
Cancer Preventive and Therapeutic Properties of IP6:

Efficacy and Mechanisms

Abstract

Recently, IP6 has received much attention for its role in cancer preven-
tion, and control of experimental tumor growth and progression. A striking,
consistent and reproducible anticancer action of IP6 has been demonstrated
in various experimental models. IP6 reduces cell proliferation, induces
apoptosis and differentiation of malignant cells via PI3K, MAPK, PKC,
AP-1 and NFkB. Enhanced natural killer (NK) cell activity, suppressed tu-
mor angiogenesis and antioxidant properties also contribute to cancer inhi-
bition. Preliminary studies in humans and case reports have indicated that
IP6 is able to enhance the anticancer effect of conventional chemotherapy,
control cancer metastases, and improve quality of life. A prospective, ran-
domized, pilot clinical study showed that IP6 as an adjunctive therapy ame-
liorates the side effects and preserves quality of life in breast cancer patients
receiving chemotherapy.

INTRODUCTION

Number of cancer cases are expected to increase due to growing of
aging population. About 10.9 million new cases and 6.7 million

cancer deaths occur worldwide every year. According to the Surveil-
lance, Epidemiology, and End Results (SEER) Program of the Na-
tional Cancer Institute (NCI), American Cancer Society (ACS) and
World Health Organization (WHO), this toll is projected to grow to 24
million cases and over million deaths annually by 2050. Therefore, de-
spite the enormous efforts to search for cure, cancer still remains a chal-
lenge for global public health. In our attempts to reduce the burden of
cancer, the practice of cancer prevention (chemoprevention) by use of
non-toxic, naturally occurring compounds, as opposed to chemother-
apy, is considered a better strategy for the management of cancer. It has
been shown that simply by modification of diet by increasing vegetable
and fruit intake, maintenance of optimum body weight, and regular
physical activity, 30% to 40% of all instances of cancer could be pre-
vented (1). Extensive research over the past several decades has identi-
fied numerous dietary and botanical natural compounds that have
chemopreventive potential.

One of the promising dietary phytochemicals with enormous che-
mopreventive and chemotherapeutic potential is inositol hexaphos-
phate (IP6 or InsP6, or phytic acid). In this review, we discuss IP6 as a
promising natural anticancer compound, its efficacy, molecular targets,
and mechanisms of action, which may help the further design and con-
duct of preclinical and clinical trials.
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IP6 and myo-inositol, naturally occurring carbohy-
drates, are widely distributed among plants. IP6 is found
in concentrations from 0.4–6.0% in rice, corn, beans,
whole-grain cereals, non-refined cereals derivatives, and
all types of nuts (2, 3). IP6 is also present in mammalian
cells and tissues at concentrations that range between
0.01 to 1 mM (4–7). A six-carbon inositol ring represents
the basic carbohydrate moiety in IP6 and its lower phos-
phate derivatives (IP1–5). These various inositol phos-
phates (IPs) are physiologically interconvertible by com-
plex metabolic cycles of phosphorylation and depho-
sphorylation by IPs kinases and phosphatases, and regu-
late vital cellular functions (8, 9).

Anticancer Efficacy of IP6

The epidemiological studies have indicated that only
fiber diet with high IP6 content, such as cereals and le-
gumes, show negative correlation with colon cancer, sug-
gesting that it could be IP6 and not fiber that suppressed
colon cancer (9–11). This observation triggered and ini-
tiated a series of studies to investigate and determine the
anticancer efficacy and potential of IP6.

Numerous studies pioneered by Shamsuddin et al.
have demonstrated that IP6 has chemopreventive as well
as therapeutic anticancer activity in a wide variety of tu-
mors types, both in vitro and in vivo (9, 10, 12). In the first
in vivo studies, the effectiveness of IP6 to prevent cancer
was evaluated after administration of IP6 in the drinking
water. The exogenous 1% IP6 in drinking water 1 week
before or 2 weeks after administration of azoxymethane
inhibited the development of large intestinal cancer in
Fisher 344 rats (13). In the same model, administration
of 2% IP6 in the drinking water was effective even when
the treatment had begun 5 months after carcinogen initi-
ation. Compared to untreated rats, animals on IP6 had
27% fewer tumors (14). These findings pointed towards
the possible therapeutic use of IP6. Furthermore, IP6 de-
creased the incidence of aberrant crypts, often used as an
intermediate biomarker for colon cancer (15, 16). A con-
sistent, reproducible, and significant inhibition of mam-
mary cancer by IP6 was shown in experimental models
chemically induced by either 7,12-dimethylbenz[a]an-
tracene or N-methylnitrosourea; the effect was seen on
tumor incidence, tumor size, and tumor multiplicity
(17–21). With regard to the in vivo efficacy of IP6 against
prostate cancer, recent studies demonstrated that contin-
uous administration of 2% IP6 in the drinking water, be-
ginning 24 h after implantation of DU-145 prostate can-
cer cells, resulted in a 64% decrease in tumor burden
(22). Additionally, chemopreventive efficacy of IP6 was
observed against prostate tumor growth and progression in
the TRansgenic Adenocarcinoma Mouse Prostate (TRAMP)
model (23). Peritumoral, intratumoral or intraperitoneal
administration of IP6 significantly inhibited growth of
rhabdomyosarcoma tumor xenografts, regressed liver can-
cer xenotransplants, and in murine fibrosarcoma FSA-1
model inhibited tumor growth and prevented lung me-
tastases (24–26). The effect of IP6 on skin cancer was in-
vestigated in a 2-stage mouse skin carcinogenesis model;

a reduction in skin papillomas was found when IP6 was
given during the initiation stage but not when given dur-
ing the promotion stage (27). Gupta et al. also demon-
strated prevention of skin carcinogenesis in a mouse car-
cinogenesis model where IP6 caused a reduction in the
number of skin tumor formation (28). Most recently, us-
ing UVB light known as a complete carcinogen, IP6 has
been shown to prevent UVB-induced tumor formation
in mice (29).

In vitro studies have shown that IP6 inhibits growth
and induces differentiation and apoptosis of human breast
cancer cells (both estrogen receptor-positive and estro-
gen-receptor negative) (30) (Figure 1), colon (31), pros-
tate (32–35), liver (36), pancreatic (37) and cervical can-
cer (38) cell lines, as well as of rhabdomyosarcoma [24],
glioblastoma (39), melanoma (40) and human leukemia
cells (41–43). Additionally, IP6 was able to inhibit cell
transformation in mouse epidermal JB6 cells (44) and to
reverse the transformed phenotype of HepG2 liver can-
cer cells (36).

Biochemical Mechanisms Responsible
for Anticancer Potential of IP6

Studies demonstrated the promising chemopreven-
tive and anticancer potential of IP6 have attracted consid-
erable attention from cancer researchers as well as gen-
eral public (9, 10). There has been progress in determin-
ing not only the anticancer efficacy and properties of IP6

in various cancer models, but also in uncovering the mo-
lecular mechanisms of this action. The biochemistry be-
hind the anticancer property of IP6 has been extensively
studied over past ten years. As illustrated and summa-
rized in Figure 2, after rapid intake and dephospho-
rylation, IP6 enters the pool of inositol phosphates and
interacts with cellular processes involved with cancer.
The chemopreventive and chemotherapeutic potential
of IP6 has been related to its antioxidant functions and
the ability to block the activation of various carcinogen
and/or to stimulate their detoxification, to immune-en-
hancing and antiinflammatory activities, suppression of
proliferation and its influence on cell cycle and cell dif-
ferentiation. The induction of apoptosis in various pre-
malignant and cancerous cells can contribute to both
cancer preventive and therapeutic potential of IP6. Sup-
pression of angiogenesis and blockade of metastatic pro-
cesses of tumor progression, synergism with anticancer
drugs and alleviation of chemotherapy resistance further
indicate the chemotherapeutic potential of IP6 (Figure 2).

Antioxidant Capacity, Carcinogen Blocking
and Detoxifying Activity

The antioxidant role of IP6 is widely recognized. This
function of IP6 occurs by chelation of Fe3+ and suppres-
sion of ·OH formation (45) and by inhibiting xanthine
oxidase (46). Thus, IP6 can reduce carcinogen mediated
active oxygen species and cell injury as well as inhibit
free radical production in inflammation, radiation, etc.
via its antioxidative function. Although IP6 is known as a
strong natural antioxidant, in vivo data of its antioxidant
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effect are very limited. Its in vivo antioxidant action was
recognized in different experimental models of myocar-
dial reperfusion injury (47), pulmonary inflammation
(48), and inflammation and ulcer induction (49). A pro-
tective role of IP6 against lipid peroxidation in the colon
associated with high level of iron was shown in rats (50),
mice (51) and pigs (52) affecting glutathione peroxidase
and catalase activity. IP6 can modulate biochemical events
linked to carcinogen blocking activities, modifying en-
zymes involved in metabolic activation of chemical car-
cinogens, such as phase I (53) and phase II detoxification
enzymes (16, 51). The induction of glutathione S-trans-
ferase, the phase II carcinogen detoxifying enzyme, was
also shown in azoxymethane-induced colon tumorige-
nesis (16). Interestingly, not only IP6, but also inositol, its
parent compound, has antioxidative properties by inhib-
iting xanthine oxidase and scavenging superoxide in vi-

tro and in vivo, and preventing formation of ADP-iron-
-oxygen complexes that initiate lipid peroxidation (46,

54). The anticancer action of IP6 may be further related
to mineral binding ability; IP6 by binding with Zn2+ can
affect thymidine kinase activity, an enzyme essential for
DNA synthesis. Similarly, excess iron, which may aug-
ment colorectal cancer formation, can be removed by IP6

(50, 55).

Immune Enhancing Activity

IP6 and inositol augment natural killer (NK) cell ac-
tivity in vitro and normalize the carcinogen-induced de-
pression of NK cell activity in vivo (56, 57). An inverse re-
lationship between NK activity and tumor incidence has
been shown in these models of colon carcinogenesis; an
increased incidence is correlated with a decreased NK
cell activity. The animals on IP6 and inositol had a lower
incidence of cancer and a concomitantly enhanced NK
cell activity. But, those animals that received the combi-
nation of IP6 and inositol had the highest NK activity
and lowest tumor incidence (56). Neutrophils, which as
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Figure 1. A. IP6 inhibits colony formation of breast cancer cells. MCF-7 and MDA MB-231 cells were incubated in a humidified atmosphere of 5%
CO2 for 10 days. The growth medium contained various concentrations of IP6, ranging from 0.1 to 2 mM. As a control, cells of the same density
(103cells/plate) were plated in dishes containing growth medium only. Cells were fixed in 4% formaldehyde for 15 min, stained with 0.5% crystal vi-
olet for 5 min and then rinsed with tap water. The ability of cells to form colonies decreased proportionally with increasing concentration of IP6. B.
IP6 causes G0/G1 cell cycle arrest. MCF-7 cells were grown until 60–70% confluence and later synchronized by serum starvation (0.1% FCS in cul-
ture medium) for 48 h. The cells were then stimulated with medium with 10% FCS in the presence and absence of 2 mM or 5 mM IP6 and collected
after 24 h. For cell cycle analysis, cells were stained by propidium iodide using the Cellular DNA Flow Cytometric Analysis Kit by Roche Diagnostics
Corp. Indianapolis, IN). As expected, IP6 (both 2 mM and 5 mM) induced a G0/G1 cell cycle arrest. Based on these results shown in a representative
histogram, 5 mM of IP6 caused G0/G1 arrest in 66% percent of cells, as compared to 47% in controls (p=0.004).



a part of the body’s innate immune system form a first
line of defense, are also affected by IP6. IP6 functions as a
neutrophil priming agent and appears to up-regulate a
number of diverse neutrophil functions (58).

Modulation of Cell Cycle Regulatory Machinery

Uncontrolled proliferation is a hallmark of malignant
cells, and as discussed before, IP6 reduces the cell prolif-
eration rate of many different cell lines of different lin-
eage and of both human and rodent origin [24,30–43].
IP6 induces G1 phase arrest and a significant decrease of
the S phase of human cancer cell lines by modulations
of Cyclins and cdks, up-regulation of p27Kip1 and
p21WAF1/CIP1 and decrease in retinoblastoma (Rb) protein
phosphorylation (33, 34, 59, 60). IP6 induced up-regula-
tion of p27Kip1 and a decrease in expression levels of
hyperphosphorylated Rb (ppRb) in both estrogen recep-
tor-positive (MCF-7) and negative (MDA-MB 231) cells.
As a consequence, a markedly increased level of hypo-
phosphorylated pRb form (pRb) was observed (33, 59).
Using specific inhibitors for PKCd (rottlerin-R), MAPK
(MEK/Erk) (U0126-U), and PI3K/Akt (LY294002-LY)
we concluded that the effects of IP6 on PKCd are respon-
sible for the observed up-regulation of p27Kip1 (59). In
leukemia cells, IP6 appears to cause the accumulation of
cells in the G2M phase of the cell cycle; a cDNA micro-
array analysis showed up-regulation of p57 mRNA and a
down-modulation of multiple genes involved in tran-
scription and cell cycle regulation by IP6 (42). Recently it
was shown that p21 and p27, the Cip/Kip family pro-
teins, are essential molecular targets of IP6 for its anti-
tumor efficacy against prostate cancer and are indispens-
able in causing growth arrest and apoptotic death of

advanced prostate cancer DU145 cells by IP6, both in vi-
tro and in vivo (61).

Induction of Apoptosis and Cell Survival

Apoptosis is a hallmark of action of many anticancer
drugs. It has been reported that IP6 induces apoptosis in
vivo (22, 61, 62) and in vitro in prostate (33, 34, 60), breast
(59), cervical cancer (38), pancreas (37), glioblastoma
(39), melanoma (40) and KS (Kaposi’s sarcoma) cell
lines (63), involving cleavage of caspase 3, caspase 9 and
poly ADP-ribose polymerase (PARP), an apoptotic sub-
strate, in a time- and dose-dependent manner. A role of
IP6 in apoptosis is further suggested by findings that
inositol hexaphosphate kinase-2 is a physiologic media-
tor of cell death (64). While IP6 inhibited late apoptosis
and necrosis in BIC Barrett adenocarcinoma cell line, in
SEG-1 cells it caused inhibition of both early and late
apoptosis and necrosis (65). In malignant glioblastoma,
T98G cells IP6 down-regulated cell survival factors such
as baculovirus inhibitor-of-apoptosis repeat containing-
-2 (BIRC-2) protein and telomerase, and up-regulated
calpain and caspase 3 activity to promote apoptosis (39).
In human prostate carcinoma PC-3 cells, IP6 has been
shown to downregulate both constitutive and ligand-in-
duced mitogenic and cell survival signaling, causing cas-
pase-mediated apoptotic death (66). The induction of
apoptosis by IP6 was also shown in vivo. IP6 feeding re-
sulted in suppression of hormone-refractory human pro-
state tumor growth. Tumor xenografts of DU145 cells
from IP6-fed mice showed significantly (P < 0.001) de-
creased proliferating cell nuclear antigen (PCNA)-posi-
tive cells but increased apoptotic cells (22). Extending
this work, Agarwal and his group generated DU145 cell
variants with knockdown levels of cyclin-dependent ki-
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Figure 2. Mechanisms of action of IP6. The chemopreventive and therapeutic potential of IP6 has been related to its antioxidant functions and
the ability to block the activation of various carcinogen and/or to stimulate their detoxification, to immune-enhancing and anti-
inflammatory activities, influence on cell cycle, induction of apoptosis, ability to block angiogenic an metastatic processes of tumor progres-
sion, synergism with chemotherapeutics and alleviation of chemotherapy resistance.



nase inhibitors p21/Cip1 and p27/Kip1 proteins and pro-
vided evidence of the critical role of p21 and p27 in medi-
ating the antiproliferative and proapoptotic effects of IP6

in these p53-lacking human prostate cancer cells both in
vitro and in vivo (61). Constitutive activation of pho-
sphoinositide 3-kinase (PI3K)-Akt pathway transmits
growth-regulatory signals that play a central role in pro-
moting survival and proliferation. Targeting PI3K-Akt
pathway, IP6 was effective against invasive human pros-
tate cancer PC-3 and C4-2B cells in culture and nude
mouse xenografts (67). Increased cell apoptosis was also
shown by IP6 in wheat bran in azoxymethane-treated
male Fischer 344 rats, a widely accepted model of colon
carcinogenesis (62).

However, in conditions where apoptosis is harmful
and damaging, IP6 is able to prevent apoptosis in order to
protect cells and tissues. Neuroprotective effect of IP6

was shown in a cell culture model of Parkinson disease,
preventing iron-induced apoptosis in immortalized rat
mesencephalic/dopaminergic cells (68). A dual effect and
ability of IP6 to induce or prevent apoptosis in order to
protect the cells and prevent disease was further shown
against UVB-induced massive and excessive apoptosis in
HaCaT cells and skin carcinogenesis in SKH1 hairless
mice (69). Furthermore, in a TRAMP mouse model and
in DU-145 human prostate cancers cells IP6 inhibited
telomerase activity, crucial for cells to gain immortality
and cell survival (70).

Inhibition of Angiogenesis

Tumors depend on the formation of new blood vessels
to support their growth and metastasis. Studies initiated
by Judah Folkman have revealed the molecular mecha-
nisms of tumor angiogenesis, and angiogenic signaling
cascades seems to be a target of various anticancer drugs.
Many tumors produce large amounts of vascular endo-
thelial growth factor (VEGF), a cytokine that signals
normal blood vessels to grow. IP6 inhibited the growth
and differentiation of endothelial cells (63, 71) and in-
hibited the secretion of VEGF from malignant cells (22,
42, 63, 71). IP6 can also adversely affect angiogenesis as
antagonist of FGF (72).

Anti-invasive and Anti-metastatic Effects

The ability of tumor cells to invade through tumor-as-
sociated stroma, infiltrate normal tissue and metastasize
are the central events in tumor progression. A significant
reduction in the number of lung metastatic colonies by
IP6 was observed in a mouse metastatic tumor model us-
ing FSA-1 cells (26). Using highly invasive MDA-MB
231 human breast cancer cells, we have demonstrated
that IP6 inhibits metastasis in vitro through effects on
cancer cell adhesion, migration and invasion (73, 74).
Tumor cells emit substances known as matrix metallo-
proteinases (MMPs) that allow metastatic cells to break-
down the barriers in vessel wall and enter into blood cir-
culation; IP6 significantly inhibits secretion of matrix
metalloproteinase-9 (MMP-9) from MDA-MB 231 cells
(73). The inhibitory effect of MMPs was functionally

confirmed, since it significantly reduced the invasion and
invasive properties of cancer cell in vitro (73).

Chemotherapy: Selectivity,
Chemosensitization and Prevention
of Drug Resistance

A good anticancer agent needs to be selective and to
discriminate between normal and tumor cells. IP6 was
shown to affect malignant cells only while sparing nor-
mal cells and tissues. When the fresh CD34+ cells from
bone marrow were treated with IP6, an inhibition of the
clonogenic growth was observed with leukemic progeni-
tor cells, but not with normal bone marrow progenitor
cells under the same conditions (42). In another type of
experiments, IP6 inhibited the colony formation of Ka-
posi Sarcoma cell lines, KS Y-1 (AIDS-related KS cell
line) and KS SLK (Iatrogenic KS) and CCRF-CEM
(human adult T lymphoma) cells in a dose-dependent
manner, but did not affect the ability of normal cells (pe-
ripheral blood mononuclear cells and T cell colony-
-forming cells) to form colonies in a semisolid methyl-
cellulose medium (63).

Current cancer treatment recognizes the power of
combination therapy aiming to increase efficacy, while
alleviating unavoidable adverse effects associated with
chemotherapy. The cancer chemopreventive phytoche-
micals used as adjuvants to standard chemotherapy has
been shown to sensitize cancer cells to apoptosis or growth
arrest while minimizing side effect. Another important
aspect of cancer treatment is overcoming acquired drug
resistance, what is currently a growing challenge in our
attempts to reduce cancer and cancer-related deaths.

We have demonstrated that IP6 acts synergistically
with tamoxifen and doxorubicin, being particularly ef-
fective against estrogen receptor-negative and doxorubi-
cin-resistant tumor cell lines, both conditions that are
challenging to treat (75). These data are particularly im-
portant because tamoxifen is usually given as a chemo-
preventive agent in the post-treatment period and doxo-
rubicin has enormous cardiotoxicity and its use is associ-
ated with doxorubicin resistance. Although tamoxifen
has been extensively used for the prevention and therapy
of breast cancer, almost all initial responders eventually
develop resistance. Although the mechanisms by which
tamoxifen resistance occurs remain unclear, it includes
changes in the cellular signal transduction pathways (76).
It seems that agents shown to up-regulate p27Kip1 (77)
and inhibit extracellular signal regulated kinases (ERKs)
and Akt (78) pathways are capable, at least in part, of pre-
venting tamoxifen resistance in breast cancer cells. And
indeed, our recent data show that IP6 restores sensitivity to
tamoxifen in MCF-7 cells expressing a constitutively active
Akt, cells that are resistant to tamoxifen (not published).

Modulation of Upsteam Kinases
and Transcription Factors

Additional molecular targets for IP6 are upstream kin-
ases and transcription factors. Extensive preclinical stud-
ies conducted in cultured cells and experimental animals

Period biol, Vol 112, No 4, 2010. 455

Anticancer Effect of IP6 Ivana Vu~enik and J. Stains



indicate that IP6 could modulate abnormal turning on or
switching off various upstream kinases and transcription
factors.

Many plasma membrane-bond or cytosolic protein
kinases, such as proline-directed serine threonine kin-
ases, tyrosine kinases and different isoforms protein ki-
nase C (PKC), serve as important components of various
intracellular signaling pathways and translate extracel-
lular signals into biological responses. The family of
mitogen-activated protein (MAP) kinase include several
different sets of serine/threonine-specific protein kinases
that regulate various cellular activities, such as prolifera-
tion, differentiation, gene expression and apoptosis. Rep-
resentative members of this family are ERK, p38 MAP
kinase and C-jun-N-terminal kinase (JNK). IP6-indu-
ced downregulation of phosphorylation of MAP kinases
has been associated with its antitumor promoting activ-
ity, inhibition of proliferation and induction of apoptosis
(35, 59, 79). IP6 also exerts effect on PKC-mediated sig-
naling. It has been shown that PKC-epsilon is involved
in the IP6-induced exocytosis in pancreatic beta-cells
(80). Our data indicate that the effects of IP6 on PKCd
are responsible for the up-regulation of p27Kip1 and cell
cycle arrest (59). Repression of telomerase activity and
translocation of TERT from the nucleus in mouse and
human prostate cancer cells via the deactivation of Akt
and PKCa was shown by IP6 (70). Phosphatidylino-
sitol-3 kinase (PI3K)/Akt is another important upstream
kinase pathway. PI3K is activated in response to diverse
mitogenic signals and catalyzes the formation of second
messenger lipid phosphatidylinositol-3,4,5-triphosphate
(PIP3). Binding of PIP3 to pleckstrin homology domain
of Akt results in its recruitment to plasma membrane and
activation. It was shown that the phosphorylation of Akt
is abrogated with IP6 in different cells and model systems
(38, 43, 44, 59, 67, 70, 79).

Enhanced activation of major transcription factors
such as nuclear factor kB (NFkB) and activator pro-
tein-1 (AP-1) contributes to tumorigenesis either by trans-
activating proinflammatory, antiapoptotic, and cell cycle
regulatory genes or by transcriptional repression of apop-
tosis-inducing genes. IP6 inhibits NFkB in different mo-
dels, such as in UVB-induced skin carcinogenesis (29),
in prostate carcinoma, where constitutive activation of
NFkB was inhibited by IP6 (81), and in HeLa cells,
where IP6 prevented nuclear translocation of NFkB and
NFkB-luciferase transcription activity (38). It was indi-
cated recently that IP6 primarily influences p65 subunit
of NFkB and its inhibitor IkBa in Caco-2 cells, a human
colorectal cancer cell line (82). IP6 inhibited AP-1 activity
in human prostate carcinoma PC-3 cells (35) and blo-
cked epidermal growth factor (EGF) and TPA-induced
AP-1 activation in JB6 mouse epidermal cell system (44,
79), confirming again that it is an effective anticarcino-
genesis agent.

IP6, Inositol and Lower Inositol Phosphates

It seems that the anticancer activity of IP6 depends
primarily on its rapid dephosphorylation and that it is

mediated via lower phosphorylated forms. Thus, the
conversion of IP6 to lower inositol phosphates is essential
for its anticancer activity, as proposed nearly 20 years ago
(9, 10).

Its parent compound, myo-inositol itself was also
shown to have modest anticancer activity. It inhibited co-
lon, mammary, soft tissue and lung tumor formation (9,
10). More importantly, it was demonstrated that inositol
potentiates both the antiproliferative and antineoplastic
effects of IP6 in vivo (9, 10) and in vitro (83). Synergistic
cancer inhibition by IP6 when combined with inositol
was observed in colon cancer (84) and mammary cancer
studies (18). Similar results were seen in the metastatic
lung cancer model (26). IP6 and inositol had a lower inci-
dence of cancer and a concomitantly enhanced NK cell
activity. Not only the combination of IP6 and inositol was
significantly better in different cancers than was either
one alone, but it also consistently reduced all tumor
growth parameters. Additionally, as discussed before, an-
imals that received the combination of IP6 and inositol
had not only the lowest tumor incidence, but highest NK
activity (56). Thus, it was obvious, that for clinical trials,
the combination of IP6 and inositol should be considered
for optimal efficacy. And indeed, inositol and IP6 in com-
bination as an adjunctive therapy in breast cancer pa-
tients receiving chemotherapy, ameliorated the side ef-
fects of chemotherapy and preserved quality of life (85).

However, despite substantial progress in the under-
standing of the molecular basis and molecular targets of
its anticarcinogenic activity, there have been very few
clinical studies with IP6. Because currently available pre-
clinical, mechanistic data and encouraging pilot data
with humans suggest that IP6 might be a promising can-
didate for the molecular target-based cancer prevention
and adjuvant therapy, more controlled clinical trials are
expected.
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