2c = ac$, and replacing a with ac, we have without loss $a^d = a$, $c^d = a^2c$. Now, $b^{d^2} = b^1 = b = (b^d)^d = (a^\varepsilon c^\eta b z_2)^d = a^\varepsilon a^{2\eta} c^\eta a^\varepsilon c^\eta b z_2 z_2 = a^{2(\varepsilon+\eta)}b$. Therefore $\varepsilon = \eta = 0$ or $\varepsilon = \eta = 1$. If $\varepsilon = \eta = 0$, then $b^d = bz_2$. For $z_2 = a^2$ it is $(bc)^d = ba^2a^2c = bc$, and replacing bc with b, we have without loss $b^d = b$. Thus $$G_1 = \langle H, d \mid d^2 = 1, [a, d] = [b, d] = 1, c^d = a^2 c \rangle = \langle a, b \rangle * \langle c, d \rangle \cong Q_8 * D_8.$$ If $\varepsilon = \eta = 1$, then $b^d = acbz_2 = az_2bc$. Now, replacing a with az_2 , we get without loss $b^d = abc$, and the group: $$G_2 = \langle H, d \mid d^2 = 1, a^d = a, b^d = abc, c^d = a^2c \rangle.$$ 2) $x \in G \backslash H \Rightarrow x^2 \neq 1$, $\exists d \in G \backslash H \text{ s.th. } d^4 = 1$. Now $d^2 \in H$ and d^2 is an involution, $d^2 = \{a^2, c, a^2c\}$. As a^2c and c are interchangeable, we may assume that $d^2 \in \{a^2, c\}$. If $d^2 = c$, then $c^d = (d^2)^d = d^2 = c$. If $d^2 = a^2$, then $(cd)^2 = cd^2c^d = ca^2cz_2 = a^2z_3 \neq 1$, by our assumption. Thus $z_3 = 1$, and so $c^d = c$ in both cases. 2a) Case $d^2 = a^2$. Now, $(ad)^2 = ad^2a^d = a^3az_1 = z_1 \neq 1$, by our assumption. Thus $z_1 = a^2$ and so $a^d = a^3$, $c^d = c$, $d^2 = a^2$. For $\varepsilon = 1$, $b^d = ac^{\eta}bz_2$. Replacing a with az_2 , we may assume $b^d = ac^{\eta}b$. If $\eta = 1$, $b^d = acb$, and replacing a with ac, we get $b^d = ab$, as in the case $\eta = 0$, and so $$G_3 = \langle H, d \mid d^2 = a^2, a^d = a^{-1}, b^d = ab, c^d = c \rangle.$$ For $\varepsilon=0$, it is $b^d=c^{\eta}bz_2$. If $z_2=a^2$, then $b^{ad}=(a^2b)^d=a^2c^{\eta}ba^2=c^{\eta}b$. Replacing d with ad, we get $b^d=c^{\eta}b$. For $\eta=0$, $b^d=b$ and $(bd)^2=bd^2b^d=ba^2b=1$, a contradiction. Thus, $\eta=1$, $b^d=bc$, and we have: $$G_4 = \langle H, d \mid d^2 = a^2, a^d = a^{-1}, b^d = bc, c^d = c \rangle.$$ 2b) Case $d^2 = c$. For $\varepsilon = 1$, $b^d = ac^{\eta}bz_2$, and replacing a with az_2 , $b^d = ac^{\eta}b$. Again if $\eta = 1$, replacing a with ac, we get $b^d = ab$. Now, $b^{d^2} = b = (b^d)^d = (ab)^d = a^db^d = az_1ab \Rightarrow z_1 = a^2$, and so: $$G_5 = \langle H, d \mid d^2 = c, a^d = a^{-1}, b^d = ab, c^d = c \rangle.$$ For $\varepsilon=0$, $b^d=c^{\eta}bz_2$. If $\eta=1$, then $b^d=cbz_2$, and $(bd)^2=bd^2b^d=bccbz_2=b^2z_2=a^2z_2\neq 1$, by our assumption. Thus $z_2=1$ and $(bd)^2=a^2$, which leads to the case 2a). Thus we may assume that $\eta=0$, and so $b^d=bz_2$, $a^d=az_1$, $c^d=c$. Thus $(a^d,b^d)\in\{(a,b),(a,b^3),(a^3,b),(a^3,b^3)\}$. As a,b and ab are interchangeable here, and for $a^d=a^3$, $b^d=b^3\Rightarrow (ab)^d=a^3b^3=ab$, there remain, without loss, only two cases: $a^d=a$, $b^d=b$ and $a^d=a$, $b^d=b^3$. In the latter case $(ad)^2=ad^2a^d=aca=a^2c$, $a^{ad}=a^d=a$, $b^{ad}=(b^3)^d=b^9=b$, $(a^2c)^{ad}=(a^2c)^d=a^2c$, and replacing c with a^2c , and d with ad, we get without loss, that $a^d=a$, $b^d=b$, $c^d=c$, and thus $$G_6 = \langle H, d \mid d^2 = c, [a, d] = [b, d] = [c, d] = 1 \rangle.$$ 3) $d \in G \backslash H \Rightarrow |d| = 8$. Now, $d^2 \in H$ and $|d^2| = 4$. As all elements of order 4 in H are interchangeable, we may assume that $d^2 = a$, and so $a^d = a$. Now, $d^2 = a$, $a^d = a$, $b^d = a^\varepsilon c^\eta b z_2$, $c^d = c z_3$. If $\varepsilon = 1$, then $(bd)^2 = bd^2b^d = baac^\eta b z_2 = c^\eta z_2$, an involution, against our assumption. Therefore $\varepsilon = 0$, and $b^d = c^\eta b z_2$. Now, $b^{d^2} = b^a = b^3 = (b^d)^d = (c^\eta b z_2)^d = c^\eta z_3^\eta c^\eta b z_2 z_2 = z_3^\eta b \Rightarrow z_3^\eta = b^2 = a^2 \Rightarrow z_3 = a^2$, $\eta = 1$. Thus $b^d = bcz_2$, $c^d = a^2c$, $a^d = a$. If $z_2 = a^2$, replacing c with a^2c , we get $b^d = bc$ and finally: $$G_7 = \langle H, d \mid d^2 = a, a^d = ab^d = bc, c^d = a^2c \rangle.$$ (b2) G contains a subgroup H isomorphic with $Q_8 * Z_4$ and if L < G, then $L \ncong Q_8 \times Z_2$. Let $H = \langle a, b, c \mid a^4 = 1, b^2 = c^2 = a^2, a^b = a^{-1}, [a, c] = [b, c] = 1 \rangle$. Again, $G = \langle H, d \rangle$, $d^2 \in H$. Now $\mho_1(H) = \Phi(H) = \langle a^2 \rangle$, $Z(H) = \langle c \rangle$. There are 8 elements of order 4: a, a^3 , b, a^2b , ab, a^3b , c, a^2c , and 7 involutions: a^2 , ac, a^3c , bc, a^2bc , abc, a^3bc . The maximal subgroups of H are: $\langle a,b\rangle\cong Q_8$, $\langle a,c\rangle\cong \langle b,c\rangle\cong \langle ab,c\rangle\cong Z_4\times Z_2$ and $\langle a,bc\rangle\cong \langle b,ac\rangle\cong \langle ab,ac\rangle\cong D_8$. Obviously, $\langle c\rangle$, $\langle a,b\rangle\lhd H$ and so $\langle c\rangle$, $\langle a,b\rangle\lhd G$. Again, for $\overline{G}=G/\langle a^2\rangle$, we have $\overline{H}\cong H/\langle a^2\rangle=\langle \overline{a},\overline{b},\overline{c}\rangle\cong E_8$, and $|C_{\overline{H}}(\overline{d})|\geq 4$ by Lemma 1.3. We may assume, without loss, that $C_{\overline{H}}(\overline{d}) \geq \langle \overline{a}, \overline{c} \rangle$, which implies $\overline{b}^{\overline{d}} \in \{\overline{b}, \overline{a}\overline{b}\}$. Returning to the originals, we get two cases: 1) $$G = \langle H, d \mid d^2 \in H, \ a^d = az_1, \ b^d = bz_2, \ c^d = cz_3 \rangle$$, 2) $$G = \langle H, d \mid d^2 \in H, \ a^d = az_1, \ b^d = abz_2, \ c^d = cz_3 \rangle$$, where $z_1, z_2, z_3 \in \langle a^2 \rangle$. Case 1) 1a) $$\exists d \in G \backslash H, |d| = 2.$$ $\langle a^2, ac, d \rangle$, $\langle a^2, bc, d \rangle$, $\langle a^2, abc, d \rangle \ncong E_8$, thus $(ac)^d = acz_1z_3 \neq ac$, $$(bc)^d = bcz_2z_3 \neq bc, (abc)^d = abcz_1z_2z_3 \neq abc \Rightarrow z_1z_3, z_2z_3, z_1z_2z_3 \neq 1 \Rightarrow z_1 = z_2 = 1, z_3 = a^2, \text{ and so}$$ $$G = \langle H, d \mid d^2 = 1, [a, d] = [b, d] = 1, c^d = a^2 c \rangle = \langle a, b \rangle * \langle c, d \rangle \cong Q_8 * D_8.$$ But now $G > \langle a, b, d \rangle = \langle a, b \rangle \times \langle d \rangle \cong Q_8 \times Z_2$, against the assumption. G is isomorphic to G_1 . 1b) $$x \in G \backslash H \Rightarrow x^2 \neq 1, \exists d \in G \backslash H, |d| = 4.$$ Now, d^2 is an involution on H. We may assume, without loss, that $d^2 = a^2$ or $d^2 = ac$. If $d^2 = a^2$, then $(ad)^2 = ad^2a^d = aa^2az_1 = z_1 \neq 1$, $(bd)^2 = z_2 \neq 1$, and $(abd)^2 = z_1z_2 \neq 1$, a contradiction. If $d^2 = ac$, then $b^{d^2} = b^{ac} = b^3 = (b^d)^d = (bz_2)^d = bz_2z_2 = b$, a contradiction again. 1c) $$x \in G \backslash H \Rightarrow |x| = 8, \ d \in G \backslash H, \ d^2 \in H.$$ We may assume, without loss, that $d^2 = a$, or $d^2 = c$. If $d^2 = a, b^{d^2} = (bz_2)^d = b = b^a = b^3$, a contradiction. Thus $d^2 = c$, $a^d = az_1$, $b^d = bz_2$, $c^d = c$. Now, $(a^d, b^d) \in \{(a, b), (a, b^3), (a^3, b), (a^3, b^3)\}$. In the latter case $(ab)^d = a^3b^3 = ab$, and since a, b and ab may be replaced with each other, we may assume that: $a^d = a$, $b^d = b$ or $a^d = a$, $b^d = b^3$. In the latter case $(ad)^2 = a^2c$, $b^{ad} = b$, and thus replacing c with a^2c and d with ad, the second case is reduced to the first, and we get $$G_8 = \langle H, d \mid d^2 = c, [a, d] = [b, d] = [c, d] = 1 \rangle = \langle a, b \rangle * \langle d \rangle \cong Q_8 * Z_8.$$ Case 2) Replacing a with az_2 , we may assume that $b^d = ab$. 2a) $$\exists d \in G \backslash H, |d| = 2.$$ $\langle a^2, ac, d \rangle \ncong E_8 \Rightarrow (ac)^d = acz_1z_3 \neq ac \Rightarrow z_3 \neq z_1$. If $a^d = a$, then $b^{d^2} = b = (b^d)^d = (ab)^d = aab = b^3$, a contradiction. Therefore $a^d = a^3$, $c^d = c$, and $$G_9 = \langle H, d \mid d^2 = 1, a^d = a^{-1}, b^d = ab, c^d = c \rangle.$$ 2b) $$x \in G \backslash H \Rightarrow x^2 \neq 1, \exists d \in G \backslash H, |d| = 4.$$ Now, without loss $d^2 = a^2$ or $d^2 = ac$ or $d^2 = bc$. If $d^2 = a^2$, then $(ad)^2 = z_1 \neq 1$ and $(cd)^2 = z_3 \neq 1$, thus $z_1 = z_3 = a^2$. So $G = \langle H, d \mid d^2 = a^2, a^d = a^3, b^d = ab, c^d = c^3 \rangle$. Here $(ac)^d = a^3c^3 = ac$, and $G > \langle a, d, ac \rangle = a^3c^3 = ac$ $\langle a,d\rangle \times \langle ac\rangle \cong Q_8 \times Z_2$, against the assumption. Actually, $G \cong G_2$. If $d^2=ac$, then $b^{d^2}=(ab)^d=az_1ab=b^{ac}=b^3$, and so $z_1=1$. Now, $(ac)^d=ac=a^dc^d=acz_3$, thus also $z_3=1$. Therefore: $$G_{10} = \langle H, d \mid d^2 = ac, a^d = a, b^d = ab, c^d = c \rangle.$$ If $d^2 = bc$, then $(bc)^d = bc = abcz_3 = az_3bc$, implying $az_3 = 1$, a contradiction. 2c) $x \in G \setminus H \Rightarrow |x| = 8, \ d \in G \setminus H, \ d^2 \in H$. We may assume, without loss, that $d^2 = a$ or $d^2 = b$ or $d^2 = c$. For $d^2 = a$, we get $(bd)^2 = bd^2b^d = baab = 1$, a contradiction. As $b^d = ab$, it cannot be $d^2 = b$. If $d^2 = c$, then $(bd)^2 = bcab = b^2ca^b = a^2ca^{-1} = ac$, and so |bd| = 4, a contradiction again. ## (c) Groups of order 64. According a previous remark and by Th. 1.1(d), such a group G contains a subgroup $$H = \langle a, b, c \mid a^4 = b^4 = 1, c^2 = a^2b^2, a^b = a, a^c = a^{-1}, b^c = a^2b^3 \rangle,$$ where $\Omega_1(H) = \langle x \in H \mid x^2 = 1 \rangle = Z(H) = \Phi(H) = \langle a^2, b^2 \rangle \equiv K \cong E_4$. One can easily check that there are only 4 square roots for a^2 (that is, such $x \in H$, that $x^2 = a^2$), and 12 square roots for b^2 and a^2b^2 each. Thus $A = \langle a^2 \rangle \lhd H$. The square roots of a^2 generate the subgroup $N = \langle a, b^2 \rangle \cong Z_4 \times Z_2$. The group $L = \langle a, b \rangle$ is the unique subgroup of H isomorphic to $Z_4 \times Z_4$. Thus, A, K, N, L are all characteristic in H and consequently normal in G, as $H \lhd G$. It can easily be seen that $$(*) \begin{cases} AutH = \Phi \sqcup \Psi, \text{ where} \\ \Phi = \{\varphi | \varphi : a \mapsto a\zeta_1, \ b \mapsto b\zeta_2, \ c \mapsto a^{\alpha}b^{2\beta}c\}, \\ \Psi = \{\psi | \psi : a \mapsto a\zeta_1, \ b \mapsto ab\zeta_2, \ c \mapsto a^{\alpha}b^{1+2\beta}c\}, \\ \text{and } \zeta_1, \zeta_2 \in K, \ \alpha \in \{0, 1, 2, 3\}, \ \beta \in \{0, 1\}. \end{cases}$$ As $A \triangleleft K \triangleleft N \triangleleft L \triangleleft H \triangleleft G$ is a normal chain G, we have: $$(**)$$ $G = \langle H, d \mid (H), d^2 \in H, a^d = az_1, b^d = a^{\varepsilon}bz_2, c^d = a^{\gamma}b^{\delta}z_3c \rangle,$ where $z_1, z_2, z_3 \in K$ and $\gamma, \delta, \varepsilon \in \{0, 1\}$ and (H) denotes the relations of H. We split our proof into several steps. (i) If T < G, |T| = 8, than T is abelian and $T \ncong E_8$. Let T be a nonabelian subgroup of order 8 in G, thus $T\cong D_8$ or $T\cong Q_8$ and |Z(T)|=2. If $C_G(T)\leq T$, then G is metacyclic by Th. 1.4, a contradiction. Hence $C_G(T)\nleq T$ and take in $C_G(T)$ a subgroup U of order 4 containing Z(T). Now $\langle T,U\rangle=T*U$, the central product of T and U, is isomorfic to some of the groups $D_8\times Z_2$, $Q_8\times Z_2$, or $Q_8*Z_4\cong D_8*Z_4$. Thus $\langle T,U\rangle$ would be a non-metacyclic subgroup of order 16 in G, a contradiction. Therefore every subgroup T of order 8 in G is abelian and, being metacyclic, it must be $T\ncong E_8$. (ii) If $g \in G \backslash H$, then $g^2 \neq 1$. If $g^2 = 1$, then $T = \langle K, g \rangle = \langle a^2, b^2, g \rangle$ is abelian, by (i), and isomorphic to E_8 , a contradiction. (iii) $$G/L \cong E_4$$. Else $G/L \cong Z_4$ and $G = \langle L, d \mid d^2 \in H \setminus L = Lc \rangle$. By (i) we see that we can assume without loss that $d^2 = c$, and so $d^4 = c^2 = a^2b^2$. Now $a^{d^2} = a^c = a^3 = (a^d)^d = (az_1)^d = az_1z_1^d$ implying $z_1^d = a^2z_1$ and thus $z_1 \in \{b^2, a^2b^2\}$ and $(b^2)^d = a^2b^2 = c^2 = (c^2)^d$, and so $b^2 = c^2$, a contradiction. $\begin{array}{l} (iv) \text{ If there exists some } d \in G \backslash H, \text{ s.th. } |d| = 4, \text{ then either} \\ G \cong G_1 = \langle a,b,c,d \mid (H), \ d^2 = a^2, \ a^d = a^3b^2, \ b^d = b^3, \ c^d = c \rangle, \text{ or } \\ G \cong G_2 = \langle a,b,c,d \mid (H), \ d^2 = b^2, \ a^d = a^3, \ b^d = a^2b^3, \ c^d = ac \rangle. \text{ As } d^2 \in L \\ \text{and } d^2 \text{ is an involution, we have } d^2 \in \Omega_1(L)^\sharp = a^2, b^2, a^2b^2 = K^\sharp. \text{ By } (i), \\ \langle a^2,b^2,d \rangle \text{ is abelian, and so } b^d = bz_2. \text{ Now, } (c^2)^d = c^2 = (c^d)^2 = (a^\gamma b^\delta z_3c)^2 = a^\gamma b^\delta z_3c^2a^{3\gamma}a^{2\delta}b^{3\delta}z_3 = a^{2\delta}c^2, \text{ implying } d = 0 \text{ and } c^d = a^\gamma z_3c. \text{ From } c^{ad} = (a^2c)^d = a^2c^d, \ c^{bd} = (a^2b^2c)^d = a^2b^2c^d, \text{ and } c^{abd}(a^2c)^{bd} = (a^2a^2b^2c)^d = b^2c^d, \\ \text{and, by } (ii), \ (ad)^2 = ad^2a^d = a^2d^2z_1 \neq 1, \ (bd)^2 = b^2d^2z_2 \neq 1 \text{ and } (abd)^2 = a^2b^2d^2z_1z_2 \neq 1, \text{ we conclude that} \end{array}$ $$(2.1) z_1 \neq a^2 d^2, \ z_2 \neq b^2 d^2, \ z_1 z_2 \neq a^2 b^2 d^2,$$ and replacing, if needed, d by ad or bd or abd, we can assume, without loss, that $c^d = a^{\gamma}c$, and so: $$(2.2) c^d = c or c^d = ac.$$ Case 1) $c^d = c$. Now $(cd)^2 = c^2d^2 = a^2b^2d^2 \neq 1$, by (ii), and so $d^2 \neq a^2b^2$. Therefore $d^2 \in \{a^2, b^2\}$. If $d^2 = b^2$, then $(cd)^2 = c^2d^2 = a^2$. Thus, replacing d by cd, we may assume without loss that $d^2 = a^2$. Besides of (1), we also have now the following conditions on z_1, z_2 : $(acd)^2 = acd^2az_1c = ac^2d^2a^cz_1 = c^2d^2z_1 \neq 1$, and similarly $(bcd)^2 = b^2d^2z_2 \neq 1$, $(abcd)^2 = abcd^2az_1bz_2c = b^2d^2z_1z_2 \neq 1$, that is: (2.3) $$z_1 \neq c^2 d^2, \ z_2 \neq b^2 d^2, \ z_1 z_2 \neq b^2 d^2.$$ From (2.1) and (2.3) we get: $z_1 \neq 1, b^2, \ z_2 \neq a^2b^2, \ z_1z_2 \neq b^2, a^2b^2$. If $z_1 = a^2$, then $a^d = a^3$, and $\langle a, d \mid a^4 = 1, \ d^2 = a^2, \ a^d = a^3 \rangle \cong Q_8$, a contradiction, by (i). Thus $z_1 = a^2b^2, \ z_2 \neq a^2b^2, \ a^2b^2z_2 \neq b^2, a^2b^2$, and so $z_2 = b^2$, giving: $G_1 = \langle a, b, c, d \mid (H), d^2 = a^2, \ a^d = a^3b^2, \ b^d = b^3, \ c^d = c \rangle$. Case 2) $c^d = ac$. We already know that $a^d = az_1$, $b^d = bz_2$ and $d^2 \in \{a^2, b^2, a^2b^2\}$. Now $c = c^{d^2} = (c^d)^d = (ac)^d = az_1ac = a^2z_1c$, so $z_1 = a^2$ and $a^d = a^3$. If $d^2 = a^2$, then $\langle a, d \mid a^4 = 1, d^2 = a^2, a^d = a^3 \rangle \cong Q_8$, against (i). Therefore $d^2 \in \{b^2, a^2b^2\}$. Since $(bd)^2 = bd^2b^d = b^2z_2d^2$, we have $z_2 \neq b_2d_2$. Case 2.1) $d^2 = b^2$. From $z_2 \neq b^2 d^2$ it follows $z_2 \in \{a^2, b^2, a^2 b^2\}$. If $z_2 = a^2$, then $b^d = a^2 b$ and $\langle a, bd \mid a^4 = 1, (bd)^2 = a^2, a^{bd} = a^3 \rangle \cong Q_8$, against (i). Similarly, for $z_2 = b^2$ we have $\langle b, d \mid b^4 = 1, d^2 = b^2, b^d = b^3 \rangle \cong Q_8$ again. It remains as the only possibility $z_2 = a^2 b^2$, and we obtain the group $$G_2 = \langle a, b, c, d \mid (H), d^2 = b^2, \ a^d = a^3, \ b^d = a^2b^3, \ c^d = ac \rangle.$$ Case 2.2) $$d^2 = a^2 b^2$$. Because of $z_2 \neq b^2d^2 = a^2$, we have now $z_2 \in \{1, b^2, a^2b^2\}$, that is $b^d \in \{b, b^3, a^2b^3\}$. If $b^d = b$, then $(bd)^2 = bd^2b^d = ba^2b^2b = a^2$, and $\langle a, bd \rangle \cong Q_8$, against (i). If $b^d = b^3$, then $(ab)^d = (ab)^3$ and $\langle ab, d \rangle \cong Q_8$, again the same contradiction. Therefore $b^d = a^2b^3$. Replacing a by $a' = a^3b^2$, b by b' = ab, c by c' = bc, we get: $$d^{2} = b'^{2}, \ a'^{d} = (a^{3}b^{2})^{d} = ab^{2} = a'^{3},$$ $$b'^{d} = (ab)^{d} = a^{3}a^{2}b^{3} = ab^{3} = (a^{3}b^{2})^{2} \cdot (ab)^{3} = a'^{2}b'^{3},$$ $$c'^{d} = (bc)^{d} = a^{2}b^{3}ac = a^{3}b^{2}bc = a' \cdot c',$$ that is the relations of G_2 . Thus, this group is isomorphic to G_2 . (v) If all elements in $G\backslash H$ are of order 8, then $$G = G_3 = \langle a, b, c, d \mid (H), d^2 = b, \ a^d = ab^2, \ b^d = b, \ c^d = ac \rangle.$$ As $G/L \cong E_4$, $G = \langle H, d \rangle$, |d| = 8, it follows that d^2 is an element of order 4 in L. According to (*), all such elements are replaceable by a or b, and so we may assume without loss that $$G = \langle H, d \mid (H), d^2 \in \{a, b\}, \ a^d = az_1, \ b^d = a^{\varepsilon}bz_2, \ c^d = a^{\gamma}b^{\delta}z_3c \rangle,$$ where $z_1, z_2, z_3 \in K$, $\gamma, \delta, \varepsilon \in \{0, 1\}$. Now $(c^2)^d = (c^d)^2 = (a^{\gamma}b^{\delta}z_3c)^2 = a^{\gamma}b^{\delta}z_3c^2a^{3\gamma}a^{2\delta}b^{3\delta}z_3 = a^{2\delta}c^2$. Case 1) $$d^2 = a$$. Now $a^d=a$. If $\varepsilon=0$ then $z^d=z$ for $z\in K$, and from $(c^2)^d=c^2=a^{2\delta}c^2$ it follows $\delta=0$, $c^d=a^{\gamma}z_3c$. Similarly, from $c^{d^2}=c^a=a^2c=(a^{\gamma}z_3c)^d=a^{\gamma}z_3a^{\gamma}z_3c=a^{2\gamma}c$, we get $\gamma=1$ and $c^d=az_3c$. But now $(cd)^2=cd^2c^d=a^2c^2z_3\in K$, and |cd|=4, against our assumption. If $\varepsilon=1$, then $b^d=abz_2$, $(b^2)^d=c^2$ and $(c^2)^d=b^2=a^{2\delta}c^2$. Thus $\delta=1$, and $c^d=a^{\gamma}bz_3c$. Therefore, $c^{d^2}=a^2c=(a^{\gamma}bz_3c)^d=a^{\gamma}\cdot abz_2z_3^da^{\gamma}bz_3c=a\cdot a^{2\gamma}bb^2z_2z_3z_3^dc=azc$, for some $z\in K$. This implies z=a, a contradiction because a is not in K. Case 2) $$d^2 = b$$. Now $b^d = b$, and $z^d = z$ for $z \in K$. From $(c^2)^d = c^2 = a^{2\delta}c^2$ it follows $\delta = 0$, $c^d = a^{\gamma}z_3c$. Since $[b,c] = b^{-1}b^c = a^2b^2 = [c,b]$, we have $c^{d^2} = c^b = a^2b^2c = (a^{\gamma}z_3c)^d = a^{\gamma}z_1^{\gamma}z_3a^{\gamma}z_3c$, implying $a^{2\gamma}z_1^{\gamma} = a^2b^2$. Thus $\gamma = 1, z_1 = b^2$ and so $a^d = ab^2$, $c^d = az_3c$. Replacing a by az_3 , we get the group G_3 as stated above. Remark 2.1. It is of some interest to check the maximal subgroups of second-metacyclic groups. We present their distribution in each of these groups in the following table: $G_1: 5 \cdot (Q_8 \times Z_2), 10 \cdot (Q_8 * Z_4);$ $G_2: Q_8 \times Z_2, Q_8 * Z_4, 2 \cdot SD_{16}, 2 \cdot Q_{16}, M_{16};$ $G_3: 2 \cdot (Q_8 \times Z_2), Z_8 \times Z_2, 4 \cdot Q_{16};$ $G_4: 2 \cdot (Q_8 \times Z_2), Z_4 \times Z_4, 4 \cdot (Z_4 \cdot Z_4);$ $G_5: Q_8 \times Z_2, Z_4 \cdot Z_4, Z_8 \times Z_2$ $G_6: Q_8 \times Z_2, 3 \cdot (Z_4 \times Z_4), 3 \cdot (Z_4 \cdot Z_4);$ $G_7: Q_8 \times Z_2, 2 \cdot M_{16};$ $G_8: Q_8 * Z_4, 3 \cdot (Z_8 \times Z_2), 3 \cdot M_{16};$ $G_9: 2 \cdot (Q_8 * Z_4), Z_8 \times Z_2, 2 \cdot SD_{16}, Q_{16}, D_{16};$ $G_{10}: Q_8 * Z_4, Z_4 \times Z_4, M_{16}.$ # (ii) |G| = 64: Denoting $H_r = \langle a, b \mid a^8 = b^4 = 1, a^b = a^r \rangle$, we have: $G_1: 15 \cdot H;$ $G_2: 2 \cdot H, 2 \cdot H_3, 2 \cdot H_7, Z_8 \times Z_4;$ $G_3: H, 2 \cdot H_5.$ The factor groups $\overline{G}_i = G_i/\langle a^2 \rangle$, i = 1, 2, 3 are isomorphic to the groups G_1 , G_4 and G_7 of order 32 from (i), respectively. ### ACKNOWLEDGEMENTS. The authors wish to express their gratitude to Professor Zvonimir Janko for suggesting the investigation of the above problem. ### References Z. Janko, Finite 2-groups with exactly four cyclic subgroups of order 2ⁿ, J. reine angew. Math. 566 (2004), 135–181. V. Ćepulić Department of Mathematics Faculty of Electrical Engineering and Computing University of Zagreb Unska 3, HR-10000 Zagreb Croatia $E ext{-}mail: \ \mathtt{vladimir.cepulic@fer.hr}$ M. Ivanković Department of Mathematics Faculty of Electrical Engineering and Computing University of Zagreb Unska 3, HR-10000 Zagreb Croatia $E ext{-}mail:$ marijana.ivankovic@fer.hr E. Kovač Striko Department of Mathematics Faculty of Transport and Traffic Engineering University of Zagreb Vukelićeva 4, HR-10000 Zagreb Croatia Received: 10.10.2003. Revised: 30.6.2004.