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ABSTRACT. Second-metacyclic finite 2-groups are finite 2-groups with
some non-metacyclic maximal subgroup and with all second-maximal sub-
groups being metacyclic. According to a known result there are only four
non-metacyclic finite 2-groups with all maximal subgroups being meta-
cyclic. The groups pointed in the title should contain some of these groups
as a subgroup of index 2. There are seventeen second-maximal finite 2-
groups, four among them being of order 16, ten of order 32 and three of
order 64.

1. INTRODUCTION

A group G is called metacyclic if there exists a cyclic normal subgroup
N of G with cyclic factorgroup G/N. A group with some non-metacyclic
maximal subgroup and with all second-maximal subgroups being metacyclic
we call a second-metacyclic group. The aim of this article is to determine all
second-metacyclic finite 2—groups.

The starting point is the following result of N. Blackburn.

THEOREM 1.1. (see Janko [1, Th. 7.1]) Let G be a minimal non-metacyclic
2-group. Then G is one of the following groups:

(a) The elementary abelian group Es of order 8,

(b) The direct product Qg X Za,

(c) The central product Qg * Z4 of order 24,

(d) G ={a,b,c|a*=0b*=la,b] =1, ¢ =a%h?, a°=a"!, b°=a?b?),
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where G is special of order 25 with exp(G) = 4, % (G) = G' = Z(G) =
O(G) = (a?,b?) = Ey and M = (a) x (b) = Z; x Z4 is the unique abelian
mazimal subgroup of G.

For brevity, we denote the second-metacyclic groups as M C(2)-groups.
It is clear that their non-metacyclic maximal subgroups are minimal non-
metacyclic groups and thus each MC(2)-group contains some group from
Th. 1.1 as maximal subgroup. Especially, an M C(2)-group G is of order 16,
32 or 64. Our main result is stated in the following theorem.

THEOREM 1.2. Let G be a second-metacyclic group. Then G is one of the
following 17 groups:

(a) four groups of order 16:
Fig, Z4y x By, Dg X Zs, or the semidirect product FEy - Zy;
(b) ten groups of order 32:
(bl) G contains a subgroup H isomorphic with Qg X Zs so that

=(a,b,cla* =1,0>=a*,? =1,a* = a1, a° = a,b° = b)

= (a,b) x {¢) :

=(H,d|d*=1,[a,d =[bd =1,c" = a’c)

= (a,b) x {¢,d) = Qg * Ds,

=(H,d | d*=1,a = a,b? = abe, ¢! = a®c),

=(H,d|d*=d%*a'=a"1 b =ab,c? = ¢),
G4—<Hd|d2—a al=at, b =be,ct = ¢),

(Hd|d2*cad*a1bd—abc—c>

=(H,d | d* = ¢,[a,d] = [b,d] = [c,d] = 1)

= (a,b) x (d) = Qs x Zu,

=(H,d | d* = a,a® = a,b? = be, ¢ = a’c);

(b2) G contains a subgroup H isomorphic with Qg * Z4 so that
H={(a,bc|a*=1,0>=c*=d%a* =01 a° =a,b° =b)
= {a,b) * (¢)
and if L < G, then L 22 Qg X Za:
Gs = (H,d | d® = ¢,[a,d] = [b,d] = [c,d] = 1),
Go=(H,d|d>=1,a=a"" bl =ab,c? = c),
Gio = (H,d | d*> = ac,a = a,b? = ab, ¢? = ¢);
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(c) three groups of order 64:

G>H=/{abc|la" =b"=1,"=a*?a" =a,a° = a1, b° = a?®) :
Gi=(H,d|d*=d%a’=0a’? b =b"1,c =),
Gy=(H,d|d>=0% a’=a"", b =0a%? ¢ =ac),
Gs=(H,d|d>=ba’=ab’,b? =b,c? = ac).

We proceed by recalling some useful known results.

LEMMA 1.3. Let E be an elementary abelian subgroup of a 2-group G,
and g € G, g> € E. Then |Cg(g)|*> > |E|.

PROOF. Because of g2 € E and E abelian, 29" =z for any x € G. Thus
(xx9)9 = 2939 = 39z = 229, for all z € G, and so zz9 € Ck(g). Now, for
y € G, we have za9 = yy9 if and only if 2y € Cg(g), which is equivalent with
Cr(g9)x = Cg(g)y. Therefore xa9 # yy? if and only if Cr(g)x # Cr(g)y, and
so |Cr(g9)| > |E : Cg(g)|. It follows |Cr(g)|* > |E|. O

THEOREM 1.4. (see Janko [1, Proposition 1.9]) Let G be a p-group with
a non-abelian subgroup P of order p3. If Cq(P) < P, then G is of mazimal
class. Especially, if p =2, G is metacyclic.

THEOREM 1.5. (see Janko [1, Proposition 1.14]) A 2-group G is meta-
cyclic if and only if G and all its subgroups are generated by two elements.

THEOREM 1.6. Let G be a group of order 16. Then G is isomorphic to
some of the following groups:

(o) abelian groups: Zig, Zg X Za, Zy X Zy, Zsy X Ey4, E16;

(8) mon-abelian groups containing a cyclic mazimal subgroup:
G=1(a,b|a®=b*>=1,a" =a"1) = Dis — dihedral group,
G={ab|a®=b*=1,a> =01 = Qs — quaternion group,
G={a,b|a®=0>=1,a® = a®) = SDis — semidihedral group,
G=(a,b|a®=0>=1,a"=0a") = My

— M-group, which is minimal non-abelian;
(v) non-abelian groups with exp(G) =4 :
(71) G containing a subgroup isomorphic with Ey :
G = Dg X Zs,
G Ey- Zy, the semidirect product of E4 by Zy;
(v2) G being Es—free. Then G contains H = Zy x Zy. If 1 (G) £ H,
then G = Qs x Zy. If Q1(G) < H, then either G = Qs X Zs

or G &£ Zy - Zy, the semidirect product of Z4 by Z,, which is
mainimal non-abelian.
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2. PROOF OF THE THEOREM 1.2

(a) Groups of order 16.

As group Es is the only (minimal) nonmetacyclic group of order 8, the sec-
ond metacyclic groups of order 16 are those among them which contain FEg.
According to Th. 1.6, we have four such groups: Z4 x E4, E1g, Dg X Z5 and
E, - Z4, the semidirect product of E4 by Z4.

(b) Groups of order 32.

According to Th. 1.1, such a group contains a subgroup isomorphic to Qg x Zs,
or to Qg * Zy4, the central product of Qg by Z4.

(b1) G contains a subgroup H isomorphic with Qg X Zs :

Let H = {(a,b,c | a* = 1,b%> = a?,c* = 1,a® = a7, [a,c] = [b,¢] = 1) =
{a,b) x (c) = Qs x Z3. Now, |G : H| =2, G = (H,d), d> € H. Since
O(H) =0U1(H) = (2? |z € H) = (a®) and Q(H) = (x € H | 22 = 1) =
(a?, ¢), thus (a?), (a?,¢) < H and so (a?), (a?,c) < G. The maximal subgroups
of H are the following ones: (a,b) = (a,bc) = (ac,b) = (ac,bc) = Qs, and
(a,c) = (b,c) = {(ab,c) = Z4y X Zs.

We use the bar convention for subgroups and elements of factor groups.
For G = G/(a?), we have H = H/{a?) = (@,b,¢) = Eg, and G = (F,E),f €
H. By Lemma 1.3, it is |C(d)|* > |H| = 8, and so |C7(d)| > 4. On the other
hand, {a?,c) <G implies (¢) <G and ¢ € Cx(d). As |Cx(d)N(@,b)| > 2, some
of the elements @, b, or @b is contained in C%(d), and we can assume without
loss that @ € Cx(d). Now, e H\(a,c) = (@,¢) - b, and so: G = (H,d | d*> €
H, a% = azy, b? = a®c"bzy, ¢ = cz3), e,m € {0,1}, 21,290,235 € {1,a?}.

There are 3 cases with respect to the element d.

1) 3d € G\H, s.th. d* = 1.

Since (a?,c,d) 2 Es it must be ¢? # ¢, and so ¢? = a?c. If a? = a3, then
(ac)? = a’c? = a®a’c = ac, and replacing a with ac, we have without loss a? =
a, ¢ = a2c. Now, b¥ = bl = b = (b)) = (a°c"bzy)? = a®a?1cMaf Mbzyzy =
a?EtMp, Thereforec =n=0o0re=n=1. If ¢ = n = 0, then b? = bz,. For
2y = a? it is (be)? = ba%a®c = be, and replacing be with b, we have without
loss b = b. Thus

Gi1=(H,d|d*=1,[a,d = [b,d =1,c" = a*c) = (a,b) * (¢,d) = Qg * Dg.

If e = n = 1, then b® = acbza = azsbc. Now, replacing a with azo, we get
without loss b% = abe, and the group:
Gy = (H,d | d*>=1,a% = a,b? = abe, ¢? = a®c).
2)z € G\H = 22 # 1, 3d € G\H s.th. d* = 1.

Now d? € H and d? is an involution, d?> = {a?,c,a%c}. As a?c and c are
interchangeable, we may assume that d? € {a?,c}. If d> = ¢, then ¢? =
()4 = d? = c. If d*> = a?, then (cd)? = cd?c? = ca’czy = a’z3 # 1, by our
assumption. Thus z3 = 1, and so ¢? = ¢ in both cases.
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2a) Case d? = a®.
Now, (ad)? = ad?a? = aaz; = 2, # 1, by our assumption. Thus z; = a? and
soa® =a?, ¢ =¢, d> =a% Fore =1, b% = ac"bzy. Replacing a with azs,
we may assume b? = ac’b. If n = 1, b% = acbh, and replacing a with ac, we
get b% = ab, as in the case n = 0, and so

Gs=(H,d|d*=d*a=a"10%=ab,c? =¢).
For ¢ = 0, it is b% = c"bzy. If 29 = a?, then b%? = (a?b)? = a%c"ba® = c"b.

Replacing d with ad, we get b? = ¢"b. For n =0, b? = b and (bd)? = bd?b? =
ba’b = 1, a contradiction. Thus, n = 1, b? = be, and we have:

Gy=(H,d|d*=d*a%=a"1 b =bc,c? = c).

2b) Case d? = c.
For € = 1, b = acbzy, and replacing a with aze, b% = acb. Again if n = 1,
replacing a with ac, we get b% = ab. Now, b?" = b = (bN)? = (ab)? = a%? =
aziab = 2z = a?, and so:

Gs = (H,d | d* =c,a’ = a1, b = ab, c? = ¢).

For ¢ =0, b® = ¢"bzy. If n = 1, then b% = cbzo, and (bd)? = bd2b® = bechzy =
b2z9 = a%z9 # 1, by our assumption. Thus 2o = 1 and (bd)? = a2, which
leads to the case 2a). Thus we may assume that 7 = 0, and so b? = bzy, a? =
azi, ¢ = c. Thus (a?,b%) € {(a,b), (a,b?), (a3,b), (a®,b®)}. As a,b and ab are
interchangeable here, and for a? = a3, b? = b® = (ab)? = a®b> = ab, there
remain, without loss, only two cases: a® = a, b = b and a = a, b% = b°.

In the latter case (ad)? = ad*a? = aca = a’c, a®¢ = ad =a, b“d (b%)4 =

b =b, (a%c)® = (a%c)? = a®c, and replacing ¢ with a?c, and d with ad, we
get without loss, that a? = a, b% = b, ¢? = ¢, and thus

Ge = (H,d | d* =c,[a,d] = [b,d] = [¢,d] = 1).

3)de G\H = |d| =8.
Now, d? € H and |d?| = 4. As all elements of order 4 in H are interchangeable,
we may assume that d> = a, and so a? = a. Now, d?> = a, a® = a, b? =
ascbzg, ¢ = czz. If ¢ = 1, then (bd)? = bd?*b? = baacbzy = c"z9, an
involution, against our assumption. Therefore ¢ = 0, and b® = ¢"bzy. Now,
b = b7 = b3 = (b)) = (Mbzp)? = M2lcMbaozy = 20b = 2] = b2 = a® =
z3 = a?®, n = 1. Thus b? = bczy, ¢? = a’c, a® = a. If 25 = a?, replacing ¢
with a?c, we get b? = bc and finally:

Gr = (H,d | d® = a,a® = ab? = be, ¢ = a?c).

(b2) G contains a subgroup H isomorphic with Qg * Z4 and if L < G,
then L 9_3 Qg X Z2.
Let H = {a,b,c | a* = 1,0 = ¢ = a®,a® = a7}
G = (H,d), d*> € H. Now U1(H) = (H)z(
8 elements of order 4: a, a®, b, a?b, ab, a®b,

yJa,c] = [b,¢] = 1). Again,
%), Z(H) = {c). There are

, a?c, and 7 involutions:
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a?, ac, adc, be, a’be, abe, a*be. The maximal subgroups of H are: (a,b) =
Qs, {a,c) = (b,c) = {ab,c) = Zy x Z3 and (a,bc) = (b,ac) = (ab,ac) = Ds.
Obviously, (c), (a,b) < H and so {c), {a,b) < G. Again, for G = G/{a?), we
have H = H/(a*) = (a,b,¢) = Es, and |Cx(d)| > 4 by Lemma 1.3. We

may assume, without loss, that Ci(d) > (@,?), which implies ¥ e {b,ab}.
Returning to the originals, we get two cases:
1)G=(H,d|d*ecH, a =az, b% = bzo, c? = cz3),
2) G =(H,d|d> € H, a = az, b® = abzy, c? = cz3),
where 21, 20, 23 € (a?).
Case 1) la) 3d € G\H, |d| =2.
(a?,ac,d), (a% bc,d), (a?, abc,d) 2 Fg, thus (ac)? = aczi23 # ac,
(be)? = bezozs # be, (abe)? = abczizazg # abe = 2123, 2223, 212223 # 1 =
21 =29 =1, 23 = a?, and so

G=(H,d|d*=1,[a,d =[bd =1,c" = a*c) = (a,b) * (c,d) = Qg * Ds.

But now G > (a,b,d) = (a,b) x {d) 2 Qg X Zs, against the assumption. G is
isomorphic to G;.

1b) x € G\H = 2> # 1, 3d € G\H, |d| = 4.
Now, d? is an involution on H. We may assume, without loss, that d*> = a2 or
d? = ac. If d*> = a2, then (ad)? = ad*a? = aa’az; = 21 # 1, (bd)? = 23 # 1,
and (abd)? = z129 # 1, a contradiction. If d?> = ac, then b = poe = b3 =
(b = (bz2)? = bzazy = b, a contradiction again.

lc)xr€e G\H = |z| =8, d€ G\H, d* € H.
We may assume, without loss, that d> = a, or d®> = ¢. If d*> = q, b =
(bzo)? = b = b® = b3, a contradiction. Thus d? = ¢, a? = az,
b® = bzy, c? = c. Now, (a?,b%) € {(a,b), (a,b3), (a3,b), (a®,b%)}. In the latter
case (ab)? = a®b® = ab, and since a, b and ab may be replaced with each other,
we may assume that: a? = a, b = b or a® = a, b = b>. In the latter case
(ad)? = a?c, b?® = b, and thus replacing ¢ with a?c and d with ad, the second
case is reduced to the first, and we get

Gs = (H,d| d* =c,[a,d] = [b,d] = [c,d] = 1) = {a,b) * (d) = Qg * Zg.

Case 2)
Replacing a with azs, we may assume that b% = ab.

2a) 3d € G\H, |d| = 2.
(a?,ac,d) % Fg = (ac)? = aczi23 # ac = z3 # z1. If a? = a, then a— -
(b1 = (ab)? = aab = b3, a contradiction. Therefore a? = a®, ¢ = ¢, and

Go=(H,d|d*=1,a%=a"1,0% = ab,c? = ¢).

9b) € G\H = 22 # 1, 3d € G\H, |d| = 4.
Now, without loss d? = a? or d®> = ac or d* = be. If d*> = a?, then (ad)? =
21 # 1 and (cd)? = 23 # 1, thus 21 = 2z3 = a®>. So G = (H,d | d* =
a?, a® = a?, b? = ab, c? = ¢?). Here (ac)? = a®*c® = ac, and G > (a,d,ac) =
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(a,d) x {ac) = Qs X Z3, against the assumption. Actually, G = G,. If
d?> = ac, then b = (ab)? = aziab = b = b3, and so z; = 1. Now,
(ac)? = ac = a%c? = aczs, thus also z3 = 1. Therefore:

Gio = (H,d | d* = ac,a® = a,b? = ab, ¢ = ¢).

If d? = be, then (be)? = be = abczz = azzbe, implying az3 = 1, a contradiction.
2c) z € G\H = |z| =8, d€ G\H, d° € H.
We may assume, without loss, that d? = a or d> = b or d?> = c. For d? = a,
we get (bd)? = bd*b? = baab = 1, a contradiction. As b% = ab, it cannot be
d?> =b. If d> = ¢, then (bd)? = bcab = b*ca® = a*ca™! = ac, and so |bd| = 4,
a contradiction again.
(c) Groups of order 64.
According a previous remark and by Th. 1.1(d), such a group G contains a
subgroup

H={(a,bc|a*=0"=1,%=d** a" = a,a° = a1, b° = a*b?),

where O (H) = (x € H | 22 =1) = Z(H) = ®(H) = (a?,b*) = K = E;. One
can easily check that there are only 4 square roots for a? (that is, such z € H,
that 22 = a?), and 12 square roots for b* and a?b* each. Thus A = (a?) < H.
The square roots of a? generate the subgroup N = (a,b?) = Z, x Zy. The
group L = {a, b) is the unique subgroup of H isomorphic to Z4 x Z4. Thus,
A, K, N, L are all characteristic in H and consequently normal in G, as H <G.
It can easily be seen that

AutH = ® L ¥, where

()] = dpleiam aG b by o vt
U = {[¢: a > aly, b able, ¢ a*b' T2},
and (1,( € K, a« €{0,1,2,3}, g €{0,1}.

As A K< N<L<H <G is anormal chain G, we have:
(x%) G = (H,d | (H), d*> € H, a® = az, b = a®bzy, ¢ = a b z3¢),

where 21, 29,23 € K and v,d,e € {0,1} and (H) denotes the relations of H.
We split our proof into several steps.
(1) T < G, |T| =8, than T is abelian and T 2 Es.

Let T be a nonabelian subgroup of order 8 in G, thus T'= Dg or T' = Qs and
|Z(T)| = 2. If Cq(T) < T, then G is metacyclic by Th. 1.4, a contradiction.
Hence C(T) £ T and take in C(T) a subgroup U of order 4 containing
Z(T). Now (T,U) = T = U, the central product of T and U, is isomorfic to
some of the groups Dg X Za, Qs X Za, or QsxZ4 = DgxZ,. Thus (T, U) would
be a non-metacyclic subgroup of order 16 in G, a contradiction. Therefore
every subgroup T of order 8 in G is abelian and, being metacyclic, it must be
T 2 Eg.
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(i) If g € G\H, then g # 1.
If g2 =1, then T = (K, g) = (a?, 1%, g) is abelian, by (i), and isomorphic to
FEg, a contradiction.

(ii1) G/L = Bj.
Else G/L = Z; and G = (L,d | d* € H\ L = Le). By (i) we see that
we can assume without loss that d? = ¢, and so d* = ¢? = a?b?. Now
a =a¢ = dd = (aD)? = (az1)? = azz{ implying 2{ = a?z and thus
21 € {b2,a?b?} and (b*)¢ = a?b? = c? = (c?)?, and so b% = 2, a contradiction.

(iv) If there exists some d € G\H, s.th. |d| = 4, then either
G = Gy = (a,bye,d | (H), d*> = a2, a® = a®b?, b? = b3, ¢! = ¢), or
G =Gy =(a,b,c,d| (H), d> =02, a=a> bl =00 c?=ac). Asd> e L
and d? is an involution, we have d?> € Q;(L)* = a?,b2,a*h* = K*. By (i),
(a?,b?,d) is abelian, and so b? = bzy. Now, (¢)? = ¢? = (¢?)? = (a7 2z3¢)? =
a0 23¢2a*7a*°b3% 23 = a*¢?, implying d = 0 and ¢? = a7z3c. From ¢ =
(azc)d — a2cd, de — (a2b2c)d — a2b2cd, and Cabd(QQC)bd — (a2a2b2c)d — b2cd,
and, by (ii), (ad)? = ad?a® = a%d?z # 1, (bd)? = b?d?z9 # 1 and (abd)? =
a’b?d?z1 29 # 1, we conclude that

(2.1) 21 # a’d?, 2o # V2d%, 2120 # a*D?d?,

and replacing, if needed, d by ad or bd or abd, we can assume, without loss,
that ¢? = a”¢, and so:

(2.2) cd=c or ¢ =uac

Case 1) c? =c.
Now (cd)? = c2d®> = a®b?d®> # 1, by (ii), and so d?> # a?b?>. Therefore
d? € {a?,b?}. If d? = b2, then (cd)? = c?d? = a®. Thus, replacing d by cd, we
may assume without loss that d? = a?. Besides of (1), we also have now the
following conditions on z1, z2: (acd)? = acd?azic = ac?d?a‘z; = 2d?z # 1,
and similarly (bed)? = b?d?zy # 1, (abed)? = abed?az1bzac = b?d?z120 # 1,
that is:

(2.3) 21 # Ad?, 2o # V2%, 2120 # b2

From (2.1) and (2.3) we get: z1 # 1,b%, 2 # a?b?, 2122 # b%,a%b2. If 21 = a2,
then a? = a3, and {(a,d | a* = 1, d®> = a2, a? = a®) = Qs, a contradiction,
by (i). Thus 21 = a?b?, 29 # a?b?, a?b?z2 # b2, a?b?, and so zp = b?, giving:
Gy = {a,b,c,d | (H),d?* = a?, a? = a®b?, b? =b3, ¢ = ¢).
Case 2) ¢ = ac.

We already know that a? = az;, b? = bzy and d* € {a? b a?b?}. Now
c=c = (N = (ac)? = azac = a’zic, so 21 = a2 and o = d®. If
d?> = a2, then (a,d | a* =1, d? = a?, a? = a®) = Qs, against (7). Therefore
d? € {b?,a%b?}. Since (bd)? = bd?*b? = b?25d?, we have 2 # bads.



SECOND-METACYCLIC FINITE 2-GROUPS 67

Case 2.1) d* = b2
From zo # b2d? it follows 2z € {a?,b?,a?b?}. If zp = a?, then b? = a%b and
{a,bd | a* =1, (bd)? = a?, a®® = a®) = Qs, against (7). Similarly, for zo = b
we have (b,d | b* = 1, d®> = b?, b? = b3) = Qg again. It remains as the only
possibility z» = a2b?, and we obtain the group
Gy = (a,b,c,d | (H),d®> =b?, a? = a®, b = a®b?, ¢ = ac).
Case 2.2) d? = a?b°.
Because of zy # b?d? = a2, we have now 2z € {1,b?%,a?b?}, that is
be € {b,b3,a2b%}. If b? = b, then (bd)? = bd?b® = ba®bb = a2, and (a, bd) =
Qs, against (7). If b? = b3, then (ab)? = (ab)? and (ab,d) = Qg, again the
same contradiction. Therefore b% = a2?b®. Replacing a by o’ = a®b?, b by
b = ab, c by ¢ = bc, we get:
d2 _ b/2 a/d — (a3b2)d — a/b2 _ (1/3
b/d _ (ab)d — a3a2b3 — ab3 — (a3b2)2 . (ab)3 — a/Qb/B,
¢4 = (be)? = a*b3ac = a®b*be =d' - ¢,
that is the relations of G5. Thus, this group is isomorphic to Gs.
(v) If all elements in G\H are of order 8, then
G =Gs=(a,b,c,d| (H),d>=0b, o’ =ab?®, b*=b, ¢ = ac).

As G/L = E4, G = (H,d), |d| =8, it follows that d? is an element of order
4 in L. According to (x), all such elements are replaceable by a or b, and so
we may assume without loss that

G=(H,d| (H),d* € {a,b}, a® = az, b’ = a°bzy, ¢ = a?b’z3¢),
where 21,232,235 € K, 7,0, € {0,1}. Now (c?)? = (¢?)? = (a"V23¢)? =

a"b? z5c2a37a20b30 25 = a0 2.
Case 1) d? = a.
Now a? = a. If ¢ = 0 then z¢ = 2 for z € K, and from (c?)? = ¢? = a?°¢?

it follows 6 = 0, ¢ = a¥zzc. Similarly, from ¢ = @ = a%¢ = (a7 z3c)? =

aVzz3aY z3c = a®Vc, we get v = 1 and ¢? = azzc. But now (cd)? = cd?c?

a’cz3 € K, and |cd| = 4, against our assumption. If ¢ = 1, then b¢ =
abze, (b*)? = ¢ and (c®)? = b? = a®c?. Thus § = 1, and ¢? = aVbzsc.
Therefore, e = g2c = (aVbzze)d = a7 - abzzzga7b23c =a- azvbb22223z§c =

azc, for some z € K. This implies z = a, a contradiction because a is not in
K

Case 2) d? = b.
Now b? = b, and 2% = 2z for z € K. From (c?)¢ = ¢ = a?¢? it follows
§ =0, ¢ = avzsc. Since [b,c] = b~1b¢ = a2b® = [c,b], we have ¢ = b =

a?b’c = (a7z3c)? = a¥2] 230" 23¢, implying a®' 2] = a?b?. Thus v = 1,21 = b?
and so a® = ab?, ¢ = azzc. Replacing a by azs, we get the group G5 as
stated above.
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REMARK 2.1. It is of some interest to check the maximal subgroups
of second-metacyclic groups. We present their distribution in each of these
groups in the following table:

(i) —G—=32:

Gi: 5-(Qs x Z2), 10-(Qs * Z4);

Ga: Qg X Za, Qgx*Zy, 2-SD1g, 2-Q16, Mis;
G3: 2-(Qs x Z2), Zg X Zz, 4-Q1s;

Gi: 2-(Qs X Za), ZyxZy, 4-(Zs- Zy);

Gs: Qg Xy, Zy-Zy, Zg X Zy

Go: Qs X Zo, 3-(ZyxZy), 3-(Zs-Zs);

G7: Qg X Za, 2- Mis;

Gs: Qs*Zy, 3-(Zsg X Z3), 3+ Mis;

Go: 2-(Qs*Zs), Zgx Za, 2-SD1s, Qi6, Dis;
Gio: Qs*Zy, Zy X Zy, M.

(ii) |G| =64:
Denoting H, = (a,b | a® =b* =1, a® = a"), we have:

Gi1: 15-H;
Gy: 2-H, 2 Hs, 2-Hy, Zs x Zu;
Ggl H,2'H5.

The factor groups G; = G;/{(a?), i = 1,2,3 are isomorphic to the groups
G1, G4 and G7 of order 32 from (i), respectively.
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