
Quantitative Genetics and Evolution

Abstract

Today, evolution is a unifying concept in biology. A century and half ago,
Darwin developed the theory of natural selection, and proposed it as the
main mechanism of evolution. A quantitative approach to the study of evo-
lution required new theoretical developments in population and quantita-
tive genetics. Here, I review the basic concepts of quantitative genetics
neccessary to understand microevolutionary change. Natural selection is a
consequence of differences in fitness (reproductive success) between individ-
uals in a population. But natural selection is not equal to evolution. In or-
der to achieve evolutionary change, variation in fitness must be heritable, i.
e. it must be transmited by genes from parents to offspring. Besides fitness
differences, individuals within a population often differ in many other
characters (morphological, physiological and behavioural) which are also
genetically transmited from generation to generation. It is crucial to distin-
guish the process of selection which operates in an existing generation from
the evolutionary change which is visible in the next generation. Most con-
cepts of quantitative genetics centre around variances and covariances, and
include the evolutionary potential of a population or heritability (ratio of
additive genetic variance and phenotypic variance), the strength of selection
on a particular trait (covariance of particular trait and fitness), the total
strength of selection (phenotypic variance in fitness) and evolutionary re-
sponse (phenotypic change in the next generation) which can be predicted
by breeder’s equation.

HISTORICAL BACKGROUND

On the 24th of November 1859, Charles Darwin published his fa-
mous and most influential book The Origin of Species (1). From that
point on biology was not the same. In The Origin of Species he thor-
oughly developed the theory of natural selection providing numerous
empirical and experimental examples which support natural selection
as the mechanism of evolution. Natural selection is a consequence of
variation in fitness (reproductive success) between individuals in a pop-
ulation. The existence of variation in fitness is a prerequisite but not
sufficient for evolution to occur. Another essential requirement leading
to evolutionary change is that fitness as a trait is inherited through
genes from parents to offspring. Evolution can be viewed as the change
of allele frequencies (classical population genetics), as the change of the
mean phenotype and variance in a population (quantitative genetics),
and as the rate of allele substitutions in a population (molecular popu-
lation genetics). The first two aspects concern short-term evolution
(microevolution), whereas the latter concerns long-term evolution (ma-
croevolution). In this review I will describe the basic concepts of quan-
titative genetics required to understand microevolutionary change.
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Quantitative genetics was developed as a solution to
the debate between two opposing views on evolution and
the mechanism of inheritance (2). According to salta-
tionism evolution was viewed as very fast and an abrupt
process visible through the change of Mendelian (sim-
ple) traits. Mendelian traits are determined by a single
gene with large allelic effects on phenotype, and almost
no environmental influence. Such phenotypes are quali-
tative in nature (they are verbally described), and are
suitable to standard genetic analysis. In contrast, gradu-
alism assumed that evolutionary change is gradual, and
that it is a consequence of selection on quantitative traits.
Such traits (body size, antipredator behaviour, fitness
components etc.) are expressed as quantities in particu-
lar units. At that time, both saltationists and gradualists
believed that Mendel’s particulate theory of inheritance
can be applied only to simple traits. The inheritance of
quantitative traits on the other hand, are beleived to fol-
low different laws connected with the action of fluids
(blending inheritance). In his seminal work Fisher sho-
wed that inheritance and variation in quantitative traits
can be explained by simultaneous segregation of many
Mendelian factors (genes) (3). Consistant with this, quan-
titative (complex) traits are determined by many genes
with very small allelic effects, but with substantial envi-
ronmental influence on phenotype. Since inheritance
and variation in quantitative traits are based on the ag-
gregate action of many loci, they are described by statisti-
cal terms (means and variances) without information
about the individual effect of any given locus. Phenotypic
values for most quantitative traits are normaly distrib-
uted around a mean, and in theoretical quantitative ge-
netics normality is always assumed. Besides its origin in
the field of evolution, the important application of quan-
titative genetics is primarily in the field of animal and
plant breeding which greatly stimulated its development.

Darwin introduced the verbal concepts of evolution,
and he noticed that two visible manifestations of evolu-
tion are genetic variation and evolutionary change. To
describe evolution quantitatively, we must introduce the
basic theoretical concepts of quantitative genetics (4, 5,
6) which are incorporated in quantitative genetic equa-
tions. From these equations we will understand the rela-
tionships between evolutionary change, genetic varia-
tion and the process of selection.

CONCEPTS

Genetic basis of quantitative trait

If a quantitative trait is transmited by genes from par-
ents to offspring, then we expect that parents with higher
trait value will give offspring with higher trait value, and
vice versa. In contrast, if a trait is not genetically trans-
mited, then the offspring of the parents with any trait
value will have similar (population mean) trait value.
The equation which connects the average trait value of
particular offspring with the average trait value of their
parents (midparent value) is the regression equation

Y = (1–h2)M + h2X (1)

Y is the average phenotypic value of offspring from par-
ticular parent pair, X is the average phenotypic value of a
parent pair (midparent value), M is the average pheno-
typic value of parental population (population mean),
and h2 is heritability of a trait (slope of regression line).
Heritability is the ratio of additive genetic variance and
total phenotypic variance, and its meaning will be fully
described later. Phenotypic variances and covariances are
essential in quantitative genetics, and before further con-
sideration it is useful to define them. From elementary
statistics we know that
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where xi and yi are the phenotypic values of i-th individ-
ual, x and y are the mean population values for traits x
and y, and n is the number of individuals in a population.
The variance of a trait x, Vx is a measure of variation in a
population, and represents the mean square deviation, or
mean square minus square of the mean. The covariance
between traits x and y, covxy is a measure of the linear re-
lationship between two traits, and represents the mean
product deviation, or mean product minus product of the
means. If variance and covariance are estimated from a
population sample, then in the upper formulas instead of
1/n we use 1/(n-1).

Decomposition of the phenotype

Each individual in a population has its own pheno-
typic value which can be measured. Phenotypic value
can be decomposed into casual components (5, 6). First,
the phenotypic value P is the sum of the effects of a geno-
type and environment. In the simplest case, when there is
no covariance between genotype and environment, P =
G + E, where G is a genotypic value and E is an environ-
mental deviation. Since environmental deviation is ran-
dom, the mean environmental deviation in a large popu-
lation is equal to zero, and the mean phenotypic value is
equal to the mean genotypic value. Second, the geno-
typic value of a particular individual (or genotype) G is
the sum of different genetic effects. One is transmission
of genes between generations, and the other are allele in-
teractions (dominance and epistasis). According to this,
we have that G = A + D + I, where A is a breeding value
(genic value or additive phenotype), D is a dominance
deviation, and I is an interaction (epistatic) deviation.
Among the components of genotypic value, only the
breeding value is essential for evolution since it measures
the potential of a particular individual (or genotype) to
change the population mean in the next generation.

In order to understand the meaning of breeding value,
we will consider a simple genetic model introduced by
Fisher (3). It assumes that genotypic value is affected by a
single locus with two alleles. In such a situation there is
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no effect of epistasis, and contribution of a single locus to
genotypic value is G = A + D. The genotypic values for
three genotypes are A1A1 (a), A1A2 (d) and A2A2 (-a),
whereas allele frequencies are A1 (p) and A2 (q). Let us
assume that the A1 allele increases and A2 allele de-
creases the trait value. The genotypic value of a heterozy-
gote d reflects the degree of dominance. To clearly distin-
guish breeding value from genotypic value let us assume
that in this particular example the A1 allele is dominant
over the A2 allele. This means that both the »good«
homozygote (A1A1) and the heterozygote (A1A2) have
the same genotypic value equal to a. Before defining the
breeding value, we should introduce the concept of the
average effect of an allele (Figure 1). Let us assume we
perform two crosses. In the first, the male of A1A1 ho-
mozygote mates with a random sample of females from a
population, whereas in the second, the A1A2 heterozy-
gote mates with a random sample of females from a pop-
ulation. The mean genotypic value in a population be-
fore the cross is M, after the homozygotic cross M’, and
after the heterozygotic cross M’’. The change of the pop-
ulation mean in the next generation DM’ = M’ – M is
larger than DM’’ = M’’ – M. The reason is obvious be-
cause the homozygote always gives a »good« allele (A1)
to its progeny, whereas the heterozygote gives a »good«
allele (A1) only to half of its progeny. The change in the
population mean as a cosequence of transmission of an
allele from a particular individual (or genotype) is called
the average effect of that allele. From the homozygotic
cross the average effect of allele A1 is a1 = DM’, whereas
the mean average effect of alleles from the heterozygotic
cross is a12 = DM’’. The breeding value of the individual
(or genotype) A1A1 is A11 = 2DM’, whereas the breeding
value of the individual (or genotype) A1A2 is A12 =
2DM’’. It is twice the average effect of an allele since each
individual (or genotype) has two alleles, but gives only
one to its progeny.

If we know the average effects of both alleles in the ge-
notype, then the breeding value of this genotype is simply
the sum of the average effects of its alleles (5). It is impor-
tant to note that genotypic value is a constant quantity
(for particular environment), whereas the average effect
of allele and the breeding value are relative quantities
which are dependent on the referent population, i. e. on

its allele frequency. This means that a particular individ-
ual (or genotype) always has the same genotypic value,
but has different breeding values in different popula-
tions. Also, from the above example it is obvious that in
the case of complete dominance, the dominant homozy-
gote and heterozygote have the same genotypic values,
but different breeding values. It can be shown that the av-
erage effects of alleles A1 and A2 expressed as deviations
from the population mean are

a1 = q [a +d (q – p)]

a2 = –p [a + d(q – p)] (3)

The corresponding breeding values of the three geno-
types A1A1, A1A2 and A2A2 are

A11 = 2a1 = 2q[a + d(q – p)]

A12 = a1 + a2 = (q – p)[a + d(q – p)]

A22 = 2a2 = –2p[a + d(q – p)] (4)

In all of the above formulas, there is a common factor (in
square brackets) which is called the average effect of allele
substitution a. Its meaning is a = a1 – a2 = a + d( q – p).
After defining the breeding value, we can understand the
meaning of the dominance deviation. It is the difference be-
tween genotypic value and breeding value D = G – A. Ac-
cording to the above model, the dominance deviations of
the three genotypes are

D11 = –2q2d

D12 = 2pqd

D22 = –2p2d (5)

It is important to note that breeding value and domi-
nance deviation are statistical descriptions, and that both
are dependent on allele frequencies. In addition, the
breeding value depends on the genotypic values a (ho-
mozygote) and d (heterozygote), whereas dominance
deviation depends only on d (heterozygote). If there is no
interaction (dominance) between alleles, then genotypic
value is equal to breeding value.

Partitioning the variance

After decomposition of the phenotype, we can pro-
ceed with the study of phenotypic variation and the vari-
ation in its components. If we know the phenotypic val-
ues of individuals in a population, we can estimate the
phenotypic variance VP. Phenotypic variance is the total
variance in a population, and as with phenotypic value, it
can be partitioned into casual components (5, 6). A par-
ticular theorem of random variables states that variance
of the sum is equal to the sum of variances. Since phe-
notypic value is the sum of its components, it follows that
VP = VG + VE, where VG is genotypic variance (total ge-
netic variance) and VE is environmental variance. Simi-
larly, genotypic variance can be further partitioned, and
we have VG = VA +VD + VI. These components are the
variance of breeding value VA, the variance of dominance
deviation VD and the variance of epistatic deviation VI.
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Figure 1. Average effect of allele – Two individuals (genotypes A1A1
and A1A2) with the same genotypic value (a) have different poten-
tial to change population mean genotypic value (M). The mean
progeny genotypic value of the homozygotic cross is M’ and of
heterozygotic cross is M’’. For details see the text.



Evolutionary significance lies with the variance of breed-
ing value VA, and it is called the additive genetic variance.
Additive genetic variance is part of the phenotypic vari-
ance caused by transmission of genes to the next genera-
tion. According to the above model, in the absence of epi-
stasis, we have VG = VA + VD. It can be shown that addi-
tive genetic variance and dominance variance are equal to

VA = 2pq[a + d(q – p)]2=2pqa2

VD = (2pqd)2 (6)

Both variances are dependent on 2pq which repre-
sents the equilibrium heterozygosity, and is a measure of
genetic variation in classical population genetics. Addi-
tive variance depends on both genotypic values (homo-
zygotes and heterozygotes), whereas dominance varian-
ce depends only on the genotypic value of heterozygotes.

Additive genetic variance is often expressed as he-
ritability, or the ratio of additive genetic variance and to-
tal phenotypic variance

h
V

V

A

P

2 = (7)

Heritability represents a proportion of total phenoty-
pic variance attributable to the transmission of genes
from parents to offspring. It is a measure of the evolu-
tionary potential of a population. The reason for this lies
in the fact that genes are inherited between generations,
whereas gene interactions are not. Gene interactions are
properties of genotypes which are de novo formed in each
generation. Heritability is sometimes called narrow sen-
se heritability to distinguish it from the so called broad
sense heritability (degree of genetic determination of a
trait) which is the ratio of genotypic variance and phe-
notypic variance, H2 = VG/VP.

Breeder’s equation

As we mentioned earlier, two essential requirements
for evolutionary change to occur are the presence of ge-
netic variation in a population and the action of evolu-
tionary force, i. e. natural selection or genetic drift. We
will here consider Darwinian evolution by natural selec-
tion. More precisely, we will deal with a particular type of
natural selection called directional selection (Figure 2).
Directional selection operates on fitness itself and its
components (life history traits), as well as on other quan-
titative traits which are (in a particular environment)
positively correlated with fitness. Under the term fitness

we assume standardized fitness which is called relative
fitness. One type of directional selection is artificial selec-
tion where the breeder wants to increase (or decrease) the
population mean of a particular quantitative trait. To
achieve this, the breeder in each generation selects indi-
viduals with high (or low) trait value as parents for the
next generation. The final consequence of directional se-
lection is fixation of the »best« allele of the locus, and the
stable equlibrium allele frequency is p = 1 and q = 0 (or
p = 0 and q = 1) (7). At the level of change of allele fre-
quency the general selection equation is

∆p
pq p w w q w w

w
=

− + −[ ]( ) ( )11 12 12 22
(8)

This equation describes the unit change of allele fre-
quency Dp (between two successive generations) due to
selection. The w11, w12 and w22 are the fitnesses of A1A1,
A1A2 and A2A2 genotypes respectively, whereas w is the
mean fitness of a population. Two important inferences
can be drawn from this equation. First, it is visible that
selection is based on fitness diferences between individu-
als (genotypes), and second, that evolutionary change is
faster when genetic variation in a population is larger, i.
e. when p and q tend to have intermediate values.

To derive an analogous equation which shows the
unit change of mean phenotype (between two successive
generations) in a population due to selection, we must go
back to the regression equation. In its original sense, it
relates the mean phenotype of particular offspring with
the mean phenotype of their parents (midparent value).
It can also relate the mean phenotype of all individuals in
the offspring generation (all offspring of all parents) and
the mean phenotype of all parents (8, 9). Now we have

Y h Y h Xt t t+ = − +1

2 21( ) (9)

where Yt+1 is the mean phenotype of offspring genera-
tion, Yt is the mean phenotype of parent generation (all
individuals) and Xt is the mean phenotype of the indi-
viduals selected as parents. To obtain the breeder’s equa-
tion in its recognizable form, the upper equation must be
rearranged
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In the breeder’s equation, S is the strength of selection
called selection differential which is the difference be-
tween the mean phenotype of selected individuals (par-
ents) and the mean phenotype of the population before
selection (all individuals) (5, 6). Heritability h2 is the ge-
netic variation attributable to the additive effects of ge-
nes. Finally, R is the evolutionary change called the re-
sponse of the population to selection, or evolutionary
response. It represents the difference between the mean
phenotype of offspring of the selected parents and the
mean phenotype of the population before selection (5, 6).
The above description gives us one meaning of the selec-

398 Period biol, Vol 112, No 4, 2010.

K. Br~i}-Kosti} Quantitative Genetics and Evolution

Figure 2. Relationship between trait and fitness reflects the type of
natural selection – On the left, there is a linear relationship between
trait and fitness (directional selection), in the middle (stabilizing se-
lection) and on the right (disruptive selection) the relationship be-
tween trait and fitness is nonlinear (quadratic).



tion differential. It does not tell us anything about the re-
lation of a particular trait and fitness. It is intuitive for ar-
tificial selection (truncation selection) when individuals
are selected if their phenotypic value is equal or higher
than the determined value (truncation point). It is also
intuitive for strong natural selection which acts at the
level of viability, i. e. when the population experiences a
high mortality rate due to environmental factors. In this
scenario, the selection differential can be estimated as the
difference between the mean phenotype of survivors and
the mean phenotype of all individuals (before selection).
In most real situations natural selection is not so strong,
and is manifested through the action of both viability and
fertility. When differences in fertility are more important
for fitness, the above meaning of selection differential is
not so intuitive although it is correct. For such a scenario,
we will apply a different definition for selection differen-
tial, and will arrive at a simple and intuitive expression
which relates a particular trait with fitness.

Fundamental theorem of natural
selection

Let us assume that selection on a trait x operates due
to differences in fertility. Since the contribution to the
next generation will vary among individuals, the differ-
ence between the phenotypic value of a particular indi-
vidual and the population mean must be weighted by the
fitness of this individual. Then, the selection differential
is defined as
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−
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where wi is the fitness of i-th individual, xi is the pheno-
typic value of i-th individual, x is the mean phenotypic
value of a population, and n is the number of individuals
in a population (5). The upper expression can be rear-
ranged in the following way
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It implies that selection differential operating on a
trait x is equal to the phenotypic covariance between trait
x and fitness (10, 11, 12). This is intuitive and logical
conclusion since the primary target for natural selection
are fitness differences. It is important to note that both
meanings of selection differential are mathematically
equivalent (13), and that they only refer to different
points of view. The strength of selection is sometimes ex-
pressed as the intensity of selection which is the stan-
dardized selection differential scaled by phenotypic stan-
dard deviation (5, 7) or by phenotypic variance (9). Selec-
tion intensity is useful for comparing the strength of se-
lection between different traits.

Since the primary target of selection is fitness, it is im-
portant to describe the selection differential for fitness it-

self, and the rate of change in population mean fitness. In
order to define selection differential for fitness, we can
apply the same logic. We have
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The selection differential for fitness is equal to the
phenotypic variance of fitness in a population. It is also
known as the opportunity for selection (14). To express
the change of mean fitness between two successive gen-
erations as a result of natural selection, we will apply the
breeder’s equation to fitness as a trait (5). We have there-
fore that

Rw = h2
wSw = h2

wVPw

Rw = VAw (14)

This expression is called the fundamental theorem of
natural selection, and was discovered by Fisher (4). The
change of mean fitness in a population due to natural se-
lection between two successive generations is equal to
the additive genetic variance of fitness in previous gener-
ation. Fisher’s original statement was slightly different
and somewhat obscure (4).

Multivariate evolution

The breeder’s equation concerns selection of a single
trait. In reality there are many traits which are under nat-
ural selection. Some of these traits are correlated. One
can distinguish genetic correlation (correlation between
breeding values) from phenotypic correlation (correla-
tion between phenotypic values). There are two causes of
genetic correlations. The first and most common cause is
pleiotropy which means that the same locus determines
two (or more) traits. The second is linkage disequilib-
rium which is a consequence of selection for particular
allelic combinations of two (or more) loci which affect
different traits. If two traits (x and y) are genetically cor-
related and natural selection acts on trait x, we expect two
consequences. One is a direct evolutionary response on a
trait x, and the second is an indirect (correlated) evolu-
tionary response on trait y. The selection differential of a
particular trait measures the net effect of selection caused
by different factors (direct and indirect). An important
question is how to distinguish the direct strength of se-
lection on a particular trait from indirect (correlated)
strength of selection on the same trait. Based on Pear-
son’s regression theory, Lande and Arnold showed that
the partial regression coefficient of fitness on any trait
value is a measure of the strength of direct selection on
this trait. This measure is called the selection gradient,
and is designated as b (15). Avoiding details, we will just
summarize the most important equations concerning
multivariate evolution, and their meanings (6, 7, 8, 15).
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First, we will write the breeder’s equation on a single trait
emphasizing that heritability is the ratio of additive vari-
ance and phenotypic variance

R=VAVP
–1S (15)

The multivariate analogue of the breeder’s equation
can be written in matrix algebra as

R
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The left side term is called the vector of selection re-
sponses, and is designated as R. On the right side, the
first term is the matrix of genetic variances and covarian-
ces, or G matrix; the second is the inverse of the matrix of
phenotypic variances and covariances, or P–1 matrix; and
third is the vector of selection diferentials, or S. Equation
(16) can be written as

R = G P–1 S (17)

Conveniently the product of the inverse of the P ma-
trix (P–1) and S is called the vector of selection gradients,
and is designated as b. According to this, the multivariate
selection equation is often written as

R = G b (18)

If the covariance term in the G matrix is equal to zero,
then the two traits evolve independently and evolution of
each trait can be described by the single trait breeder’s equa-
tion (Figure 3). The multivariate breeder’s equation for two
traits can be written by using the ordinary algebra as

Rx = VAxbx + covAxyby

Ry = VAyby + covAxybx (19)

The selection gradient b for a particular trait is
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We must again emphasize that selection diferential S
measures the net effect of selection (all factors, i. e. direct
and indirect), whereas the selection gradient b measures
only the direct effect of selection on particular trait. In or-
der to estimate b, we need to have estimates of selection
diferentials (Sx and Sy), phenotypic variances (VPx and
VPy), and phenotypic covariance covPxy. Natural selection
can be visualized by individual fitness surface (selection
surface) which represents the relationship between phe-
notypic values and corresponding individual fitness (16).
Hypothetical individual fitness surface for two traits is
presented in Figure 4. The empirical shape of the fitness
surface, i. e. local average slopes (linear or directional se-
lection) and local average curvatures (nonlinear selec-
tion – stabilizing or disruptive selection) can be studied
by the multiple regression approach in order to estimate
partial regression coefficients (selection gradients) (16).

EVOLUTION IN THE REAL WORLD

In order to predict the evolutionary response accord-
ing to breeder’s equation, one should have an estimate of
heritability. After many generations under directional se-
lection, heritability is no longer constant since selection
erodes the additive variance and the heritability of a trait.
For a certain number of generations (15–20 generations
for a typical artificial selection experiment) there is no
change in heritability, and the response is relatively con-
stant (short-term response) (5). For further prediction of
the response (long-term response), a new estimate of
heritability is required. For the prediction of a multiva-
riate evolutionary response it is necessary to have esti-
mates of genetic variances and covariances, as well as se-
lection gradients. Empirical results from selection of a
single trait imply that the breeder’s equation correctly
predicts the response to selection. In contrast, the re-
sponses to selection on multiple traits are less consistent
with the current theory. A possible explanation for this is
that the multivariate model assumes multivariate nor-
mality which is often biologically inconsistent (9). Here
we will briefly consider some examples of evolution in
natural populations, as well as experimental evolution
driven by artificial selection on quantitative traits.
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Figure 3. Relationship between breeding values of trait x and y – On
the left, there is no covariance between two breeding values (each
trait evolves independently); on the right, there is positive covariance
between two breeding values (correlated evolution). Spots represents
hypothetical individual breeding values of traits x and y.

Figure 4. Hypothetical individual fitness surface – The individual
fitness value in a population is a function of the phenotypic values for
traits x and y.



Evolution by natural selection

Lande and Arnold studied the effects of natural selec-
tion on morphological characters in the pentatomid bug
Euschistus variolarius. They collected 94 bugs after a storm
(39 survived and 55 died), and measured four morpho-
logical traits on all bugs (15). From this data they esti-
mated phenotypic variances and covariances according
to equation 2. The selection differential for a particular
trait was estimated as the difference between the mean
trait value of surviving bugs and the mean trait value of
all bugs, whereas the selection gradient was estimated ac-
cording to equation 20. They found no significant chan-
ge in thorax width as indicated by selection differential.
In contrast, the selection gradient indicated strong direct
selection for increased thorax width. The thorax width is
highly positively correlated with another trait, wing length.
The selection gradient for wing length indicated strong
direct selection for decreased wing length. Therefore, the
absence of significant change in thorax width represents
the net effect of a strong direct increase in thorax width
and strong indirect (correlated) decrease in thorax width
due to strong direct selection for decreased wing length.
They also noticed that scutellum length decreased signif-
icantly as indicated by the selection differential while the
selection gradient was not significant. From this, it can be
concluded that a significant selection differential on scu-
tellum lenght is a consequence of the correlated selection
on scutellum length due to direct selection on other traits
(thorax width and/or wing length).

Grant and Grant studied the evolution of morpholog-
ical traits in Darwin’s medium ground finch Geospiza
fortis from the Galapagos islands (17, 18). Several species
of Galapagos finches have been the research subject of
Charles Darwin, and inspired him in the development of
his ideas about evolutionary change. The normal diet of
Galapagos finches includes various types of seeds, from
large hard seeds to small soft seeds. The type of available
seeds is determined by the amount of rainfall. The ability
of a bird to handle a particular type of seed depends on
the characteristics of its bill. Two periods, 1976 – 1977
and 1984 – 1986, were characterized by a severe drought,
and the Grants measured the survival of G. fortis over
these periods. During the first period only 15% of birds
survived, and the survivors were larger birds. During the
second period 32% of birds survived, and the surviving
birds were slightly smaller. The selection differential for
body weight during the first period was larger than the
selection gradient, although both tended to increase body
weight. The difference between them represents the stren-
ght of correlated selection since body weight is positively
correlated with several other morphological traits which
were directly selected to increase their phenotypic values.
Interesting behaviour during the first period showed se-
lection for bill width. The selection differential tended to
increase the bill width whereas the selection gradient
tended to decrease it. This can be explained by correlated
selection which tended to increase bill width due to di-
rect selection on other morphological traits (bill depth,
wing length and weight). During the second period the

selection differential for bill length was weak and nega-
tive (statistically not significant) whereas the selection
gradient was strong and positive. The selection differen-
tial for bill length can be explained by correlated selec-
tion on other traits which had small and weak selection
gradients. The Grants also predicted the evolutionary re-
sponses for several traits (equation 16 or 19), and com-
pared them with the observed responses (difference be-
tween the mean phenotypic value of the progeny of
surviving birds and the mean phenotypic value before se-
lection). The observed selection responses were in a good
agreement with theoretical predictions, especially for the
first period (1976 – 1977) when natural selection was
stronger (18).

Evolution by artificial selection

Finally, I will mention two examples of experimental
phenotypic evolution driven by artificial selection. One is
the artificial evolution of behaviour in silver fox, a rare
naturally occuring variety of red fox Vulpes vulpes, and the
other is artificial evolution of oil content in the maize Zea
mays. Selection experiments with silver foxes started in
1959, and were led by the Russian geneticist Dmitry K.
Belyaev. In addition to its scientific purpose, the experi-
ment was also motivated by the Russian fur industry
which prefered tame animals for routine handling. The-
refore the target for selection was tameness, a behavioral
trait which is normally present in juvenile animals. In
the original (wild) population, the vast majority of foxes
showed fear and/or aggresion towards humans, whereas
a small fraction was more or less tolerant to humans.
These tolerant animals were selected as parents of the
next generation. The fox behaviour was quantified ac-
cording to the degree of tameness, and in each genera-
tion animals with higher degree of tameness were further
selected. The response to selection was very strong in the
early generations, and after several decades of selection
the end product was a unique population of domesti-
cated foxes which are fundamentally different in many
aspects from their wild counterparts. They are devoted,
affectionate and capable of forming strong social bonds
with people. In addition to large changes in behaviour,
the domesticated foxes evolved many new characteristics,
i. e. piebald coat colour, rolled tails, floppy ears and
changes in reproductive cycle accompanied by changes
in hormone levels. It follows that direct selection on a be-
havioural trait caused correlated selection responses to
various morphological, physiological and life history traits
(19, 20). The fur industry was not satisfied with these re-
sults since the fur of domesticated foxes was in many as-
pects different from the fur of wild silver foxes, and was
commercially useless. Most important were the scientific
implications of the results. This experiment showed that
the process of domestication could be much faster than
was previously thought with obvious implications to the
domestication of dogs.

The last example includes the selection of a trait of ag-
ronomic importance, the oil content in maize kernels.
This experiment started in 1896, and is the longest selec-
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tion experiment ever performed. Geneticists from the
University of Illinois continuously selected maize to
change its oil content in both directions, i. e. to increase
and to decrease the oil level in kernels. The base popula-
tion had about 5% oil in the kernel, and after more than a
century of selection the high oil-producing line has
about 20% of oil in kernels, whereas the low oil-produc-
ing line has almost none (21). Subsequent analysis has
shown that the number of quantitative trait loci (QTLs)
which can account for half of the divergence between
high and low oil producing lines is about 50 (22). All de-
tected QTLs show a small effect, and the rest (still unde-
tected QTLs) should have even smaller effects. This pic-
ture places the oil content in a typical quantitative trait
characterized by many genes with small allelic effects.
Consistant with this is the observed continuous response
to artificial selection.

CONCLUSION

Today, more than 150 years after the release of The Or-
igin of Species, evolutionary theory is a unifying force for
all biology. Following Darwin, new theoretical develop-
ments led to the quantitative genetic approach in the
study of evolution. Most concepts of quantitative genet-
ics centre around variances and covariances. According
to the breeder’s equation, the response to selection (evo-
lutionary change) is equal to the product of heritability
(genetic variation) and selection differential (strength of
selection). Heritability represents the evolutionary po-
tential of a population. Selection differential for a partic-
ular trait is equal to the phenotypic covariance of this
trait and fitness. Selection differential for fitness itself
measures total opportunity for selection, and is equal to
the phenotypic variance of fitness. The change of mean
fitness in a population between two successive genera-
tions due to natural selection is equal to the additive ge-
netic variance of fitness in the previous generation. This
statement is called Fisher’s fundamental theorem of nat-
ural selection. The multivariate breeder’s equation shows
that the vector of selection responses is equal to the prod-
uct of the genetic variance – covariance matrix (genetic
variation) and vector of selection gradients (strength of
selection). From the vector of selection gradients one can
distinguish direct selection on a particular trait from in-
direct (correlated) selection on the same trait.

The mechanisms of evolution described by quantita-
tive genetics is just one aspect of studying evolution.
Other questions in evolution are studied by different ap-
proaches (paleontology, ecology, developmental biology,

bioinformatics etc.). Simultaneous achievements in all of
these approaches paint a more complete picture of reality.
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