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A REMARK ON CONCENTRATION OF THE ERROR

BETWEEN A FUNCTION AND ITS BEST POLYNOMIAL

APPROXIMANTS. II: A PROBLEM OF HASSON

J.L. Wang and S.P. Zhou1

Shaoxing Arts and Science College and Zhejiang Sci–Tech University, China

Abstract. In the present paper we construct a function to give a
positive answer to a problem raised by Hasson [4], that says, the conclusion
of a result ([4, Theorem 1.3]) cannot be strengthened.

1. Introduction

Let C[−1,1] be the space of all real valued continuous functions defined on

the interval [−1, 1], and Ck
[−1,1] be the space of all functions on [−1, 1] which

have k continuous derivatives. Write En(f) to indicate the best approximation
of f ∈ C[−1,1] by polynomials of degree n. As usual, by ‖ · ‖ we denote the
usual supremum norm on [−1, 1], while ‖·‖[a,b] stands for the supremum norm

on [a, b] as specified. Also, D−f(x), D−f(x), D+f(x) and D+f(x) indicate
the four Dini derivatives of f ∈ C[−1,1] at the point x ∈ (−1, 1).

Considering the generalization of the classical alternation theorem ([1]),
Hasson [4] studied the concentration of the error between a function and its
polynomial approximants recently. Hasson proved the following two main
results.

Theorem 1.1 (Hasson [4, Theorem 1.1]). Let k be a positive integer,

f(x) ∈ Ck−1
[−1,1]. If there exists an a ∈ (−1, 1) with one of the following prop-

erties:

f
(k)
+ (a) > f

(k)
− (a),
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or

f
(k)
− (a) > f

(k)
+ (a),

where f
(k)
− (x) and f

(k)
+ (x) are the kth left derivative and kth right derivative

of f(x) at the point x, and if Pn(x) is a sequence of polynomials of degree n
such that

‖f − Pn‖ = O(En(f)) = O(n−k),

then there exist positive constants r and C such that

‖f − Pn‖[a−r/n,a+r/n] ≥ Cn−k, n = 1, 2, 3, . . . .

Theorem 1.2 (Hasson [4, Theorem 1.3]). Let k be a positive integer,

f ∈ Ck−1
[−1,1]. If there exists an a ∈ (−1, 1) with one of the following properties:

D+f
(k−1)(a) 6= D−f (k−1)(a)

or

D−f
(k−1)(a) 6= D+f (k−1)(a),

and if Pn(x) is a sequence of polynomials of degree at most n such that

‖f − Pn‖ = O(En(f)) = O(n−k),

then there exist positive constants r and C such that

‖f − Pn‖[a−r/n,a+r/n] ≥ Cn−k

holds for infinitely many n.

Regarding the sharpness of Theorem 1.2, Hasson [4] wrote: “It would be
also of interest to build a function g satisfying the hypotheses of Theorem 1.3
(Theorem 1.2) and for which, necessarily,

‖g − Pn‖[a−r/n,a+r/n] ≥ Cn−k

infinitely often, but for which

‖g − Pnl
‖[a−r/nl,a+r/nl] = o(n−k

l )

for some sequence {nl} of integers. . . . However we were not able to build
such a function.”

In the present paper we will construct a function to satisfy the above
requirements, that says, the conclusion of Theorem 1.2 cannot be strengthened
to that of Theorem 1.1. It does give a partial answer to the question of Hasson.

We make a few historic remarks. The Hasson’s results are nothing but
local versions of a more general approach to lower estimates of the approxima-
tion error (see [5, 3]). Also, the functions of the form

∑

n−αTn(x) (which we
will use in the construction), where summation is taken over a subsequence
n = nk, are well known in analysis and approximation theory. In particular,
Weierstrass introduced similar series as nowhere differentiable functions, and
Bernstein discussed their approximation properties (see [1]).
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In what follows, we always use C to indicate an absolute positive con-
stant, while Cx to indicate a positive constant that may depend upon x, their
values may be varied even in the same line. Sometimes, according to specific
circumstances, we may use other symbols to indicate a constant, as specified.

2. A Constructive Example

Theorem 2.1. Given 0 < α ≤ 1. There is a function f ∈ C[−1,1] satisfy-

ing En(f) = O(n−α), n = 1, 2, . . . , and

(1) D+f(0) 6= D−f(0),

while

lim sup
n→∞

nα‖f − Pn(f)‖[−r/n,r/n] > 0

and

lim inf
n→∞

nα‖f − Pn(f)‖[−r/n,r/n] = 0

hold at the same time for some r > 0.

Proof. Let Tn(x) = cos(n arccosx) be the Chebyshev polynomial of

degree n. We know its zeros are cos (2k−1)π
2n , k = 1, . . . , n, and its extreme

points are cos kπ
n , k = 0, 1, . . . , n. Write

t4n = cos
(4n− 1)π

8n
, t∗4n = cos

(4n+ 1)π

8n
,

r4n = cos
(4n− 1/2)π

8n
, r∗4n = cos

(4n+ 1/2)π

8n
,

then clearly,

(2) T4n(0) = 1,

and

(3) T4n(t4n) = T4n(t∗4n) = 0.

Furthermore, there are positive constants M1, M2 independent of n such that

M1n
−1 ≤ min{t4n, −t∗4n, r4n, −r∗4n}

≤ max{t4n, −t∗4n, r4n, −r∗4n} ≤M2n
−1.(4)

Let Pn(f, x) be the nth best polynomial approximant of f . We recall the
well-known Freud theorem ([2]) which says that for f0 ∈ C[−1,1], there is a
constant λn,f0 > 0 depending upon n and f0 only such for all f ∈ C[−1,1] that

(5) ‖Pn(f0)− Pn(f)‖ ≤ λn,f0‖f0 − f‖.
Select {nj} ⊂ {4n} by induction. Set n1 = 4, after choose nj , j = 1, 2, . . . , k,
and set

hj(x) = n−α
j Tnj

(x), j = 1, 2, . . . , k,
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take nk+1 satisfying

(6) nk+1 ≥
(

2n
2/α
k

(

max
nk−1≤n<nk

{λn,hk
}+ 1

)1/α
)

,

and (note T ′
nj

(0) = 0)

(7) max
1≤j≤k

n−α
j |T ′

nj
(x)| ≤ k−1n−1

k

for x ∈ [−M2n
−1
k+1,M2n

−1
k+1], where λn,f is the constant appearing in (5) and

M2 is the constant appearing in (4). Define

f(x) =

∞
∑

j=1

n−α
j Tnj

(x),

and write

fk(x) =

∞
∑

j=k

n−α
j Tnj

(x)

for convenience. Clearly, from condition (6), f ∈ C[−1,1]. We check that

(8) En(f) ≈ n−α
k

for nk−1 ≤ n < nk, k = 1, 2, . . . , where n0 = 0. The inequalities

En(f) = O





∞
∑

j=k

n−α
j



 = O(n−α
k )

for nk−1 ≤ n < nk come from (6). At the same time, by a simple well-known
fact, for nk−1 ≤ n < nk (note Pn(hk, x) = 0 for nk−1 ≤ n < nk due to the
oscillation property of the Chebyshev polynomials),

f(x)− Pn(f, x) = fk(x) − Pn(fk, x)

= hk(x)− Pn(hk, x) + fk+1(x) − (Pn(fk, x)− Pn(hk, x))

= hk(x) + fk+1(x) + Pn(fk, x)− Pn(hk, x),

so that by (5) and (6),

En(f) ≥ n−α
k ‖Tnk

‖ − (1 + λn,hk
)‖fk+1‖ = n−α

k − (1 + λn,hk
)

∞
∑

j=k+1

n−α
j

(9) ≥ n−α
k − (1 + λn,hk

)n−α
k+1 ≥ n−α

k − Cn−2
k .

That means, En(f) ≥ Cn−α
k for nk−1 ≤ n < nk and sufficiently large k.

Altogether, (8) holds. We easily note that

‖hk‖[r∗

nk
,rnk

] ≥ Cn−α
k ,
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by the same technique as (9) we can reach that

‖f − Pn(f)‖[r∗

nk
,rnk

] ≥ Cn−α
k

for nk−1 ≤ n < nk, k = 1, 2, . . . . This means that there exists an r > 0 such
that (in view of (4))

‖f − Pnk−1(f)‖[−r/(nk−1),r/(nk−1)] ≥ C(nk − 1)−α,

or

lim sup
n→∞

nα‖f − Pn(f)‖[−r/n,r/n] > 0.

At the same time, it is obvious from (8) and (6) that

‖f − Pnk−1
(f)‖[−r/nk−1,r/nk−1] ≤ Enk−1

(f) ≤ Cn−α
k ≤ Cn−2

k−1,

or

lim inf
n→∞

nα‖f − Pn(f)‖[−r/n,r/n] = 0.

Finally, we verify (1). Write

f(tnk
)− f(0)

tnk

=

k−1
∑

j=1

n−α
j T ′

nj
(ξj) + n−α

k t−1
nk

(Tnk
(tnk

)− Tnk
(0))

+

∞
∑

j=k+1

n−α
j t−1

nk
(Tnj

(tnk
)− Tnj

(0)) =: I1 + I2 + I3,

where ξj ∈ (0, tnk
). From (4) and (6),

|I3| ≤ Ct−1
nk
n−α

k+1 ≤ Cn−1
k ,

while

|I1| ≤
k−1
∑

j=1

n−α
j ‖T ′

nj
‖[−M2n−1

k
,M2n−1

k
] ≤ n−1

k−1

by (7). At the same time there is a constant C1 > 0 such that

I2 = −n−α
k t−1

nk
≤ −C1n

1−α
k

by (2), (3) and (4). Therefore,

f(tnk
)− f(0)

tnk

≤ −C1

holds for sufficiently large k, as well as tnk
↘ 0 as k →∞. This indicates that

D+f(0) ≤ −C1. The same argument can be applied to have a constant C2 > 0
for which D−f(0) ≥ C2. Combining these two inequalities, we evidently see
that (1) holds.
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