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DELAY DEPENDENT STABILITY CRITERION FOR TIME
DISCRETE LINEAR SYSTEMS

X.H. TANG AND S.S. CHENG
Central South University, China and Tsing Hua University, Taiwan

ABSTRACT. It is shown that every solution of the linear difference
system with constant coefficients and delays tends to zero if a certain ma-
trix derived from the coefficient matrix is a M-matrix and the diagonal
delays satisfy delay dependent conditions.

1. INTRODUCTION

Delayed linear difference systems with constant coefficients of the form
m
(1) Azi(n):—Zaijxj(n—kij), ’L':172,...7’I’)’L7
j=1

with
(2) kij 6{0,1,2,...}, 1<i,j<manda; >0,:=1,2,...,m,

arise in many mathematical models involving interacting variables. As a spe-
cific example, consider the following dynamical model of a two-nation arms
race. Let A(n) and B(n) be the armament expenditures of two countries A
and B in year n. The increase A(n + 1) — A(n) in expenditures by A in two
consecutive years usually depends on the expenditures of A and B in previous
years. If we assume that large expenditures in the (n — 7)-th year will deplete
a country’s treasury in the n-th year, it is reasonable that

An+1)—An) = —aA(n — 1)+ 6B(n — o),

2000 Mathematics Subject Classification. 39A10, 39A11.
Key words and phrases. M-matrix, delay, stability.
Supported by NNSF of China.

121



122 X.H. TANG AND S.S. CHENG

where « is a positive proportionality constant, and 3 is a coefficient saying
to which degree the country A does not distrust the country B. Similar
assumptions for country B lead to

B(n+1)—B(n)=—yBn—-¢&) +6A(n — ),

where v > 0. A natural question is whether the expenditures A(n) and B(n)
will tend to zero since this situation corresponds to ultimate disarmament. In
mathematical terms, we are concerned with the question as to whether (1) is
asymptotically stable (i.e., every solution of (1) tends to zero).

When each k;; is zero, it is well known that system (1) is asymptotically
stable if, and only if, the spectral radius of the matrix I — A is strictly less
than 1, where I is an identity matrix and A = (a;).

When some k;; is not zero, it is well known that (1) can be embedded
into a system of the form

y(n+ 1) = By(n).

Then the asymptotic stability of (1) is determined from evaluating the spectral
radius of the matrix B. Although numerical techniques can be utilized to
calculate the spectral radius of B, it is of great interest to determine explicit
conditions which guarantee the asymptotic stability of (1). This is particularly
true when (1) is viewed as the first approximation of a nonlinear model.

In the case when (1) is of the form

3 z1(n+1) —z1(n) + ax1(n — k) + bxa(n — k) =0,
(3) x2(n+1) — xz2(n) + cx1(n — k) + dza(n — k) =0,

a necessary and sufficient condition for asymptotic stability is known [1]. In
particular, when ¢ = 0, a necessary and sufficient condition for the above two
variable constant delay system to be asymptotically stable is that

(4) 0<a,d<2(:os2kj_1,

and when

a b cost —sint T
= < —
(c d) q(sint cost ),q€R7|t|_2,

a necessary and sufficient condition is

km + |t|
2 .
(5) 0 < g < 2cos 1

For the general case, it can be shown that when the spectral radius of
the matrix (d;; — aij),,,, » where d;; is the Kronecker delta, is less than one,
then (1) is asymptotically stable [2]. Therefore, explicit sufficient condition
can be constructed by demanding a natrural norm of (§;; — a;;) to be less
than 1. Such a condition, however, is independent of the delays k;;. On the
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other hand, (4) and (5) are delay dependent conditions. Therefore, sufficient
conditions for (1) should be expected.

In this paper, we will give a sufficient condition which guarantees the
asymptotic stability of (1) and which involves the delays k;;, ¢ = 1, ..., m. For
convenience, we recall the concept of a M-matrix (see e.g. Fiedler [3]): A nxn
matrix C' = (¢;;) is an M-matrix if ¢;; < 0 for ¢ # j, and all principal minors
of C are positive. There are many equivalent formulations of this concept (see
e.g. Fiedler [3, Theorem 5.1.]). In particular, if C' is an M-matrix, then C'~!
is a positive matrix.

2. STABILITY CRITERION
To the n x n matrix A, we associate a new matrix A = (@;;) defined by
(6) Qi = Qii,
fori=1,2,...,m, and
(3ki; +4)% + (kis + D)agi [(kii + 2)(3ki; + 4) + 2k4i (ki + 1)%a;;]
(Bkis +4)% — (ki + D)agi [(ki + 2)(Bkii + 4) + 2k (ki + 1)%a4)
fori#jandi,j=1,2,...,m.

Qij = — |aij,

THEOREM 2.1. Assume that
1
(ki + 1)

7 i —=1,2.....m.
(7) a <2(kii+1)+2 i m
If A is an M-matriz, then every solution (x1(n),z2(n),...,zm(n)) of (1)

tends to 0 as n — oo.
We first derive a preparatory result.

LEMMA 2.2. Under the conditions of Theorem 2.1, every solution of (1)
is bounded.

PROOF. Assume to the contrary that (z1(n),z2(n),...,zm(n)) is an un-
bounded solution of (1). Without loss of generality, we may assume that
(8) limsup |z;(n)| =00, i =1,2,..., k(< m),

n—oo

and
(9) |z;(n)| < M, forn>0; i=k+1,k+2,...,m.

Let N be the smallest integer such that N > k;; for all i. There is an
integer N1 > N such that for each ¢ = 1,2,...,k, the maximum of the
sequence {|z;(n)|} inset {0,1,..., N1} is attained at a point in the set { N, N+
1,...,N1}. Fixi =1,2,...,k. For each integer I > 1, let ny; € {N,N +
1,..., N1 41} be such that |z;(ny)| = max{|z;(n)| : 0 <n < Ny +1}. We may
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assume that {n;}7°, is a nondecreasing sequence. By taking the subsequences
if necessary, we have k sequences {n;; }7°, of integers, i = 1,2,..., k, such that

(10)  ny 1 oo, |zi(ny)| T ooasl — oo, |x;(n)| < |zi(ng)| for 0 <n < ny,

for i = 1,2,...,k, where n; = max{ny : i = 1,2,...,k}. Again by taking
the subsequences if necessary, we may assume for each ¢ = 1,2,... k, all
the terms in the sequence {z;(n;)}2, are of the same sign. Without loss of
generality (i.e. by using —z;(n) instead of z;(n) and —a;; instead of a;; for
j # 1, if necessary), we may assume that |z;(ny)| = z;(n;). Then

lz;(n)| < zi(ng), 0<n<n;, i=1,2... k.
It follows from (1) that

0 < — Zaijwj(nil —kij — 1) < —auzi(ng — ki — 1)
J=1

k m
+ 3 laglzi(n) + MY ),

J#i Jj=k+1
or
1 k m
(11) zl(nll—k“—l) S a— Z |6Lij|Ij(7’le> + M Z |aij| 5 1= 172, ey :ZC
g j=k+1
Set
1 k m
12 L i (n; Al i=1,2,.. k.
( ) Qg @i Z|aZJ|IJ(nﬂ) +M Z |a”LJ| y U 1727 7k
J#i J=k+1
We will now show
k m
(13) aiixi(nil)—i-Zdij;vj(nﬂ) <M Z |dij|, i=1,2,...,k.
J#i j=k+1

If z;(ny) < a4, then (13) obviously holds. If z;(n;) > ay, then by (11) and
(12) there exists an integer [ with 0 < [F < k;; such that

xi(ng =17 — 1) < ay and z;(nyg — 1) > .
Let &; € (0, 1] such that
wi(na — 17) = &alwi(na — 7)) — wi(na — 17 — 1)]
zi(ni — 17 = 1) + (1 = &) lwi(na — 17) = i(na — 17 —1)]
(14) = .
From (1) we have

(15)  Azi(n) < ay[—zi(n — ki) + o) < agi (|ei(na)| + aa), N <n<ny.
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For ny — I —1 <n <ny — 1, summing (15) and using (14), we have

ngip— l —2

i —xi(n— ki) < Z Azi(§) + (1 = &a)Azi(nyg — 17 — 1)

j=n—kq;
ai; (|Jzi ()| + cuar) (nag + ki — 17 — &1 — n),

IN

for ny —1F —1 < mn < ny — 1. Substituting this into the first inequality in (15),
we obtain

Axi(n) < a (|oi(na)| + i) (na ki — 1 —&q—n), ng—1; —1 <n <ny—1.
Combining this and (15), we have

(16)  Azi(n) < ag (|zi(na)| + ai) min{l, ag(na + ki — 17 — &a —n)},

for nyg — I —1 <n <ny — 1. We consider the following two cases:

CASE 1. 17 + & < 2(ki; +1)%/(3ki; +4). In this case, by (16) and (7), we
have

zi(nq) — aq

= Z Az;(n) + & Axi(ng — 17 — 1)

nilfl

af (lzi(na)| + i) | Y (i + ki — 1 — &1 —n) + (ki + 1 — &)

n=ni;i —lj

IN

= ag; (|ei(na)] + aa) | (ks + 1) + &) — %(l;‘ +&u)? - %(lz‘ +£?z)]

< a2 s + ) (s + D + ) = 527 4 6]
k’LZ 1 4
= (?Ek“ 14;2 5 (lzi(na)| + aar)
< (?EIZH 13 Qi [(ku + 2)(3ki; +4) + 2k (ki + 1)2%4 (jws(na)| + )

CASE 2. I¥ + & > 2(kii +1)?/(3ki; +4). In this case, there exists an
integer m} and n; € [0,1) such that

2(kii +1)°

M= e
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Consequently, from (16) we conclude that

T (nll) — Qyl
ng—mj;—2
= &Axi(ng — 17 — 1) + Z Axzi(n) + (1 —ni)Azi(nyg —m} —1)
n=n; —0*
’ﬂil—l
+nalz;(ng —m; —1) + Z Ax;(n)
n=n; —m;

< ai; (Jzi(na)| + cur) |:(§il + 17 —m* —ny) +naai (ki +mi +1 =17 — &)

nilfl

taii > (na ki — 1 — & — n)}

) F
n=n; —m;

= ai; (|zi(na)] + aar) {(&‘z + 1) [1 = ai(mi 4+ ni)]

+lai (ki +1) = 1] (mI +nq) + §aii(mi +mi)? — §aii(mi + 77121)}

< A (|-:Cz N4l | + all gzl +l 1 - au(m + nll)]

kl'L
(ku + 1)

< (773 (|xz nzl | + azl ku + 1 1 - aii(mz + nil)]

T faasChi 1) — 1] (mf 4 ) + = (m? + nmz}

i

[au(kn + 1) - ] (m + ml) (k” +1

)a”(mj + 771‘1)2}

kii
< aii (|@i(na)| + aar) |:ku +1—(m} +na)+ 5 7) 1)aii(m;* +mz)2}
(ki +1) 2
= Bk 1 4)20@ [(kis + 2) (ki + 4) + 2kii (ki + 1)ass| (|zi(na)| + aar) -

Combining the above two cases, we have

aiizs(nit) (3kii +4)% + (ki + D)ag [(kii + 2)(3ki; + 4) + 2k4i (kis + 1)%as]
SRR = By + 4)2 = (ki + Da (ki + 2) Bk + 4) + 2ka (ki + 1)%a)]
k m
x> aslzi(ng) + M > agl |,
i Pl

for i =1,2,..., k, which implies (13) is true.
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Let A = (@ij)kxk denote the k-th leading principal submatrix of A. Then

Ay, is also an M-matrix of k order, and so fl;l > 0. Hence, it follows from
(13) that

(@1 (), w2 (n2), - 2k ()"
T
m m m
_— ~ ~ ~
SMA Y agl, Y lagsl-es Y lawgl |
j=k+1 j=k+1 j=k+1
for I =1,2,.... From this, we conclude that
limsup |z;(ng)| < o0, i =1,2,...,k,
l—o00
which is contrary to the fact that |z;(ng)| — co asl — o0,i =1,2,..., k, and
so the proof is complete. O

We now turn to the proof of Theorem 2.1. Let (z1(n),22(n),...,2,(n))
be a solution of (1) for n =0,1,2,...,. We will prove that
(17) lim a;(n)=0,i=1,2,...,m
in two possible cases.

Case 1. {3770 ajjaj(n — kij)}oo, @ = 1,2,...,m, all are nonoscilla-
tory sequences. Then {Az;(n)}22, are eventually sign-definite, and so by
Lemma 2.2, the limits ¢; = lim,,_,o x;(n) exist for i = 1,2,...,m. It follows
that Az;(n) - 0asn — 00,0 =1,2,...,m. By (1), we have

m
Zaijcj = 0, = 172,...,771,
j=1

which implies that

m
(18) aiileil =Y laijlle;] <0, i=1,2,...,m.

j#i
Set A = (Gi5), where G;; = a;; and a;; = —|ay;| for j # 4. Then A>Aand A
has non-positive off-diagonal entries. In view of [4, Theorem 2.5.4], the matrix
A is also an M-matrix. Since (18) can be expressed as the matrix inequality
A1), em))T < (0,...,0)T, by applying the positive matrix A~! to both
sides, we conclude that ¢; =c; =--- = ¢, = 0.

CASE 2. At least one of the sequences {ZTZl aijri(n — kij)}olo,t =
1,2,...,m, is oscillatory. Set
U; = limsup |z;(n)], i=1,2,...,m.

n—oo
By Lemma 2.2, U; < o0,i = 1,2,...,m. It suffices to prove that U; =
Uy = ... = U, = 0. By rearranging the indices, we may assume that
{078 aijrj(n—kij)}olo i = 1,2,..., k, are oscillatory and {377 | a;;x;(n —
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kij)}o2y, i = k+1,k+2,...,n, are nonoscillatory. It follows from (1) that

n=0>

{Az;(n)}s2 (i =1,2,...,k) are oscillatory and

(19) lim Az;(n)=0,i=k+1,k+2,...,m.

Hence, for any ¢ > 0, there exist k sequences {n; } of integers, i = 1,2,...,k
such that

(20)

ng T oo, |zi(na)| — U; as l — oo, |zi(ni)| > U; — ¢,
Azi(ng —1) >0, |x;(n)| < U; + ¢ for n > ny,

for i = 1,2,...,k, where ny = min{n;; : i = 1,2,...,k}. By going to subse-
quences if necessary, we may assume |z;(ng)| = z;(ng) ((use —z;(n) instead
of z;(n) and —a;; instead of a;; for j # i, if necessary). By (1), as long as !
is sufficiently large, we have

0< —Zaz‘jﬂﬁj(nil —kij — 1) < —agxi(ng — ki — 1) + Z lai;|(U; + ¢€),
J=1

J#i

or

1 m
(21) zi(ng — ki — 1) < fZIaiﬂ(Uj +e),i=1,2,...,k.

b
Set

1 m

22 = — i (U; L i=1,2,... k.
(22) Bi a__Z|a’J|( jte) i

"o
We will now show
aiwi(na) + Y i (Uj +¢)
i#i
2e(kis + D)ai; [(kii + 2) Bk + 4) + 2kii (ki + 1)2a;]
= (Bkis +4)% — (kis + Va; [(ki + 2) 3k + 4) + 2k (ki + 1)2ai;]’
fori=1,2,...,k If 2;(ny) < By, then (23) obviously holds. If x;(n;) > B,
then by (21) and (22) there exists an integer [* with 0 < [* < k;; such that
wi(ng — 17 — 1) < By and z;(ng — 17) > B
Let &; € (0, 1] such that
zi(ni — 17) — Salzi(na — 17) — xi(na — 17 — 1)]
zi(ni — 17 = 1) + (1 = &) lwi(na — 17) = zi(na — 17 — 1)]
(24) = Ba.
From (1) we have
(25) Azi(n) < au[—zi(n — ki) + Ba] < au (Ui +¢)+ Ba), n1 <n <ng.

(23)
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For ny — I —1 <n <ny — 1, summing (25) and using (24), we have

nll—l:—Q

Bu —xi(n — ki) < Z Azi(j) + (1 = &) Azi(ng — 17 — 1)

Jj=n—ki;

< aiyi (Ui +€) + Ba) (nag + kis — 17 — &1 —n),

for ny —1F —1 <mn < ny — 1. Substituting this into the first inequality in (25),
we obtain

Azi(n) < a3 (Ui +€) + Bul (nu+ki— 1 —&i—n), ng—1F—1<n<ny—1.

3

Combining this and (25), we have
(26)  Azi(n) < ai (Ui +¢€) + Bu) min{1, azi(na + ki — 17 — & —n)},

for ny — If —1 <n < ny — 1. We consider the following two subcases:
SUBCASE 1. I + & < 2(kii +1)?/(3k;; +4). In this case, by (26) and (7),

we have

x;(ni) — B
n;—1
Z Ax(n) + &aAx(ng — 17 —1)

n=ni;i —lj

n;—1
aZ, (Ui +¢) + Ba) Z (mig +kis =17 =& —n) + &k +1— &)

| ="t =7

IN

= % (U + )+ Bu) | (b + 1) + €a) — 205 + &) — 50 + sﬁ)}
< G2 (U €) )+ 1 +60) — 527 4 62
Ak +1)* '
= Bl 1 4)2@121‘ (Ui +¢) + Bu)
< 7& j: 32 aii[(kii + 2) (ki + 4) + 2k (ki + 1)%ai] (Ui +€) + Ba)
< (E(}];:Z—i 32 aii[(kii + 2)(3kyi +4) + 2k (ki + 1)2a“-] (zi(na) + B + 2¢).

SUBCASE 2. I} + & > 2(ki; +1)/(3ki; + 4). In this case, there exists an
integer m; and an 7; € [0,1) such that

2(kii +1)°

e T
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Consequently, from (26) we conclude that

x;i(ni) — B

ng —mj;—2

=&uAzi(ng — 17— 1)+ Y Azi(n) + (1 — i) Az (ng —mj — 1)

n=n; —1I0*

+naAzi(ng —mi =1+ Y Awi(n)

o —a F
n=n; —m;

<ai; (Ui +€) + Ba) |:(§il + 17 —m" —na) + naaii (ki +my +1 =17 — &)

’ﬂil—l

+ai; Z (na + ki — 17 — & — n)]

n=n; —m;

=a;; (Ui +¢) + Bar) {(&z + 1) [1 = aii(mi +na)]
ki + 1) 1] + ) + ;Mmz a)? = gaa(md + 1) |

<ai; (Ui +€) + Ba) § Ea +17) [1 — ayu(m] + ni)]

i

+[aii (ki + 1) — 1] (m] +na) + 2k + 1

)a”- (mi + Uil)2}

<ay (Ui +€) + Ba) [k” +1—(m}+nq)+ maii(m: + 771'1)2}
(k” + 1)
)?

(3k ) a”-[(kii + 2)(3]6“‘ + 4) + Qkii(kii + 1)2aii](($i(nil) + B + 25) .

Combining Cases 1 and 2, we have

aiiﬂfi(nil)
(3kii +4)% + (kis + 1)as [(ki + 2)(3kis + 4) + 2ksi (ki + 1)%as]
T 3Bk +4)% — (ki + Dagi (ki + 2)(Bki + 4) + 2k (ki + 1)%a4]

x> lag|(U; +€)

i

2€(kii + V)ag; [(kii + 2)(3kii + 4) + 2k (ki + 1)%ai;)
(Bki; +4)% — (ki + Dagi [(ki; + 2)(Bkis +4) + 2k (ki + 1)2a4]’




STABILITY CRITERION FOR TIME DISCRETE LINEAR SYSTEMS 131

fori=1,2,...,k. This implies (23) is true. Let I — co and ¢ — 0 in (23), we
obtain

(27) aiU; + Y ayU; <0, i=1,2,....k.
J#i
On the other hand, for each ¢ = k+1,...,m, let {s;}7°; T 0o be sequence
of integers such that lim;_. . x;(s;) = U;. By (19), we have lim;_, o, Ax; (s +
ki;) = 0. Using (1) we have

Axi(si + ki) + aiizi(sqa) + Z aijxi (s + ki — kij)
J#i

0

> Awxi(sy + ki) + agxi(sy) + Z aijlei(sa + ki — kij)l,
J#i

since @;; < —|ai;| < 0. Letting I — oo, we obtain

(28) iU+ Y ;U <0, i=k+1,k+2,...,m.

J#i
By (27) and (28) and using the fact that A is an M-matrix (so that A~!is a
positive matrix), we have Uy = Uy = - -+ = U,,, = 0. The proof is complete.

3. DIscussioN
Applying Theorem 2.1 to equation (3), we have the following statement.

COROLLARY 3.1. Assume that

3 1
(29) 0<a,d<2(k+1)+2(k+1)2
and
p (3k +4)2 + (k + 1)a [(k +2)(3k + 4) + 2k(k + 1)2a]
“ (3k+4)2 — (k + 1a[(k +2)(3k + 4) + 2k(k + 1)2d]
20 (3k+4)% + (k+ 1)d [(k 4+ 2)(3k + 4) + 2k(k + 1)2d] )
(30) BT A2 (hr D[k T 2@k £ 8 1okt 02

Then every solution (x1(n),z2(n)) of (8) tends to 0 as n — oo.

Obviously, when ¢ = 0 or b = 0, (30) holds naturally. In view of Corol-
lary 3.1, (29) is the sufficient condition for asymptotic stability of (3). Note

that
. s 3 1 1 1
2s

km
2+l MRk A D) C2GhAD) 2kt
This shows the conditions for asymptotic stability in Theorem 2.1 are rather
careful.

2 cos
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