FINITE 2-GROUPS G WITH $\left|\Omega_{2}(G)\right|=16$

Zvonimir Janko
University of Heidelberg, Germany

Abstract

It is a known fact that the subgroup $\Omega_{2}(G)$ generated by all elements of order at most 4 in a finite 2 -group G has a strong influence on the structure of the whole group. Here we determine finite 2 -groups G with $|G|>16$ and $\left|\Omega_{2}(G)\right|=16$. The resulting groups are only in one case metacyclic and we get in addition eight infinite classes of non-metacyclic 2groups and one exceptional group of order 2^{5}. All non-metacyclic 2-groups will be given in terms of generators and relations.

In addition we determine completely finite 2 -groups G which possess exactly one abelian subgroup of type $(4,2)$.

1. Introduction

In Berkovich [1, Lemma 42.1] finite 2-groups G have been determined with the property $\left|\Omega_{2}(G)\right| \leq 8$. All the resulting groups (with $|G|>8$) turn out to be metacyclic.

In this paper we shall determine finite 2 -groups G with $|G|>16$ and $\left|\Omega_{2}(G)\right|=16$. We recall that $\Omega_{2}(G)=\left\langle x \in G \mid x^{4}=1\right\rangle$. The resulting groups are only in one case metacyclic and we get in addition eight infinite classes of non-metacyclic 2 -groups and one exceptional group of order 2^{5}. All non-metacyclic 2-groups will be given in terms of generators and relations.

In section 2 we study the title groups G with the additional property that G does not possess an elementary abelian normal subgroup of order 8. Using the main theorem of Janko [4], we obtain three classes of such 2-groups and an exceptional group of order 2^{5} (Theorem 2.1).

In section 3 we study the title groups G with the property that G is nonabelian and has a normal elementary abelian subgroup E of order 8 . It is

[^0]easy to see that G / E is either cyclic or a generalized quaternion group $Q_{2^{n}}$ of order $2^{n}, n \geq 3$. If G / E is cyclic, then we get three classes of 2 -groups (Theorem 3.1). If G / E is generalized quaternion and $E \not \leq \Phi(G)$, then we get one class of 2-groups (Theorem 3.3). If G / E is generalized quaternion and $E \leq \Phi(G)$, we get two classes of 2-groups (Theorem 3.4).

In section 4 we investigate 2 -groups G with $|G|>16$ which possess exactly one subgroup of order 16 and exponent 4 . It turns out that a 2 -group G has this property if and only if $|G|>16$ and $\left|\Omega_{2}(G)\right|=16$ (Theorem 4.1). It is interesting to note that there are exactly five possibilities for the structure of $\Omega_{2}(G)$:

$$
Q_{8} * C_{4}, Q_{8} \times C_{2}, D_{8} \times C_{2}, C_{4} \times C_{2} \times C_{2}, \text { and } C_{4} \times C_{4}
$$

In fact, if $\Omega_{2}(G) \cong Q_{8} \times C_{2}$ or $D_{8} \times C_{2}$ and $|G|>16$, then we get exactly one 2-group (of order 2^{5}) in each case (Theorem 2.1 (d) and Theorem 3.1 (a) for $n=2$). In other three cases for the structure of $\Omega_{2}(G)$ we get infinitely many 2-groups.

In section 5 we consider a similar problem. In Berkovich [2, Sect. 48] the 2-groups G have been considered which possess exactly one abelian subgroup of type $(4,2)$. It was shown that either $\left|\Omega_{2}(G)\right|=8$ (and then G is isomorphic to one of the groups in Proposition 1.4) or G possesses a self-centralizing elementary abelian subgroup of order 8 . We improve this result by determining completely the groups of the second possibility (Theorem 5.1). Finally, Theorem 5.2 shows that our result also slightly improves the classification of 2-groups with exactly two cyclic subgroups of order 4 (Berkovich[1, Theorem 43.4]).

We state here some known results which are used in this paper. The notation is standard (see Berkovich [1] or Janko [3]) and all groups considered are finite.

Proposition 1.1. (Janko [4]) Let G be a 2-group which does not have a normal elementary abelian subgroup of order 8. Suppose that G is neither abelian nor of maximal class. Then G possesses a normal metacyclic subgroup N such that $C_{G}\left(\Omega_{2}(N)\right) \leq N$ and G / N is isomorphic to a subgroup of D_{8}. In addition, $\Omega_{2}(N)$ is either abelian of type $(4,4)$ or N is abelian of type $\left(2^{j}, 2\right), j \geq 2$.

Proposition 1.2. (Janko [4]) Let G be a 2-group which does not have a normal elementary abelian subgroup of order 8 . Suppose that G has two distinct normal 4-subgroups. Then $G=D * C$ with $D \cong D_{8}, D \cap C=Z(D)$ and C is either cyclic or of maximal class distinct from D_{8}.

Proposition 1.3. (Berkovich [1]) Let G be a minimal nonabelian pgroup. If G is metacyclic, then

$$
G=\left\langle a, b \mid a^{p^{m}}=b^{p^{n}}=1, a^{b}=a^{1+p^{m-1}}\right\rangle
$$

where $m \geq 2, n \geq 1,|G|=p^{m+n}$ or $G \cong Q_{8}$. If G is non-metacyclic, then

$$
G=\left\langle a, b \mid a^{p^{m}}=b^{p^{n}}=c^{p}=1,[a, b]=c,[a, c]=[b, c]=1\right\rangle,
$$

where $m \geq 1, n \geq 1,|G|=p^{m+n+1}$ and if $p=2$, then $m+n>2$.
Proposition 1.4. (Berkovich [1]) Let G be a group of order $2^{m}, m \geq 4$, satisfying $\left|\Omega_{2}(G)\right| \leq 8$. Then one of the following holds:
(a) $G \cong M_{2^{m}}$.
(b) G is abelian of type $\left(2^{m-1}, 2\right)$.
(c) G is cyclic.
(d) $G=\left\langle a, b \mid a^{2^{m-2}}=b^{8}=1, a^{b}=a^{-1}, a^{2^{m-3}}=b^{4}\right\rangle$, where $m \geq 5$.

Proposition 1.5. (Berkovich [2, Sect. 48]) Suppose that G is a metacyclic 2-group possessing a nonabelian subgroup H of order 8 . Then G is of maximal class.

Proof. If $C_{G}(H) \notin H$, then $H C_{G}(H)$ is not metacyclic. Hence $C_{G}(H) \leq H$ and G is of maximal class by Proposition 1.12.

Proposition 1.6. (Berkovich [1]) Let G be a nonabelian 2-group such that $\left|G: G^{\prime}\right|=4$. Then G is of maximal class.

Proposition 1.7. (Berkovich [1]) Let A be an abelian subgroup of index p of a nonabelian p-group G. Then $|G|=p\left|G^{\prime}\right||Z(G)|$.

Proposition 1.8. (Berkovich [1]) Suppose that a p-group G has only one nontrivial proper subgroup of order p^{n} for some natural number n. Then G is cyclic unless $p=2, n=1$ and G is generalized quaternion.

Proposition 1.9. (Janko [5, Proposition 1.10]) Let τ be an involutory automorphism acting on an abelian 2-group B so that $C_{B}(\tau)=W$ is contained in $\Omega_{1}(B)$. Then τ acts invertingly on $\mho_{1}(B)$ and on B / W.

Proposition 1.10. (Berkovich [1]) If G is a 2-group such that $\Omega_{2}(G)$ is metacyclic, then G is also metacyclic.

Proposition 1.11. (Berkovich [2, Sect.48]) Let G be a metacyclic 2group of order $>2^{4}$. If $\left|\Omega_{2}(G)\right|=2^{4}$, then $\Omega_{2}(G) \cong C_{4} \times C_{4}$.

Proof. Let G be a metacyclic group of order $2^{m}, m>4$. Suppose that $\left|\Omega_{2}(G)\right|=2^{4}$ and $\Omega_{2}(G)=H$ is nonabelian. If H is not minimal nonabelian, then Proposition 1.5 implies that G is of maximal class. But then $\Omega_{2}(G)=G$, a contradiction. Suppose that H has a cyclic subgroup of index 2 . Since H is minimal nonabelian, $H \cong M_{2^{4}}$. But then $\Omega_{2}(H)$ is abelian of type $(4,2)$ which contradicts the fact that $H=\Omega_{2}(G)$. Proposition 1.3 implies

$$
H=\left\langle a, b \mid a^{4}=b^{4}=1, a^{b}=a^{-1}\right\rangle .
$$

It follows that $Z(H)=\left\langle a^{2}, b^{2}\right\rangle=\Omega_{1}(H)=\Omega_{1}(G), H^{\prime}=\left\langle a^{2}\right\rangle$, and $Z=\left\langle b^{2}\right\rangle$ is a characteristic subgroup of order 2 in H. Indeed, b^{2} is a square in H,
$a^{2} b^{2}$ is not a square in H, and $Z(H)-H^{\prime}=\left\{b^{2}, a^{2} b^{2}\right\}$. Thus Z is central in G. Since $H / Z \cong D_{8}$, Proposition 1.5 implies that G / Z is of maximal class. All involutions in G / Z lie in H / Z and so $G / Z \cong S D_{16}$ and $|G|=2^{5}$. But there are elements of order 4 in $(G / Z)-(H / Z)$ whose square lies in $Z(G / Z)=\left\langle a^{2}, b^{2}\right\rangle / Z$. Hence there is an element $x \in G-H$ such that $x^{2} \in\left\langle a^{2}, b^{2}\right\rangle$ and so $o(x) \leq 4$, which is the final contradiction. We have proved that H must be abelian and so $H \cong C_{4} \times C_{4}$.

Proposition 1.12. (Berkovich [1]) Let G be a p-group with a nonabelian subgroup P of order p^{3}. If $C_{G}(P) \leq P$, then G is of maximal class.

2. G has no normal E_{8}

In this section we prove the following result.
Theorem 2.1. Let G be a 2-group of order $>2^{4}$ satisfying $\left|\Omega_{2}(G)\right|=2^{4}$. Suppose in addition that G has no normal elementary abelian subgroup of order 8. Then we have one of the following four possibilities:
(a) $G=D * C$ (the central product) with $D \cong D_{8}, D \cap C=Z(D)$, and C is cyclic of order ≥ 8. Here we have $\Omega_{2}(G) \cong Q_{8} * C_{4} \cong D_{8} * C_{4}$.
(b) G is metacyclic of order $\geq 2^{5}$ with $\Omega_{2}(G) \cong C_{4} \times C_{4}$.
(c) $G=Q S$, where $Q \cong Q_{8}, Q$ is normal in G, S is cyclic of order $\geq 16, Q \cap S=Z(Q)$, and if C is the subgroup of index 2 in S, then $C_{G}(Q)=C$. Setting $Q=\langle a, b\rangle$ and $S=\langle s\rangle$, we have $a^{s}=a^{-1}$ and $b^{s}=b a$. Here we have $\Omega_{2}(G) \cong Q_{8} * C_{4}$.
(d) The exceptional group G of order 2^{5} has a maximal subgroup $M=$ $\langle u\rangle \times Q$, where u is an involution, $Q \cong Q_{8}, C_{G}(u)=M$ and G is isomorphic to the group A2(a) from Janko [3, Theorem 2.1]. We have $\Omega_{2}(G)=M \cong Q_{8} \times C_{2}$.

Proof. We may assume that G is nonabelian. If G were of maximal class, then $\Omega_{2}(G)=G$, a contradiction. Since G is neither abelian nor of maximal class, we may apply Proposition 1.1. Then G possesses a normal metacyclic subgroup N such that $C_{G}\left(\Omega_{2}(N)\right) \leq N, G / N$ is isomorphic to a subgroup of D_{8}, and $W=\Omega_{2}(N)$ is either abelian of type $(4,4)$ or N is abelian of type $\left(2^{j}, 2\right), j \geq 2$. However, if $W \cong C_{4} \times C_{4}$, then $W=\Omega_{2}(G)$ and Proposition 1.10 implies that G is metacyclic. This gives the case (b) of our theorem. We assume in the sequel that N is abelian of type $\left(2^{j}, 2\right), j \geq 2$ and so $W=\Omega_{2}(N)$ is abelian of type $(4,2)$.

Suppose that G has (at least) two distinct normal 4-subgroups. Then Proposition 1.2 implies that $G=D * C$ with $D \cong D_{8}$ and C is either cyclic or of maximal class and $D \cap C=Z(D)$. Since $\left|\Omega_{2}(G)\right|=16, C$ must be cyclic of order ≥ 8 and this gives the case (a) of our theorem. In what follows we shall assume that G has the unique normal 4-subgroup $W_{0}=\Omega_{1}(W)=\Omega_{1}(N)$. Also we have $C_{G}(W)=N$.

Set $\tilde{W}=\Omega_{2}(G)$ so that $\tilde{W} \cap N=W,|\tilde{W}: W|=2$, and \tilde{W} is nonabelian. If \tilde{W} is metacyclic, then by Proposition 1.10 the group G is metacyclic. But then Proposition 1.11 gives a contradiction. Thus \tilde{W} is nonabelian non-metacyclic. In particular, $\exp (\tilde{W})=4$. Proposition 1.6 gives $\left|\tilde{W} / \tilde{W}^{\prime}\right| \geq 8$ and so $\left|\tilde{W}^{\prime}\right|=2$. By Proposition 1.7, $|\tilde{W}|=2\left|\tilde{W}^{\prime}\right||Z(\tilde{W})|$ and so $|Z(\tilde{W})|=4$ and $Z(\tilde{W})<W$.

First assume that $Z(\tilde{W})=\langle v\rangle \cong C_{4}$ and set $z=v^{2}, W_{0}=\langle z, u\rangle=$ $\Omega_{1}(W)$. Since $\tilde{W}^{\prime} \leq\langle v\rangle$, we have $\tilde{W}^{\prime}=\langle z\rangle$. For any $x \in \tilde{W}-W, x^{2} \in\langle v\rangle$ since $x^{2} \in Z(\tilde{W})$. But \tilde{W} has no elements of order 8 and so $x^{2} \in\langle z\rangle$ and $u^{x}=u z$. It follows that $W_{0}\langle x\rangle \cong D_{8}$ and so (since D_{8} has five involutions) we may assume that x is an involution. Then \tilde{W} is the central product of $\langle u, x\rangle \cong D_{8}$ and $\langle v\rangle \cong C_{4}$ with $\langle v\rangle \cap\langle u, x\rangle=\langle z\rangle$ and $(u x)^{2}=z$. We set $Q=\langle u x, v x\rangle \cong Q_{8}$ and see that $\tilde{W}=Q *\langle v\rangle$ is also the central product of Q_{8} and C_{4}. All six elements in $\tilde{W}-(Q \cup\langle v\rangle)$ are involutions and therefore Q is the unique quaternion subgroup of $\tilde{W}=\Omega_{2}(G)$ and so Q is normal in G. There are exactly three 4-subgroups in \tilde{W} and one of them is $W_{0}=\langle z, u\rangle$ and this one is normal in G. Since G has exactly one normal 4-subgroup, it follows that the other two 4-subgroups in \tilde{W} are conjugate to each other in G. Set $C=C_{G}(Q)$. Obviously C is normal in G and $C \cap \tilde{W}=\langle v\rangle$. But $\langle v\rangle$ is the unique subgroup of order 4 in C and Proposition 1.8 implies that C is cyclic and $\tilde{W} C=Q * C$ with $Q \cap C=\langle z\rangle$. Set $Q=\langle a, b\rangle$, where we choose the generator a so that $u=a v$. Since $W_{0}=\langle z, u\rangle$ and $\langle v\rangle=Z(\tilde{W})$ are both normal in G, it follows that $\langle a\rangle$ is normal in G. The 4-subgroups $\langle b v, z\rangle$ and $\langle b a v, z\rangle$ must be conjugate in G. Therefore $|G:(Q * C)|=2$ and $G /(Q * C)$ induces an "outer" automorphism α on Q normalizing $\langle a\rangle$ and sending $\langle b\rangle$ onto $\langle b a\rangle$. A Sylow 2-subgroup of $\operatorname{Aut}(Q)$ is isomorphic to D_{8}. It follows that $G / C \cong D_{8}$ and so there is an element $s \in G-(Q * C)$ such that $s^{2} \in C$ and $b^{s}=b a$. Since $(b a)^{s}=b$, it follows that $b^{s} a^{s}=b$ and so $a^{s}=a^{-1}$. It remains to determine s^{2}. Set $\langle s\rangle C=S$ and we see that C is a cyclic subgroup of index 2 in S. Since $o(s) \geq 8$, we have $o\left(s^{2}\right) \geq 4$ and therefore $|Z(S)| \geq 4$. If S is nonabelian, then $S \cong M_{2^{n}}$ and there is an involution in $S-C$, a contradiction. Hence S is abelian. There are no involutions in $S-C$ and so S is cyclic. We may set $s^{2}=c$, where $\langle c\rangle=C$. We compute

$$
(s b)^{2}=s b s b=s^{2} b^{s} b=c b a b=c a b z b=c a
$$

If $|C|=4$, then $C=\langle v\rangle$ and so $c a$ is an involution. But then $o(s b)=4$, a contradiction. Thus $|C| \geq 8$ and so $o(s) \geq 16$. We have obtained the groups stated in part (c) of our theorem.

Assume now $Z(\tilde{W}) \cong E_{4}$ so that $Z(\tilde{W})=W_{0}=\Omega_{1}(W)=\Omega_{1}(N)=$ $\langle z, u\rangle$, where $z=v^{2}$ and $W=\langle u\rangle \times\langle v\rangle \cong C_{2} \times C_{4}$.

If \tilde{W} is minimal nonabelian, then the fact that \tilde{W} is non-metacyclic implies with the help of Proposition 1.3 that

$$
\tilde{W}=\left\langle a, b \mid a^{4}=b^{2}=c^{2}=1,[a, b]=c,[a, c]=[b, c]=1\right\rangle .
$$

We see that $Z(\tilde{W})=\Phi(\tilde{W})=\left\langle a^{2}, c\right\rangle \cong E_{4}$ and \tilde{W} has exactly three maximal subgroups $\left\langle a^{2}, c, b\right\rangle \cong E_{8},\langle a, c\rangle \cong C_{4} \times C_{2}$, and $\langle b a, c\rangle \cong C_{4} \times C_{2}$ since $(b a)^{2}=a^{2} c$. Hence $\left\langle a^{2}, c, b\right\rangle$ is normal in G, which is a contradiction.

We have proved that \tilde{W} is not minimal nonabelian. Let D be a nonabelian subgroup of \tilde{W} of order 8. If $u \in Z(\tilde{W})-D$, then $\tilde{W}=\langle u\rangle \times D$ and $\Phi(\tilde{W})=\tilde{W}^{\prime}=\Phi(D)=\langle z\rangle$ since $z=v^{2}$.

Suppose first $D \cong D_{8}$. Let t be an involution in $\tilde{W}-W$. Since $[v, t]=z$, t inverts $\langle v\rangle$ and so we may set $D=\langle v, t\rangle$, where $\tilde{W}=\langle u\rangle \times D$. Since t acts invertingly on $\Omega_{2}(N)=W$, it follows that $C_{N}(t)=W_{0}=\langle z, u\rangle$. Let x be an element of order 8 in $N-W$. Then Proposition 1.9 implies $x^{t}=x^{-1} w_{0}$ with $w_{0} \in W_{0}$. But then

$$
(t x)^{2}=(t x t) x=x^{-1} w_{0} x=w_{0}
$$

and therefore $o(t x) \leq 4$ with $t x \notin \tilde{W}$, a contradiction. This proves that $N=W$ is abelian of type $(4,2)$. Since t acts invertingly on $N=W$, all eight elements in $\tilde{W}-N$ are involutions. In particular, no involution in $\tilde{W}-N$ is a square in G and so $G / N \cong E_{4}$ and $|G|=2^{5}$. All elements in $G-\tilde{W}$ must be of order 8 and so for any $y \in G-\tilde{W}, y^{2} \in N-W_{0}$. Replacing $\langle u v\rangle$ with $\langle v\rangle$ and v with v^{-1} (if necessary), we may assume that $y^{2}=v$. Since $C_{G}(N)=N, u^{y}=u z$ and so $y^{u}=y z$. Thus $\langle y, u\rangle \cong M_{2^{4}}$ and $\langle y, u\rangle>N$. The cyclic group $\langle v\rangle=Z(\langle y, u\rangle)$ of order 4 is normal in G and $C_{G}(v)=\langle y\rangle N \cong M_{2^{4}}$. Since $t y$ is also an element of order 8, we have $(t y)^{2} \in N-W_{0}$. If $(t y)^{2} \in\langle v\rangle$, then $C_{G}(v) \geq\langle N, y, t y\rangle=G$, a contradiction. Thus $(t y)^{2} \in\langle u v\rangle$. If $(t y)^{2}=(u v)^{-1}=(u z) v$, then replacing u with $u z$, we may assume from the start that $(t y)^{2}=u v$. This relation implies $t^{y}=t u z$ and so y normalizes the elementary abelian subgroup $E=\langle z, u, t\rangle$ of order 8 . Since E is normal in \tilde{W}, E is also normal in $G=\langle\tilde{W}, y\rangle$, a contradiction.

Finally, suppose $D \cong Q_{8}$ so that $\tilde{W}=\langle u\rangle \times D, Z(D)=\langle z\rangle, z=v^{2}$, and $D \cap N=\langle v\rangle$. Let r be an element in $D-\langle v\rangle$. We have $r^{2}=z$ with $z \in Z(G)$ and so r induces an involutory automorphism on the abelian group N of type $\left(2^{j}, 2\right), j \geq 2$. Since r acts invertingly on $W=\langle u, v\rangle=\Omega_{2}(N)$, it follows that $C_{N}(r)=W_{0}=\langle u, z\rangle$. Then Proposition 1.9 implies that r acts invertingly on N / W_{0}. Suppose that $W \neq N$ and let $x \in N-W$. We get $x^{r}=x^{-1} w_{0}$ with $w_{0} \in W_{0}$ and so

$$
(r x)^{2}=r x r x=r^{2} x^{r} x=z x^{-1} w_{0} x=z w_{0} \in W_{0}
$$

Since $r x \notin \tilde{W}=\Omega_{2}(G)$ and $o(r x) \leq 4$, we get a contradiction. We have proved that $N=W=C_{G}(N)$ is abelian of type (4,2).

Set $S=C_{G}\left(W_{0}\right)$ so that $S \geq \tilde{W}$ and S / N stabilizes the chain $N>W_{0}>$ 1. Hence S / N is elementary abelian of oder ≤ 4. Suppose $S>\tilde{W}$ so that S / N is a 4 -group. Let \tilde{S} / N be a subgroup of order 2 in S / N distinct from \tilde{W} / N. Thus $\tilde{S} \cap \tilde{W}=N$. Take an element $y \in \tilde{S}-N$ so that $o(y)=8$ and therefore $y^{2} \in N-W_{0}$. But then y centralizes $\left\langle y^{2}, W_{0}\right\rangle=N$, a contradiction. Hence $S=\tilde{W}=C_{G}\left(W_{0}\right),|G: \tilde{W}|=2$ and $|G|=2^{5}$. In particular, $C_{G}(u)=\langle u\rangle \times D$ with $D \cong Q_{8}$. Note that the involution u is contained in the unique normal 4-subgroup W_{0} of G and $C_{G}(u) \neq G$. Then our group G is isomorphic to the group A2(a) of the Theorem 2.1 of Janko [3]. Our theorem is proved.

3. G has a normal E_{8}

Throughout this section we assume that G is a nonabelian 2-group of order $>2^{4}$ satisfying $\left|\Omega_{2}(G)\right|=2^{4}$. We assume in addition that G has a normal elementary abelian subgroup E of order 8 . Since G / E has exactly one subgroup $\Omega_{2}(G) / E$ of order 2, it follows that G / E is either cyclic of order ≥ 4 or generalized quaternion (see Proposition 1.8). If G / E is cyclic, then G will be determined in Theorem 3.1. If G / E is generalized quaternion and $E \not \leq \Phi(G)$, then G is determined in Theorem 3.3. Finally, if G / E is generalized quaternion and $E \leq \Phi(G)$, then G is determined in Theorem 3.4.

ThEOREM 3.1. Let G be a nonabelian 2-group of order $>2^{4}$ satisfying $\left|\Omega_{2}(G)\right|=2^{4}$. Suppose in addition that G has a normal elementary abelian subgroup E of order 8 such that G / E is cyclic of order $2^{n}, n \geq 2$. Then we have one of the following three possibilities:
(a)

$$
\begin{gathered}
G=\left\langle a, e_{1}\right| a^{2^{n+1}}=e_{1}^{2}=1, n \geq 2 \\
\left.a^{2^{n}}=z,\left[a, e_{1}\right]=e_{2}, e_{2}^{2}=\left[e_{1}, e_{2}\right]=1,\left[a, e_{2}\right]=z\right\rangle
\end{gathered}
$$

is a group of order $2^{n+3}, Z(G)=\left\langle a^{4}\right\rangle, G^{\prime}=\left\langle z, e_{2}\right\rangle, \Phi(G)=\left\langle a^{2}, e_{2}\right\rangle$, $E=\left\langle z, e_{1}, e_{2}\right\rangle$ is a normal elementary abelian subgroup of order 8 , and $\Omega_{2}(G)=E\left\langle a^{2^{n-1}}\right\rangle$ is abelian of type $(4,2,2)$ for $n \geq 3$, and $\Omega_{2}(G) \cong$ $C_{2} \times D_{8}$ for $n=2$.
(b) $G \cong M_{2^{n+2}} \times C_{2}$ with $n \geq 2$, and $\Omega_{2}(G)$ is abelian of type $(4,2,2)$.
(c)

$$
\begin{gathered}
G=\left\langle a, e_{1}\right| a^{2^{n+1}}=e_{1}^{2}=1, n \geq 2 \\
\left.\left[a, e_{1}\right]=e_{2}, e_{2}^{2}=\left[e_{1}, e_{2}\right]=\left[a, e_{2}\right]=1\right\rangle
\end{gathered}
$$

is minimal nonabelian, $|G|=2^{n+3}$, $\Phi(G)=\left\langle a^{2}, e_{2}\right\rangle, G^{\prime}=\left\langle e_{2}\right\rangle$, and $\Omega_{2}(G)=E\left\langle a^{2^{n-1}}\right\rangle$ is abelian of type $(4,2,2)$, where $E=\left\langle a^{2^{n}}, e_{1}, e_{2}\right\rangle$ is a normal elementary abelian subgroup of order 8 .

Proof. Let a be an element in $G-E$ such that $\langle a\rangle$ covers the cyclic group G / E of order $2^{n}, n \geq 2$. Obviously G does not split over E and so $o(a)=2^{n+1}$ and $\langle a\rangle \cap E=\langle z\rangle$ is of order 2, where $z=a^{2^{n}}$.

Suppose that a induces an automorphism of order 4 on E. In that case $C_{E}(a)=\langle z\rangle$ so that $Z(G)=\left\langle a^{4}\right\rangle \geq\langle z\rangle$ and $C_{G}(E)=Z(G) E$. There are involutions $e_{1}, e_{2} \in E$ such that $\left\langle z, e_{1}, e_{2}\right\rangle=E$ and $e_{1}^{a}=e_{1} e_{2}, e_{2}^{a}=e_{2} z$. Then $C_{E}\left(a^{2}\right)=\left\langle z, e_{2}\right\rangle=G^{\prime}, G=\left\langle a, e_{1}\right\rangle, \Phi(G)=\left\langle a^{2}, e_{2}\right\rangle$, and $\Omega_{2}(G)=E\left\langle a^{2^{n-1}}\right\rangle$. We have determined the groups stated in part (a) of our theorem.

Suppose that a induces an involutory automorphism on E. We have $C_{E}(a)=E_{1}=\left\langle z, e_{2}\right\rangle \cong E_{4}, G^{\prime}=[a, E]$ is a subgroup of order 2 in E_{1}, and $Z(G)=\left\langle a^{2}, E_{1}\right\rangle$. If $G^{\prime}=\langle z\rangle$, then $\langle a\rangle$ is normal in G. Let $e_{1} \in E-E_{1}$. Then $\left\langle a, e_{1}\right\rangle \cong M_{2^{n+2}}$ and $G=\left\langle e_{2}\right\rangle \times\left\langle a, e_{1}\right\rangle$ which is the group stated in part (b) of our theorem. If $G^{\prime}=\left\langle e_{2}\right\rangle$, where $e_{2} \in E_{1}-\langle z\rangle$ and $e_{1} \in E-E_{1}$, then $\left[a, e_{1}\right]=e_{2}$ and this group is stated in part (c) of our theorem.

In the rest of this section we assume $G / E \cong Q_{2^{n}}, n \geq 3$. Then $C_{G}(E)>E$ since $Q_{2^{n}}$ cannot act faithfully on $E \cong E_{8}$. Therefore $\tilde{W}=\Omega_{2}(G)$ centralizes E, where $\tilde{W} / E=Z(G / E), \tilde{W}$ is abelian of type $(4,2,2)$ and $\langle z\rangle=\mho_{1}(\tilde{W})$ is of order 2 . All elements in $\tilde{W}-E$ are of order 4 and so no involution in $E-\langle z\rangle$ is a square in G. We first prove the following useful result.

Lemma 3.2. We have $C_{G}(E) \geq \tilde{W}=\Omega_{2}(G), C_{G}(E) / E$ is cyclic of order ≥ 2, and $G / C_{G}(E)$ is isomorphic to C_{2}, E_{4} or D_{8}.

Proof. Suppose that $C_{G}(E)$ contains a subgroup $H>E$ such that $H / E \cong Q_{8}$. Then $Z(H / E)=\tilde{W} / E$. Let A / E and B / E be two distinct cyclic subgroups of order 4 in H / E. Then A and B are abelian maximal subgroups of H. It follows that $A \cap B=\tilde{W} \leq Z(H)$ and therefore $\tilde{W}=Z(H)$ is of order 2^{4}. Using Proposition 1.7, we get

$$
2^{6}=|H|=2|Z(H)|\left|H^{\prime}\right|
$$

which gives $\left|H^{\prime}\right|=2$. Since $\Omega_{1}(H)=E$, we get $H^{\prime} \leq E$ and H / E is abelian, a contradiction. It follows that $C_{G}(E) / E$ must be a normal cyclic subgroup of G / E and so $G / C_{G}(E)$ is isomorphic to a nontrivial subgroup of D_{8}. However $G / C_{G}(E) \cong C_{4}$ is not possible since $(G / E) /(G / E)^{\prime} \cong E_{4}$.

Theorem 3.3. Let G be a 2-group of order $>2^{4}$ satisfying $\left|\Omega_{2}(G)\right|=2^{4}$. Suppose in addition that G has a normal elementary abelian subgroup E of order 8 such that $G / E \cong Q_{2^{2}}, n \geq 3$, and $E \not \leq \Phi(G)$. Then we have:

$$
\begin{gathered}
G=\langle a, b, e| a^{2^{n}}=b^{8}=e^{2}=1, n \geq 3, a^{2^{n-1}}=b^{4}=z \\
\left.a^{b}=a^{-1},[e, b]=1,[e, a]=z^{\mu}, \mu=0,1\right\rangle
\end{gathered}
$$

Here G is a group of order $2^{n+3}, G^{\prime}=\left\langle a^{2}\right\rangle, \Phi(G)=\left\langle a^{2}, b^{2}\right\rangle$ is abelian of type $\left(2^{n-1}, 2\right)$. The subgroup $E=\left\langle e, a^{2^{n-2}} b^{2}, z\right\rangle$ is a normal elementary abelian subgroup of order 8 in G and $G / E \cong Q_{2^{n}}$. If $\mu=0$, then $Z(G)=\left\langle e, b^{2}\right\rangle$ is abelian of type $(4,2)$. If $\mu=1$, then $Z(G)=\left\langle b^{2}\right\rangle \cong C_{4}$. Finally, $\Omega_{2}(G)=$ $E\left\langle b^{2}\right\rangle$ is abelian of type $(4,2,2)$.

Proof. There is a maximal subgroup M of G such that $E \not \leq M$. We have $E_{0}=E \cap M \cong E_{4}, E_{0}>\langle z\rangle, \tilde{W}_{0}=\tilde{W} \cap M$ is abelian of type $(4,2)$, $\tilde{W}_{0}=\Omega_{2}(M)$, and $M / E_{0} \cong Q_{2^{n}}, n \geq 3$. By Proposition $1.4, M$ is isomorphic to a group (d) in that proposition. Hence M is metacyclic with a cyclic normal subgroup $\langle a\rangle$ of order 2^{n} and the cyclic factor-group $M /\langle a\rangle$ of order 4 so that there is an element b of order 8 in $M-\left(E_{0}\langle a\rangle\right)$ with $b^{2} \in \tilde{W}_{0}-E_{0}$, $b^{4}=z=a^{2^{n-1}},\langle b\rangle \cap\langle a\rangle=\langle z\rangle$, and $\tilde{W}_{0}=\left\langle b^{2}\right\rangle\left\langle a^{2^{n-2}}\right\rangle \leq \Phi(M)$. We have $\Phi(M)=\left\langle a^{2}, b^{2}\right\rangle \geq \tilde{W}_{0}, M^{\prime}=\left\langle a^{2}\right\rangle$, and $a^{b}=a^{-1}$. Also, $Z(M)=\left\langle b^{2}\right\rangle$ is cyclic of order 4 and so $E_{0}\langle a\rangle=\left\langle b^{2}, a\right\rangle$ is abelian of index 2 in M, and $C_{M}\left(E_{0}\right)=E_{0}\langle a\rangle$. The element b induces an involutory automorphism on E (because b^{2} centralizes E) and since b acts nontrivially on E_{0}, there is an element $e \in E-E_{0}$ such that b centralizes e. Set $u=a^{2^{n-2}} b^{2} \in E_{0}-\langle z\rangle$ and we have $u^{b}=u z$. We act with the cyclic group $\langle a\rangle$ on E. We see that $\langle a\rangle$ stabilizes $E>E_{0}>1$ and so a^{2} centralizes E and $e^{a}=e y$ with $y \in E_{0}$. This gives $a^{e}=a y$. We may set $a^{b}=a^{-1}$. Then we act on $b^{-1} a b=a^{-1}$ with e. It follows $b^{-1} a y b=(a y)^{-1}$ and so $a^{-1} y^{b}=a^{-1} y$ which gives $y^{b}=y$ and $y \in\langle z\rangle$. If $y=1$, then $G=\langle e\rangle \times M$. We set $a^{e}=a z^{\mu}$, where $\mu=0,1$. The group G is completely determined.

THEOREM 3.4. Let G be a 2-group of order $>2^{4}$ satisfying $\left|\Omega_{2}(G)\right|=2^{4}$. Suppose in addition that G has a normal elementary abelian subgroup E of order 8 such that $G / E \cong Q_{2^{2}}, n \geq 3$, and $E \leq \Phi(G)$. Then we have one of the following two possibilities:
(a)

$$
\begin{gathered}
G=\langle a, b| a^{2^{n}}=b^{8}=1, a^{2^{n-1}}=b^{4}=z, b^{2}=a^{2^{n-2}} e, a^{b}=a^{-1} u e^{\epsilon} \\
\quad \epsilon=0,1, u^{2}=e^{2}=[e, u]=[e, z]=[u, z]=1 \\
\quad e^{a}=e z, u^{a}=u, e^{b}=e z, u^{b}=u z, n \geq 3 \\
\\
\text { and if } \epsilon=1, \text { then } n \geq 4\rangle
\end{gathered}
$$

Here G is a group of order $2^{n+3}, G^{\prime}=\left\langle u e^{\epsilon}\right\rangle \times\left\langle a^{2}\right\rangle$ is abelian of type $\left(2^{n-1}, 2\right), \Phi(G)=E\left\langle a^{2}\right\rangle$, where $E=\langle z, e, u\rangle$ is a normal elementary abelian subgroup of order 8 in G with $G / E \cong Q_{2^{n}}$. Finally, $Z(G)=\langle z\rangle$ is of order 2 , and $\Omega_{2}(G)=E\left\langle a^{2^{n-2}}\right\rangle$ is abelian of type $(4,2,2)$.
(b)

$$
\begin{gathered}
G=\langle a, b| a^{2^{n}}=b^{8}=1, n \geq 3, a^{2^{n-1}}=b^{4}=z, b^{2}=a^{2^{n-2}} u \\
a^{b}=a^{-1} e, u^{2}=e^{2}=[e, u]=[e, z]=[u, z]=[a, e]= \\
\left.=[a, u]=[b, e]=1, u^{b}=u z\right\rangle
\end{gathered}
$$

Here G is a group of order $2^{n+3}, G^{\prime}=\left\langle a^{2} e\right\rangle$ is cyclic of order 2^{n-1}, $\Phi(G)=E\left\langle a^{2}\right\rangle$, where $E=\langle z, e, u\rangle$ is a normal elementary abelian
subgroup of order 8 in G with $G / E \cong Q_{2^{n}}$ and $C_{G}(E)=E\langle a\rangle$. Finally, $Z(G)=\left\langle e, b^{2}\right\rangle$, and $\Omega_{2}(G)=E\left\langle b^{2}\right\rangle$ is abelian of type (4, 2, 2).

Proof. We have in this case $\Phi(G) \geq \tilde{W}=\Omega_{2}(G), \tilde{W} / E=Z(G / E)$ and \tilde{W} is abelian of type $(4,2,2)$. Hence $\langle z\rangle=\mho(\tilde{W})$ is a central subgroup of order 2 contained in E. By Lemma 3.2, there is a maximal subgroup M of G such that M / E is cyclic and $C_{G}(E) \leq M$. (If $n>3$, then M is unique. However, if $n=3$ and $C_{G}(E)=\tilde{W}$, then we have three possibilities for M.) Let a be an element in $M-E$ such that $\langle a\rangle$ covers M / E. Then $o(a)=2^{n}$ since $|M / E|=2^{n-1}$ and M does not split over E. Hence $a_{0}=a^{2^{n-2}} \in$ $\tilde{W}-E, a_{0}^{2}=z$, and $M=E\langle a\rangle$. By the structure of $G / E \cong Q_{2^{n}}, n \geq 3$, we have for each $x \in G-M, x^{2} \in \tilde{W}-E, x^{4}=z, x$ induces an involutory automorphism on E (since $\left.C_{G}(E) \leq M\right)$ and so $C_{E}(x) \cong E_{4}, C_{E}(x)>\langle z\rangle$, and $C_{\tilde{W}}(x)=\left\langle x^{2}\right\rangle C_{E}(x)$ is abelian of type (4,2). We have $M^{\prime}<E,\left|M^{\prime}\right| \leq 4$, and $M^{\prime}=[\langle a\rangle, E]$. For each $a^{i} e \in M$, where $e \in E$ and i is an integer, we get

$$
\left(a^{i} e\right)^{2}=a^{i} e a^{i} e=a^{2 i}\left(a^{-i} e a^{i}\right) e=a^{2 i}\left[a^{i}, e\right]
$$

and so $\Phi(M)=\left\langle a^{2}\right\rangle M^{\prime}$. We have exactly the following four cases for the action of $\langle a\rangle$ on E :
(1) a induces an automorphism of order 4 on E.
(2) a induces an automorphism of order 2 on E and $[E, a]=\langle u\rangle$, where $u \in E-\langle z\rangle$.
(3) a induces an automorphism of order 2 on E and $[E, a]=\langle z\rangle$.
(4) a centralizes E.

CASE (1) Since a induces an automorphism of order 4 on E, we get $n \geq 4$ and $C_{E}(a)=\langle z\rangle$. In this case M^{\prime} is a 4-subgroup contained in $E, M^{\prime}>\langle z\rangle$ and for each $\tilde{e} \in E-M^{\prime}, \tilde{e}^{a}=\tilde{e} \tilde{u}$ with some $\tilde{u} \in M^{\prime}-\langle z\rangle$ and $\tilde{u}^{a}=\tilde{u} z$. Also, $C_{E}\left(a^{2}\right)=M^{\prime}$. It follows that $C_{G}\left(M^{\prime}\right)=E\left\langle a^{2}, b^{\prime}\right\rangle$, where $b^{\prime} \in G-M$ and $E\left\langle a^{2}, b^{\prime}\right\rangle$ is a maximal subgroup of G. Set $b=b^{\prime} a$ so that $\tilde{u}^{b}=\tilde{u} z$ for each $\tilde{u} \in M^{\prime}-\langle z\rangle$ and therefore $C_{E}(b)=\langle e, z\rangle$ for some $e \in E-M^{\prime}, e^{a}=e u$ with $u \in M^{\prime}-\langle z\rangle, u^{a}=u z$, and $u^{b}=u z$. Since $G / E \cong Q_{2^{n}}, b^{-1} a b=a^{-1} y$ with $y \in E$. We have two subcases according to $y \in E-M^{\prime}$ or $y \in M^{\prime}$.

CASE (1A) Here $y=e^{\prime} \in E-M^{\prime}$ and so $b^{-1} a b=a^{-1} e^{\prime}$. We compute

$$
a^{b^{2}}=\left(a^{b}\right)^{b}=\left(a^{-1} e^{\prime}\right)^{b}=\left(a^{-1} e^{\prime}\right)^{-1}\left(e^{\prime}\right)^{b}=e^{\prime} a\left(e^{\prime}\right)^{b}=a\left(e^{\prime}\right)^{a}\left(e^{\prime}\right)^{b}=a u
$$

Indeed, if $e^{\prime}=e z^{\mu}(\mu=0,1)$, then $\left(e^{\prime}\right)^{a}=e^{\prime} u,\left(e^{\prime}\right)^{b}=e^{\prime}$, and if $e^{\prime}=$ $e u z^{\mu}(\mu=0,1)$, then $\left(e^{\prime}\right)^{a}=e^{\prime} u z,\left(e^{\prime}\right)^{b}=e^{\prime} z$. On the other hand, $b^{2}=a_{0} x$ with $x \in E$. But $M^{\prime}\langle a\rangle=\langle u, a\rangle$ is isomorphic to $M_{2^{n+1}}$ and so $a^{b^{2}}=a u=$ $a^{a_{0} x}=a^{x}$ implies that $x \in E-M^{\prime}$. We may set $x=e u^{\prime}$ with $u^{\prime} \in M^{\prime}$ and so $b^{2}=a_{0} e u^{\prime}$. We compute
$b^{-1} a^{2} b=\left(a^{-1} e^{\prime}\right)^{2}=a^{-1} e^{\prime} a^{-1} e^{\prime}=\left(a^{-1} e^{\prime} a\right) a^{-2} e^{\prime}=\left(e^{\prime}\right)^{a}\left(e^{\prime}\right)^{a^{2}} a^{-2}=u_{0} z a^{-2}$,
since $\left(e^{\prime}\right)^{a}=e^{\prime} u_{0}\left(u_{0} \in M^{\prime}-\langle z\rangle\right)$ and $\left(e^{\prime}\right)^{a^{2}}=e^{\prime} z$. Therefore

$$
\left(a^{4}\right)^{b}=\left(\left(a^{2}\right)^{b}\right)^{2}=\left(u_{0} z a^{-2}\right)^{2}=a^{-4}
$$

because $C_{E}\left(a^{2}\right)=M^{\prime}$. Since $a_{0}=a^{2^{n-2}} \in\left\langle a^{4}\right\rangle$, we get $a_{0}^{b}=a_{0}^{-1}$. Obviously, b centralizes $b^{2}=a_{0} e u^{\prime}\left(u^{\prime} \in M^{\prime}\right)$ and so

$$
a_{0} e u^{\prime}=\left(a_{0} e u^{\prime}\right)^{b}=a_{0}^{-1} e\left(u^{\prime}\right)^{b}=a_{0} z e\left(u^{\prime}\right)^{b}
$$

which gives $\left(u^{\prime}\right)^{b}=u^{\prime} z$ and $u^{\prime} \in M^{\prime}-\langle z\rangle$. Therefore $u^{\prime}=u z^{\epsilon}(\epsilon=0,1)$ and $b^{2}=a_{0} e u z^{\epsilon}$. On the other hand,

$$
a u=a^{b^{2}}=a^{a_{0} e u z^{\epsilon}}=a^{e u}=a\left(a^{-1} e u a\right) e u=a(e u)(u z) e u=a u z
$$

which is a contradiction.
Case (18) Here $b^{-1} a b=a^{-1} y$ with $y \in M^{\prime}$. This gives

$$
\begin{aligned}
\left(a^{2}\right)^{b} & =\left(a^{-1} y\right)^{2}=a^{-1} y a^{-1} y=\left(a^{-1} y a\right) a^{-2} y=y^{a} y^{a^{2}} a^{-2} \\
& =y z^{\nu} y a^{-2}=z^{\nu} a^{-2}(\nu=0,1)
\end{aligned}
$$

and so $\left(a^{4}\right)^{b}=\left(z^{\nu} a^{-2}\right)^{2}=a^{-4}$. Since $a_{0} \in\left\langle a^{4}\right\rangle$, we get $a_{0}^{b}=a_{0}^{-1}$. If $b^{2} \in M^{\prime}\left\langle a_{0}\right\rangle$, then $S=M^{\prime}\langle a, b\rangle$ is a maximal subgroup of G not containing E since $S \cap E=M^{\prime}$, a contradiction. Thus $b^{2}=a_{0} e_{0}$ with $e_{0} \in E-M^{\prime}$. Since b centralizes b^{2}, we get

$$
a_{0} e_{0}=\left(a_{0} e_{0}\right)^{b}=a_{0}^{-1} e_{0}^{b}=a_{0} z e_{0}^{b}
$$

and so $e_{0}^{b}=e_{0} z$. Hence $e_{0}=e u z^{\epsilon}(\epsilon=0,1)$ and $b^{2}=a_{0} e u z^{\epsilon}$. From $b^{-1} a b=$ $a^{-1} y$ with $y \in M^{\prime}$, we get

$$
b^{-2} a b^{2}=\left(a^{-1} y\right)^{b}=\left(a^{b}\right)^{-1} y^{b}=y a y^{b}=a\left(a^{-1} y a\right) y^{b}=a\left(y z^{\eta}\right)\left(y z^{\eta}\right)=a
$$

where $\eta=0$ if $y \in\langle z\rangle$ and $\eta=1$ if $y \in M^{\prime}-\langle z\rangle$. On the other hand, we compute

$$
a=a^{b^{2}}=a^{a_{0} e u z^{\epsilon}}=a^{e u}=e u a e u=a\left(a^{-1} e u a\right) e u=a(e u)(u z) e u=a u z
$$

which is a contradiction.
CASE (2) Here a induces an automorphism of order 2 on E and $M^{\prime}=$ $[E, a]=\langle u\rangle$, where $u \in E-\langle z\rangle$. It follows $\langle u, z\rangle \leq Z(G)$. For each $\tilde{e} \in$ $E-\langle u, z\rangle, \tilde{e}^{a}=\tilde{e} u$. Since $\Phi(M)=\langle u\rangle \times\left\langle a^{2}\right\rangle$ and $\Phi(G) \geq E$, there exists exists $b \in G-M$ such that $b^{2}=a_{0} e$, where $e \in E-\langle u, z\rangle$. We have $a^{b}=a^{-1} y$ with $y \in E$. This gives

$$
\begin{gathered}
a^{b^{2}}=\left(a^{-1} y\right)^{b}=\left(a^{b}\right)^{-1} y^{b}=y a y^{b}=a y^{a} y^{b}=a^{a_{0} e}=a^{e}= \\
=e a e=a\left(a^{-1} e a\right) e=a e u e=a u
\end{gathered}
$$

Hence $y^{a} y^{b}=u$. If $y \in\langle u, z\rangle \leq Z(G)$, then $y^{2}=1=u$, a contradiction. Therefore $y=e s$ with $s \in\langle u, z\rangle$. But then

$$
u=y^{a} y^{b}=(e s)^{a}(e s)^{b}=(e u s)\left(e^{b} s\right)
$$

and so $e^{b}=e$. Hence b centralizes E, a contradiction.

CASE (3) Here a induces an automorphism of order 2 on E and $M^{\prime}=$ $[E, a]=\langle z\rangle$. It follows $\Phi(M)=\left\langle a^{2}\right\rangle$ and so $\left\langle a_{0}\right\rangle$ is normal in G. Since $\Phi(G) \geq \tilde{W}=E\left\langle a_{0}\right\rangle$, it follows $\left\langle a_{0}, x^{2} \mid x \in G-M\right\rangle=\tilde{W}$. Since $\left\langle x^{2}\right\rangle$ is normal in G for each $x \in G-M$ and $x^{4}=z$, we get $\tilde{W} /\langle z\rangle \leq Z(G /\langle z\rangle)$. Set $U=C_{E}(a) \cong E_{4}$ and obviously $Z(M)=U\left\langle a^{2}\right\rangle$. Also, $U=Z(M) \cap E$ is normal in G. Suppose $U \leq Z(G)$. Then the 4 -group $G / E\left\langle a^{2}\right\rangle$ acts as the full stability group of the chain $E>U>1$ since $G / E\left\langle a^{2}\right\rangle$ acts faithfully on E. (Note that $C_{G}(E) \leq M$.) This is a contradiction since $E /\langle z\rangle \leq Z(G /\langle z\rangle)$. Hence for each $x \in G-M$ and each $\tilde{u} \in U-\langle z\rangle$, we have $\tilde{u}^{x}=\tilde{u} z$. There exists $b \in G-M$ such that $b^{2}=a_{0} e$ with $e \in E-U$. Also, $a^{b}=a^{-1} y$ with $y \in E$. Then we compute

$$
\begin{aligned}
a^{b^{2}} & =\left(a^{-1} y\right)^{b}=y a y^{b}=a\left(a^{-1} y a\right) y^{b}=a y^{a} y^{b}=a^{a_{0} e}=e a e \\
& =a\left(a^{-1} e a\right) e=a e z e=a z
\end{aligned}
$$

This gives
(1) $y^{a} y^{b}=z$.

On the other hand, b centralizes b^{2} and so $a_{0} e=\left(a_{0} e\right)^{b}=a_{0}^{b} e^{b}$ which gives
(2) $a_{0} e=a_{0}^{b} e^{b}$.

We compute further

$$
b^{-1} a^{2} b=\left(a^{-1} y\right)\left(a^{-1} y\right)=\left(a^{-1} y a\right)\left(a^{-2} y a^{2}\right) a^{-2}=y^{a} y a^{-2}
$$

and so we get
(3) $\left(a^{2}\right)^{b}=y^{a} y a^{-2}$.

There are two subcases according to $y \in U$ or $y \in E-U$.
CASE (3A) Suppose $y \in U=C_{E}(a)$. Then (1) implies $y^{b}=y z$ and so $y=u \in U-\langle z\rangle$ and $b^{-1} a b=a^{-1} u$. From (3) we get $\left(a^{2}\right)^{b}=a^{-2}$ and so $a_{0}^{b}=a_{0}^{-1}$. From (2) follows $e^{b}=e z$ and we have determined the group stated in part (a) of our theorem for $\epsilon=0$.

CASE (3B) Suppose $y \in E-U$, where $a^{b}=a^{-1} y$. From (1) we get $y z y^{b}=z$ and so $y^{b}=y$. The relation (3) implies $\left(a^{2}\right)^{b}=a^{-2} z$. We compute for each $x \in E$ and each integer i

$$
\left(b\left(a^{2}\right)^{i} x\right)^{2}=b^{2} z^{\xi} \text { and }\left(b a\left(a^{2}\right)^{i} x\right)^{2}=b^{2} y z^{\eta}
$$

where $\xi, \eta=0,1$. Hence the square of each element in $G-M$ lies in $\left\langle b^{2}\right\rangle=$ $\left\langle a_{0} e\right\rangle$ and in $\left\langle a_{0} e y\right\rangle$. Since $\Phi(G) \geq E$, we must have $y=e u$ with some $u \in U-\langle z\rangle$. From $y^{b}=y$ follows $e u=e^{b} u z$ (since $u^{b}=u z$) and so $e^{b}=e z$. Then (2) implies $a_{0} e=a_{0}^{b} e z$ and so $a_{0}^{b}=a_{0} z=a_{0}^{-1}$. From $\left(a^{2}\right)^{b}=a^{-2} z$ follows that $\left\langle a^{2}\right\rangle>\left\langle a_{0}\right\rangle$ which gives $n \geq 4$. We have obtained the group stated in part (a) of our theorem for $\epsilon=1$ and $n \geq 4$.

CASE (4) Here a centralizes E and so M is abelian of type ($2^{n}, 2,2$), $n \geq$ 3 , and $\left\langle a_{0}\right\rangle$ is normal in G, where $a_{0}=a^{2^{n-2}}$. Since $\Phi(G) \geq \tilde{W}=E\left\langle a_{0}\right\rangle$, there exists $b \in G-M$ such that $b^{2}=a_{0} u$, where u is an involution in $E-\langle z\rangle$.

Since $C_{G}\left(b^{2}\right) \geq\langle M, b\rangle=G$, we get $b^{2} \in Z(G),\left\langle a_{0}, b^{2}\right\rangle=\left\langle a_{0}\right\rangle \times\langle u\rangle$ is abelian of type $(4,2)$ and $\Phi(G) \geq\left\langle a^{2}, u\right\rangle$. Again $\Phi(G) \geq \tilde{W}$ implies that there exists $c \in G-M$ such that $c^{2} \in \tilde{W}-\left(E \cup\left\langle a_{0}, b^{2}\right\rangle\right)$ and (as before) $c^{2} \in Z(G)$. If $a_{0} \in Z(G)$, then $\left\langle a_{0}, b^{2}, c^{2}\right\rangle=\tilde{W}$ lies in $Z(G)$ contrary to Lemma 3.2. Hence $a_{0} \notin Z(G)$ and therefore $a_{0}^{b}=a_{0}^{-1}$ and $u^{b}=u z$. We have $Z(G)=\left\langle b^{2}, c^{2}\right\rangle$ is abelian of type (4,2). Proposition 1.7 implies $|G|=2^{n+3}=2|Z(G)|\left|G^{\prime}\right|$ and so $\left|G^{\prime}\right|=2^{n-1}$. Since $\left|(G / E)^{\prime}\right|=2^{n-2}$ and $G^{\prime} \geq\langle z\rangle, G^{\prime}$ is cyclic of order 2^{n-1}. Set $a^{b}=a^{-1} e$ with $e \in E$. If $e \in\left\langle a_{0}, u\right\rangle=\left\langle a_{0}, b^{2}\right\rangle$, then $\langle a, b\rangle$ is a maximal subgroup of G which does not contain E, a contradiction. Thus $e \in E-\langle z, u\rangle$ and we compute

$$
(b a)^{2}=b a b a=b^{2}\left(b^{-1} a b\right) a=b^{2}\left(a^{-1} e\right) a=b^{2} e .
$$

Since both b^{2} and $b^{2} e$ lie in $Z(G)$, it follows $e \in Z(G)$ and therefore $Z(G)=$ $\left\langle e, b^{2}\right\rangle$. Finally, $G^{\prime}=\left\langle a^{2} e\right\rangle$ is cyclic of order 2^{n-1}. We have obtained the group stated in part (b) of our theorem.

4. 2-GROUPS WITH EXACTLY ONE SUBGROUP OF ORDER 2^{4}

 AND EXPONENT 4Theorem 4.1. The following two statements for a 2-group G of order $>2^{4}$ are equivalent:
(a) $\left|\Omega_{2}(G)\right|=2^{4}$.
(b) G has exactly one subgroup of order 2^{4} and exponent 4 .

Proof. Suppose that (a) holds. The results of sections 2 and 3 imply that $\Omega_{2}(G)$ is isomorphic to one of the following groups:

$$
Q_{8} * C_{4}, Q_{8} \times C_{2}, D_{8} \times C_{2}, C_{4} \times C_{2} \times C_{2}, \text { and } C_{4} \times C_{4} .
$$

In particular, $\exp \left(\Omega_{2}(G)\right)=4$ and so (b) holds.
Assume now that (b) holds. Let H be the unique subgroup of order 2^{4} and exponent 4 in G, where $|G|>2^{4}$. We want to show that $H=\Omega_{2}(G)$. Suppose that this is false. Then there exist elements of order ≤ 4 in $G-H$, where H is a characteristic subgroup of G. In particular, there is an element $a \in G-H$ such that $o(a) \leq 4$ and $a^{2} \in H$. Set $\tilde{H}=H\langle a\rangle$ so that $|\tilde{H}|=2^{5}$. Since H is neither cyclic nor a 2 -group of maximal class, there exists a G-invariant 4-subgroup W_{0} contained in H.

Let x be any element in $\tilde{H}-H$ with $o(x) \leq 4$. Then $\left\langle x, W_{0}\right\rangle$ is a subgroup of order $\leq 2^{4}$ in \tilde{H} and so there exists a maximal subgroup M of \tilde{H} containing $\left\langle x, W_{0}\right\rangle$. Since $\exp (M \cap H) \leq 4$ and $M=\langle M \cap H, x\rangle$, we have $\Omega_{2}(M)=M$. But $|M|=2^{4}$ and $M \neq H$, so M is either elementary abelian or $\exp (M)=8$. Suppose that $\exp (M)=8$. Then M is a nonabelian group of order 2^{4} with a cyclic subgroup of index 2 . Since M possesses the normal 4 -subgroup W_{0}, it follows that M is not of maximal class. Thus $M \cong M_{2^{4}}$. But $\Omega_{2}\left(M_{2^{4}}\right)$ is abelian of type $(4,2)$ which contradicts the above fact that $\Omega_{2}(M)=M$.

We have proved that M is elementary abelian of order 2^{4}. In particular, x must be an involution and $\exp (\tilde{H})=4$ because for each $y \in \tilde{H}, y^{2} \in M$. Hence all elements in $\tilde{H}-H$ are of order ≤ 4 and so (by the above) all these elements must be involutions. It follows that for each $h \in H,(h x)^{2}=1$ and so $h^{x}=h^{-1}$. Therefore the involution $x \in \tilde{H}-H$ acts invertingly on H. Let k be any element of order 4 in H. Since $k^{x}=k^{-1},\langle k, x\rangle=D \cong D_{8}$. Let \tilde{M} be a maximal subgroup of \tilde{H} containing D. Then $|\tilde{M}|=2^{4}, \exp (\tilde{M})=4, \tilde{M} \neq H$, and this is a final contradiction. Our theorem is proved.

5. A theorem of Berkovich on 2-groups with exactly one ABELIAN SUBGROUP OF TYPE $(4,2)$

Here we improve results of Berkovich [1, Theorem 43.4] and Berkovich [2, Sect.48].

Theorem 5.1. Let G be a 2-group containing exactly one abelian subgroup of type $(4,2)$. Then one of the following holds:
(a) $\left|\Omega_{2}(G)\right|=8$ and G is isomorphic to one of the metacyclic groups (a),(b) or (d) in Proposition 1.4.
(b) $G \cong C_{2} \times D_{2^{n+1}}, n \geq 2$.
(c)

$$
\begin{gathered}
G=\langle b, t| b^{2^{n+1}}=t^{2}=1, b^{t}=b^{-1+2^{n-1}} u, u^{2}=[u, t]=1 \\
\left.b^{u}=b^{1+2^{n}}, n \geq 2\right\rangle
\end{gathered}
$$

Here $|G|=2^{n+3}, Z(G)=\left\langle b^{2^{n}}\right\rangle$ is of order $2, \Phi(G)=\left\langle b^{2}, u\right\rangle, E=$ $\left\langle b^{2^{n}}, u, t\right\rangle \cong E_{8}$ is self-centralizing in $G, \Omega_{2}(G)=\langle u\rangle \times\left\langle b^{2}, t\right\rangle \cong C_{2} \times$ $D_{2^{n+1}}, G^{\prime}=\left\langle b^{2^{n}}, u\right\rangle \cong E_{4}$ in case $n=2$, and $G^{\prime}=\left\langle b^{2} u\right\rangle \cong C_{2^{n}}$ for $n \geq 3$. Finally, the group G for $n=2$ (of order 2^{5}) is isomorphic to the group (a) in Theorem 3.1 for $n=2$ (since $\left.\Omega_{2}(G) \cong C_{2} \times D_{8}\right)$.

Proof. Let G be a 2 -group possessing exactly one abelian subgroup A of type $(4,2)$. Obviously, A is normal (even characteristic) in G. Set $C=C_{G}(A)$. Then C is normal in G and G / C is isomorphic to a subgroup of $\operatorname{Aut}(A) \cong D_{8}$. We claim that $\Omega_{2}(C)=A$. Indeed, let $y \in C-A$ with $o(y) \leq 4$ and $y^{2} \in A$. Then $A\langle y\rangle$ is an abelian subgroup of order 2^{4} and exponent 4. But then $A\langle y\rangle$ contains an abelian subgroup of type $(4,2)$ distinct from A, a contradiction. Thus $\Omega_{2}(C)=A$, as claimed. Proposition 1.4 implies that C must be abelian of type $\left(2^{n}, 2\right), n \geq 2$. If $\Omega_{2}(G)=\Omega_{2}(C)=A$, then G is metacyclic and G is isomorphic to one of the groups (a), (b) or (d) in Proposition 1.4.

We assume from now on that $\Omega_{2}(G)>A$. Set $U=\Omega_{1}(A)$ and $\langle z\rangle=\Phi(A)$ so that $z \in Z(G)$ and U is a normal 4-subgroup of G. Let $a \in G-C$ such that $o(a) \leq 4$ and $a^{2} \in C$. Obviously, $a^{2} \in U$ since $U=\Omega_{1}(C)$. We consider the subgroup $D=\langle a\rangle C$ and we have $|D: C|=2$. Since D is a nonabelian group (of order $\geq 2^{4}$) containing a normal 4-subgroup U, it follows that D
is not of maximal class. If $o(a)=4$, then a does not centralize U (otherwise $U\langle a\rangle$ would be abelian of type $(4,2)$ distinct from A) and so $U\langle a\rangle \cong D_{8}$. But then there exists an involution in $(U\langle a\rangle)-U$. In any case the coset $C a$ contains involutions and let t be one of them. If $C_{C}(t)$ contains an element s of order 4 , then $\langle s, t\rangle$ is an abelian subgroup of type $(4,2)$ distinct from A, a contradiction. Hence $C_{C}(t)$ is elementary abelian and (since D is not of maximal class) $C_{C}(t)=U$ and $E=C_{D}(t)=U \times\langle t\rangle \cong E_{8}$. For each $x \in D-C=C t, C_{C}(x)=U$. Hence $x^{2} \in U$ and $\langle U, x\rangle$ is elementary abelian (of order 8). Thus, all elements in $D-C$ are involutions and therefore t acts invertingly on C. The involution t induces on A the central involutory automorphism of $\operatorname{Aut}(A) \cong D_{8}$ and so D is normal in G. We have $D \cong$ $C_{2} \times D_{2^{n+1}}, n \geq 2$.

Suppose that G / C has a cyclic subgroup K / C of order 4 . Then $K>D$ and let $k \in K$ be such that $\langle k\rangle$ covers K / C. We have $k^{2} \in D-C$ and so k^{2} is an involution. It follows $o(k)=4$ and so $\langle k, z\rangle$ is an abelian subgroup of type $(4,2)$ distinct from A, a contradiction. We have proved that G / C is elementary abelian. If $|G / C|=2$, then $G=D$ and we are done.

It remains to study the possibility $G / C \cong E_{4}$. By the above, if $y \in G-D$ and $o(y) \leq 4$, then $y^{2} \in C$ and y is an involution acting invertingly on C. But then $y t \notin C$ and $y t$ centralizes C, a contradiction. Hence, for each element $y \in G-D, o(y) \geq 8$ and $y^{2} \in C$. This gives $\Omega_{2}(G)=D, C_{G}(t)=E$ and so E is a self-centralizing elementary abelian subgroup of order 8 in G.

For each $y \in G-D$, we have $y^{2} \in C$ and $o\left(y^{2}\right) \geq 4$ and so y centralizes a cyclic subgroup of order 4 in A. Since y does not centralize A, it follows that y does not centralize $U=\Omega_{1}(A)$. Hence $D=C_{G}(U)$ and so $Z(G)=\langle z\rangle=\Phi(A)$ is of order 2. Since $\Omega_{2}(\langle y\rangle C)=A$ and $\langle y\rangle C$ is nonabelian, Proposition 1.4 implies that $\langle y\rangle C$ is isomorphic to a group (a) or (d) of that proposition.

Assume that there is $b \in G-D$ such that $\langle b\rangle C$ is isomorphic to a group (d) of Proposition 1.4. In particular, $|\langle b\rangle C| \geq 2^{5}, C$ is the unique abelian maximal subgroup of $\langle b\rangle C$ (since $\left.Z(\langle b\rangle C) \cong C_{4}\right)$, o $(b)=8, Z(\langle b\rangle C)=\left\langle b^{2}\right\rangle<A$, $\left\langle b^{4}\right\rangle=\langle z\rangle=\Phi(A), C$ contains a cyclic subgroup $\langle a\rangle$ of index 2 such that $\langle a\rangle$ is normal in $\langle b\rangle C, o(a) \geq 2^{3}, A \cap\langle a\rangle \cong C_{4},\langle b\rangle \cap\langle a\rangle=\langle z\rangle$, and $a^{b}=a^{-1} z^{\epsilon}$ with $\epsilon=0,1$. Also, we see that for each $y \in(\langle b\rangle C)-C, C_{C}(y)=\left\langle b^{2}\right\rangle \cong C_{4}$, and y is of order 8 . Since t acts invertingly on C, we get $a^{b t}=a$ and so $\left|C_{C}(b t)\right| \geq 2^{3}$. This implies that $\langle b t\rangle C \cong M_{2^{n+2}}$ because $C_{C}(b t) \leq Z(\langle b t\rangle C)$.

Replacing b with $b t$ (if necessary), we may assume from the start that there is an element $b \in G-D$ such that $\langle b\rangle C \cong M_{2^{n+2}}(n \geq 2)$, which is a group in part (a) of Proposition 1.4. We have $o(b)=2^{n+1},\langle b\rangle$ is a cyclic subgroup of index 2 in $\langle b\rangle C, z=b^{2^{n}}, U=\langle z, u\rangle=\Omega_{1}(\langle b\rangle C)$, and $u^{b}=u z$. This gives also $b^{u}=b z=b^{1+2^{n}}, Z(\langle b\rangle C)=\left\langle b^{2}\right\rangle \cong C_{2^{n}}, A=\left\langle b^{2^{n-1}}=v, u\right\rangle$, and $C=\left\langle b^{2}\right\rangle \times\langle u\rangle$. We see that $C_{C}(b t)=\langle v u\rangle \cong C_{4}$ and so $Z(\langle b t\rangle C)=\langle v u\rangle$. It follows that $\langle b t\rangle C \cong M_{2^{4}}$ for $n=2$ and $\langle b t\rangle C$ is isomorphic to a group (d) of Proposition 1.4 for $n>2$. In any case, $(b t)^{2} \in\langle v u\rangle-\langle z\rangle$ and so
$(b t)^{2}=v u$ or $(b t)^{2}=v^{-1} u=v u z$. Replacing u with $u z$ (if necessary), we may assume $(b t)^{2}=v u$, where $v=b^{2^{n-1}}$. From this crucial relation follows $b^{t}=b^{-1+2^{n-1}} u$. The structure of $G=\langle b, t\rangle$ is determined and our theorem is proved.

ThEOREM 5.2. The following two statements for a 2-group G are equivalent:
(a) G has exactly two cyclic subgroups of order 4.
(b) G has exactly one abelian subgroup of type $(4,2)$.

Proof. Suppose that G is a 2-group having exactly two cyclic subgroups U, V of order 4. Then $\left|G: N_{G}(U)\right| \leq 2$ and so $V \leq N_{G}(U)$. Similarly, $U \leq N_{G}(V)$. We get $[U, V] \leq U \cap V$. Since $A=\langle U, V\rangle$ has exactly two cyclic subgroups of order $4, A$ must be abelian of type $(4,2)$. But A is generated by its two cyclic subgroups of order 4 and so (b) holds.

Assume that (b) holds. Then the group G is completely determined by Theorem 5.1. Looking at $\Omega_{2}(G)$, we see that G has exactly two cyclic subgroups of order 4.

Acknowledgement

The author thanks Professor Y. Berkovich for numerous helpful discussions.

References

[1] Y. Berkovich, On subgroups and epimorphic images of finite p-groups, J. Algebra 248 (2002), 472-553.
[2] Y. Berkovich, Selected topics of finite group theory, in preparation.
[3] Z. Janko, Finite 2-groups with small centralizer of an involution, 2, J. Algebra, 245 (2001), 413-429.
[4] Z. Janko, Finite 2-groups with no normal elementary abelian subgroups of order 8, J. Algebra 246 (2001), 951-961.
[5] Z. Janko, Finite 2-groups with a self-centralizing elementary abelian subgroup of order 8, J. Algebra 269 (2003), 189-214.
Z. Janko

Mathematical Institute
University of Heidelberg,
69120 Heidelberg
Germany
E-mail: janko@mathi.uni-heidelberg.de
Received: 17.12.2003

[^0]: 2000 Mathematics Subject Classification. 20D15.
 Key words and phrases. 2-group, metacyclic group, Frattini subgroup, self-centralizing subgroup.

