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Abstract: The prerequisite of the homogenization of climatological time series is to find the
points of time where the series underwent abrupt shifts in the climate variable. Since normally
no information about the (potentially large) number of such shifts is available beforehand, this
is a highly challenging optimization problem for the resolution of which a genetic algorithm
approach was proposed. In the present paper, important steps towards its applicability to real
climatological data are made. An outlier test is incorporated in the genetic algorithm frame-
work. Another typical climatological component that can be fully integrated into the genetic
algorithm scheme is the exploitation of metadata containing information about a station’s his-
tory. In a conceptually similar manner, the simultaneous investigation of several, possibly
interrelated, time series is made feasible.
The advantages of online analysis, where the change-point detection is carried out not only for
the entire n-element series but also for the partial series of its first n-1, n-2, … elements, are
discussed. Such supplementary analyses can regularly be crucial when change-point signals are
detected in the analyses of partial series while random noise accidentally obscures these sig-
nals in the full series.

Key words: Climatological data processing, time series analysis, homogenization, genetic algo-
rithm

Sažetak: Svrha homogenizacije klimatoloških vremenskih nizova jest određivanje vremenskih
točaka kada se javlja nagli skok vrijednosti klimatske varijable. Budući da obično unaprijed ne
raspolažemo podacima o broju (potencijalno velikom) takvih promjena, suočeni smo s vrlo
zahtjevnim optimizacijskim problemom, za čije se rješenje predlaže primjena genetskog algo-
ritma. U ovom su radu učinjeni znatni koraci za primjenjivost metode na stvarne klimatološke
podatke. U okvir genetskog algoritma ugrađen je test za podatke koji značajno odstupaju od
skupa (test outlier). Još jedna tipična klimatološka komponenta koja se u potpunosti može
unijeti u shemu genetskog algoritma jest korištenje podataka o povijesti postaje (metadata).
Na konceptno sličan način, omogućuje se istovremeno proučavanje više vremenskih nizova,
možda međusobno povezanih.
Prikazane su prednosti on-line analize, gdje se pronalaženje točaka promjene obavlja ne samo
za cijeli niz n elemenata, već i za parcijalne nizove njegovih prvih elemenata n-1, n-2, .... Takve
dodatne analize uvijek su presudne kad se u analizama parcijalnih nizova otkriju signali točaka
promjena (change points) dok u potpunim nizovima bijeli šum može prikriti takve signale.

Ključne riječi: obrada klimatoloških podataka, analiza vremenskih nizova, homogenizacija, ge-
netski algoritam
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1. INTRODUCTION

The proper interpretation of climatological
records requires the search for (multiple)
change points, i.e. points of time where the sta-
tistical character of the considered meteoro-
logical variable underwent a significant
change. The statistical parameters being nor-
mally investigated are mean or (less frequent-
ly) variance. Numerous tests are available for
checking the stationarity of these quantities:
Herzog and Müller-Westermeier (1998) com-
piled a list of more than 30 relevant test methods.
The tests that have become comparatively
popular in climatology for investigating sam-
ple means are the Standard Normal Homo-
geneity Test invented by Alexandersson (1986)
and the bivariate test introduced by Potter
(1981). Both assume that the population mean
remains strictly constant in-between the
change points; other tests can detect shifts in
the mean even if trends are superimposed on
the data (e.g. Buishand, 1984; Alexandersson
and Moberg, 1997). Once the change points
are identified, it is necessary to assign each of
them to one of the two classes: artificial
change (caused by changes in instrumentation
or observers, station relocation, etc.) or cli-
mate change. Homogenization, i.e. correction
for those shifts in the mean being classified as
artificial, is a prerequisite for sound state-
ments about trends in the climate system.

Many of the tests in use are of the two-sample
type, i.e. two samples are compared in order to
infer whether they originate from the same
population or not. A well-known parametric
representative of this group of tests is the classical
Student’s t-test dealing with normally distri-
buted populations. The formula for the test
statistic t is

(1a)

with

(1b)

where â1 and â2 are the two sample means, s1

and s2 are the respective standard deviations,
n1 and n2 are the sample sizes. When using the
t-test as a change-point detector, the considered
series is split at the individual observations,
the basic statistical parameters â and s are
computed for the two resulting sub-samples,

and t is derived. The associated cumulative
Student’s probability distribution function
F(−t) with n1+n2-2 degrees of freedom can
be computed, and the probability of equality
of the population means µ is given by

(2)

The location for which the associated p is low-
est can be considered as the most likely posi-
tion of a change point (Buishand, 1982;
Szinell, 1997), which is defined as the position
after which the observations with the new
probability distribution function follow.

Having the common situation in climatology
in mind, the interesting question emerges how
such a two-sample test can be generalized to
handle the case of a time series constituted by
numerous populations, with the number of
change points being unknown. In previous
works (e.g. Easterling and Peterson, 1995;
Lanzante, 1996; Herzog and Müller-Wester-
meier, 1997; Moberg and Alexandersson,
1997), it has been attempted to use two-sam-
ple tests in a sort of sequential manner. First,
all configurations with one change point were
investigated. Then, taking the first change
point for granted, the most likely position of a
possible second change point was sought un-
der this precondition. This procedure of in-
creasing the number of change points sequen-
tially was repeated until a termination criterion
was reached.

Reservations against such schemes root in the
fact that ∑ if there are actually several popula-
tions involved ∑ the considered samples will
normally represent mixtures of populations.
Naturally, there exists no test which is so ro-
bust to yield a correct change-point position
for any arbitrary mixture. Therefore, starting
with the search for a single change point and
irrevocably fixing it at the identified optimum
position carries the risk of leading the proce-
dure astray already at the very beginning.
Eventually, such considerations lead to the
conclusion that it is highly recommendable to
treat the problem of multiple change-point de-
tection as one of global optimization. Unfortu-
nately, a full evaluation of all possible change-
point configurations would consume an enor-
mous amount of computing time for typical
climatological series (Caussinus and Mestre,
1997; 2004). Hence, necessarily, the term global
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optimization normally means devoting a (con-
siderably) increased amount of time in order
to achieve a (considerably) better approxima-
tion to the true solution. For doing this, Jann
(2000) proposed a genetic algorithm (GA) as
an optimization tool.

In the paper quoted, a couple of experiments
were described where the genetic algorithm
was successfully applied to simulated data. It
is almost imperative to base the assessment of
the merits of a new concept (or an intercom-
parison of methodologies, cf. Ducré-Robitaille
et al., 2003) on data that are known to con-
form to the prerequisites of the tests involved.
Consequently, we defer application to real cli-
matological records to future studies, and by
virtue of the numerical simulation approach at
several instances will benefit in the following
from knowing the true change points by de-
sign. Nevertheless, the present paper demon-
strates important progress towards climatological
practice as it goes beyond the consideration of
perfect series in isolation: Outlier detection is
addressed in Section 3, the integration of
metadata records is the issue of Section 4, and
the simultaneous analysis of several time se-
ries is considered in Section 5. Section 6 dis-
cusses aspects of real-time monitoring. Before
dealing with these issues, the following section
provides an overview of the employed GA.
More details, in particular on the motivation
behind some of the features introduced, can be
found in the original article (Jann, 2000).

As the focus of the present paper is on selected
aspects of change-point detection, the subject
of homogenization will not be covered in full
depth. Readers interested in a more compre-
hensive treatise on the general aspects of ho-
mogenization are referred to the review
article by Peterson et al. (1998). A wealth of
additional information about mathematical
concepts with respect to the detection of
abrupt changes can be found, for example, in
the book by Basseville and Nikiforov (1993).

2. FUNDAMENTALS OF THE
OPTIMIZATION PROCEDURE

2.1. The genetic algorithm

The material on which GA operations are
applied here are samples of bit strings, where
the number of bits is given by the number of
observations in the investigated climatological
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series and the symbol ‘1’ is reserved for those
positions where a change point is assumed.
For example, for a 20-element series with one
change point at position 10, the solution of the
change-point detection problem is described
by the sequence 00000000010000000000. In
the optimization problem under considera-
tion, the bit strings represent the independent
variable, and the cost function C (to be specified
in the subsequent section) is the dependent
expression to be minimized. The optimization
is carried out by a systematic random walk
through the bit pattern space using the stan-
dard mechanisms of GAs: selection, crossover
and mutation. The sequence of these three
mechanisms is repeated until presumed con-
vergence.

The computations start with the production of
a certain number Q of parental bit sequences
(Q=200 throughout the paper unless indicated
otherwise). In our implementation, a tenth of
the bits were randomly selected and set to 1.
Bits with value 1 were set back to 0 if one of
the four preceding bits was 1, in order to avoid
too short sub-series. Judging bit sequences to
be illegal when the distance between assumed
change points falls below a minimum of 5 ob-
servations was motivated by the findings of
Karl and Williams (1987) and Easterling and
Peterson (1995) that at least five data items of
each involved population are required to
arrive at reliable statistical conclusions. When
undesired bit sequences with change-point
markers being separated by less than four ze-
ros were produced through the mechanisms
described below, such sequences were imme-
diately excluded from any further processing.
After computing the cost functions C of the
parents (the largest value within the sample
being designated Cmax), the selection step
chooses Q surviving candidates from the parent
generation, with probabilities of selection
being proportional to

(3)

The parameter α (≥1) is to be set on an empirical
basis; it was kept constant at 1.5 throughout
the study.

The selected parents are paired and subject to
an exchange of sequences with their respec-
tive companions (this is the crossover step).
The crossings took place strictly in the order in

jj CCP max .
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which parents were selected in the preceding
step, i.e. the first was paired with the second, etc.
For each pair, the position of the splitting was de-
termined by drawing from a uniformly distri-
buted random variable. Figure 1 gives an example.

The mutation step alters the value of some se-
lected bits, leaving the rest of the sequence un-
changed. Two variants of this step were imple-
mented: In the first iteration, after the finding
of a new best sequence, sequences closely re-
sembling this (provisional) optimum were in-
vestigated, which should normally be the best
basis for further progress (=mutation type I):
• The effect of introducing one additional

change point was investigated for each possi-
ble position;

• The second mechanism producing alterna-
tive bit sequences was to shift each of the in-
dicated change points.

However, if the previous iteration yielded no
improvement in the minimum C, a mutation
of type II was carried out. This was a random
mutation applied to those parents which had
survived the selection step. The number of
mutations was chosen to be Q, i.e. on average,
each string underwent a single change. 3Q/4
mutations were reserved to take place from 0
to 1 whereas the other Q/4 mutations were

changes from 1 to 0 provided that a sufficient
number of change points were present in the
considered population. Figure 1 offers illustra-
tions of both types of mutation.

The cost functions C were calculated for both
the crossover population and the mutated se-
quences, and the best Q/2 mutually different
representatives of each group were elected to
enter the next parent generation (which was
then subject to the selection step, and so forth).
If there were not enough candidates to fill the
Q places, a random draw was made from the
already investigated bit sequences in order to
complete the new parent generation.

Convergence was assumed and the procedure was
terminated after a certain number of iterations
(consisting of selection, crossover, and muta-
tion) without any progress in lowering the mini-
mum C. This threshold number of unsuccessful
iterations, nit, was set to 30 in the experiments
described, unless indicated otherwise.

2.2. The cost function

The cost function that was chosen to be mini-
mized writes

(4)
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Figure 1. Illustration of the mechanisms constituting the genetic algorithm. The crossover is assumed to take
place at the position marked by the dashed line.

Slika 1. Ilustracija mehanizama koji tvore genetski algoritam. Presjek se nalazi na položaju označenom is-
prekidanom crtom.

CROSSOVER POPULATION
Sequence AxB: 0000010000 0000001000000000
Sequence BxA: 0000000000 0000000001000000

•
•
•

MUTATION TYPE II
Random mutation of sequence A: 00000000001000000001000000
Random mutation of sequence B: 00000000000100001000000000

•
•
•

PARENT GENERATION
Sequence A: 0000010000 0000000001000000
Sequence B: 0000000000 0000001000000000

•
•
•

MUTATION TYPE I (Assumption: A is the optimum sequence)
adding a change point:
shifting the left change point:
shifting the right change point:

10000100000000000001000000, 01000100000000000001000000,...
10000000000000000001000000, 01000000000000000001000000,...
10000100000000000000000000, 01000100000000000000000000,...
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where s2 is the variance of the original series
and s2

r is the variance of the adjusted series
(where for each supposed population the de-
rived sample mean is subtracted from its ele-
ments). The factor β1 is set to 1 if for all
assumed change points the values p derived
from the t-test satisfy a prescribed significance
criterion p≤pt (or, equivalently, F(−t)≤pt /2),
otherwise β1=0. The symbol ν designates the
number of indicated change points, hence the
term −β1ν reflects the philosophy of detecting
the maximum number of significant disconti-
nuities as C decreases when the number of sig-
nificant change points goes up.

However, prompted by the unsatisfactory re-
sults found for certain configurations (albeit
those would hardly ever be encountered in cli-
matology), it was decided to take only those
shifts into account for the determination of ν
where the sense of the preceding jump (i.e. in-
creasing or decreasing) is different from the
current one, i.e. the proper detection of back-
and-forth jumps is supported through the
bonus term whereas the recognition of patterns
of two consecutive positive (or negative) shifts
is left to the term s2

r /s2. Though in this counting
scheme some of the indicated shifts may not
contribute to the value of ν, they must still, of
course, be significant in order to make β1=1.
The third term of the cost function is a techni-
cal one introduced to support convergence to-
wards the optimum solution by favouring
those bit sequences which contain some inter-
esting change-point positions: β2 is set to 1
when at least one change point meets the sig-
nificance criterion, otherwise β2=0. Summing
up, three groups of bit sequences are separated
by means of cost function (4):

1) The sequences containing entries of ‘1’ but
not a single significant change point. These
sequences are characterized by positive values
of C.

2) Those with both significant and insignifi-
cant change points indicated. The cost func-
tions are negative, but C>-1.

3) Finally, the sequences where each entry of ‘1’
marks a significant change point; here, C<-1.

The null sequence (=assumption of a homoge-
neous series) has been duly included into the
scheme by defining its cost function to be -1.
With respect to the significance testing, a two-
step procedure was implemented, as motiva-
ted by Jann (2000). After the GA had con-

verged for a relaxed significance threshold, i.e.
a higher value of pt, the Q best bit sequences
were picked from a ranking for the desired
stricter limit. They constituted the initial parent
generation for a repetition of the procedure,
now with a tighter threshold. All runs dealing
with cost function (4) started with pt=0.05 and
then switched to a significance threshold of
pt=0.01.

3. HANDLING OF OUTLIERS

Outliers, i.e. isolated values of a time series
which (in a statistical sense) do not belong to
the population(s) surrounding it, may, for
example, appear in climatological records as a
result of incorrect readings or errors during the
encoding of data. Occasionally, even a correct
value may constitute an outlier and bear
interesting climatological information (e.g. in El
Niño situations or during sudden stratospheric
warmings). However, in the context of homoge-
nization, where the overall characteristics of the
series is to be judged, it is probably appropriate
to disregard single extreme values of whatever
origin (cf. González-Rouco et al., 2001).

The basic concept of detection and subsequent
elimination of outliers need not be complex:
Gille (1997) and Wolter (1997) considered a
value an outlier when it was outside a range

(mean or median) ± f × (standard deviation),

with f being a subjectively prescribed factor
which in the quoted papers ranged from 3 to
4.5. This test will be used hereafter, with f (ar-
bitrarily) set to 3.5.

Lanzante (1996) strongly argued against the
use of the traditional mean and standard
deviation for the determination of the confi-
dence interval. Using standard formulas, pres-
ent outliers distort the statistical quantities to
such a degree that outlier detection may be
outright impossible. The solution proposed by
Lanzante (1996) is the use of robust estimates
called biweight mean and standard deviation,
respectively, which are less prone to distor-
tions by outliers. These new parameters are
symbolized hereafter by à and á; the relevant
formulas are given in Lanzante (1996), Ap-
pendix B.

For the inclusion of outlier probing into the
change-point detection process, a scheme may

7A. Jann: Genetic algorithms: towards their use in the homogenization of climatological records
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be envisaged where the GA is essentially un-
changed, but for each assumed population the
members have to pass the test of lying within
[à � f á, à + f á]. After the elimination of any in-
dicated outliers, the common mean and the
standard deviation are derived for the cleaned
sample and eventually used for computing
cost function (4).

The statistical dilemma faced here is that an
outlier should be disregarded during change-
point testing but, on the other hand, the very
same outlier may be difficult to identify as long
as the main statistical parameters of the popu-
lations are not known, when the series is not
yet split into its components. Thus there are
two problems and, in principle, each requires
the other to be solved beforehand. The pro-
posed scheme sets outlier detection first by
carrying out the outlier test even on mixtures
of populations. In doing so, the standard devia-

tion can increase considerably and the confi-
dence interval of the outlier test thus widens.
Outliers (that would be recognized if the
assumed change-point positions were more
appropriate) may then be overlooked (Fig. 2a).
Fortunately, the numerical effect for the
change-point test in this case is that two fac-
tors, the mixing of populations and ignorance
about the outlier, tend to act in the same direc-
tion, namely towards an increase of the cost
function. Hence, the GA selection step will
likely eliminate the affected bit sequence with
incorrectly set change-point positions since it is
inferior to other sequences where the change
points fit better. The latter are encountered
despite yet undetected outliers with their un-
certain impact on the test statistic (hence, in
principle, having the potential to guide an al-
gorithm away from the right change-point po-
sitions). Due to the GA mechanisms, breaks at
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Figure 2. Illustration of potential difficulties when combining change-point and outlier detection. (a) Example
of outlier recognition failure caused by incomplete partitioning of series into populations. The outlier is located
at position No. 24. The dotted line shows the course of the true population mean; bold horizontal lines indicate
the biweight sample mean (solid) and the confidence interval of the outlier test [à � 3.5á, à + 3.5á] (dashed) for
the central population, if change points are set correctly. Thin horizontal lines show the biweight mean and
confidence interval for a mixture of the central and right-hand population, i.e. if only the left change point
would be correctly identified. (b) Example of incorrectly flagging a couple of values from another population
as outliers because of inexact separation of populations. The dotted line shows the course of the true popula-
tion mean; bold horizontal lines indicate the sample mean (solid) and the confidence interval of the outlier test
(dashed) for a mixture of the central population and three elements of the left-hand population (the latter
would erroneously be flagged as outliers if no provisions were taken).

Slika 2. Ilustracija mogućih poteškoća prilikom kombiniranja točke promjene i pronalaženja podataka koji
značajno odstupaju od skupa (outlier). (a) Primjer neuspjela prepoznavanja outliera zbog nepotpunog dijelje-
nja niza u populacije. Outlier se nalazi na položaju br. 24. Točkasta crta prikazuje hod stvarnog srednjaka po-
pulacija; podebljane horizontalne crte prikazuju dvostruko otežani srednjak uzorka (puna crta) i interval po-
vjerenja outlier testa [à � 3.5á, à + 3.5á] (isprekidana crta) za središnju populaciju, ako su točke promjene ispra-
vno postavljene. Tanke horizontalne crte označavaju dvostruko otežani srednjak i interval povjerenja za kom-
binaciju centralne i desne populacije, t.j. samo kad bi se lijeva točka promjene ispravno identificirala. (b) Pri-
mjer neispravnog označavanja nekoliko vrijednosti neke druge populacije kao outliera zbog netočne podjele
populacija. Točkasta crta prikazuje hod stvarnog srednjaka populacije, podebljane horizontalne crte prikazuju
srednjak uzorka (puna crta) i interval povjerenja testa outlier (isprekidana crta) za kombinaciju centralne po-
pulacije i tri elementa lijeve populacije (te bi posljednje bile netočno označene kao outlieri da se o tome nije
vodila briga).
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the actual change-point positions are investi-
gated even if there has been no previous indi-
cation that such a location is promising.

A minor modification of the procedure was
nevertheless necessary: if a mixture investigated
during the optimization process is composed
in such a way that population A contributes
many more members than the adjoining popu-
lation B, the members originating from B may
all together be flagged as outliers. This is the
case in Figure 2b where the three leftmost
members of an assumed sample lie below the
lower threshold of the acceptance interval.

Though the test is right in flagging the three
observations as not belonging to the sample
population, the decision to eliminate these ob-
servations from the change-point testing
would be incorrect. Such a false elimination
may (albeit not necessarily) lower C, which
could finally deliver a wrong result of the com-
bined outlier/change-point detection proce-
dure. Hence, it is advisable to take the addi-
tional provision that for outliers indicated at
the edge of an investigated sub-sequence, the
outlier criterion be checked with respect to
both adjacent populations.

The positive assessment of the method
through theoretical reasoning was substantiated
by its practical application to simulated time
series. Experiments were run where outliers
were introduced in such a way that their iden-
tification would have been theoretically possi-
ble had the change points been known. This
was done by analysing the series before any
outliers were added. Sample means and stan-
dard deviations were computed for the identi-
fied components and outliers being larger
than à + 3.5á or smaller than à � 3.5á were then
randomly inserted somewhere into these sub-
series. Of course, the information about the
change-point configuration found for the ori-
ginal series was withheld from the combined
outlier/change-point detection procedure ap-
plied subsequently. The latter, if working
properly, should identify and eliminate the
outliers so that the analysis ultimately is the
same as for the original series where no outliers
were present. This was found to be virtually
always the case. Figure 3 provides an example
of such a successful verification.

4. INCLUSION OF METADATA

Metadata, i.e. records about the history of ob-
serving stations, may help in clarifying the na-
ture of change-point signals found in climate
series. A significant shift occurring at a single
station is unlikely to be attributable to clima-
tological causes when a simultaneous change
in instrumentation or a station relocation is
noted in the annals for that very station.

Moreover, metadata can serve as an ingredient
to an improved positioning of the change
point. Often, change points obtained through
statistical analysis are contrasted with metada-
ta records. If there is a (subjectively) small dis-
crepancy between the two sources, a linkage

9A. Jann: Genetic algorithms: towards their use in the homogenization of climatological records
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Figure 3. A representative result of the combined
change-point/outlier detection procedure. The dot-
ted line indicates the course of the true population
mean. Bold solid lines indicate the biweight sample
means computed for the change-point configura-
tion that finally turned out to be the optimum.
Dashed horizontal lines define the confidence in-
tervals [à � 3.5á, à + 3.5á] corresponding to each as-
sumed population. The eight introduced outliers lie
below the lower thresholds and can be eliminated
before computing C (Eq. 4). The result is eventually
the same as if the outliers were simply not present.

Slika 3. Reprezentativni rezultat kombiniranog
postupka pronalaženja točke promjene/outliera.
Točkasta crta označava hod pravog srednjaka po-
pulacija. Podebljane pune crte označavaju dvo-
struko otežan srednjak izračunat za konfiguraciju
točke promjene koja se konačno pokazala optimal-
nom. Isprekidane horizontalne crte definiraju inter-
vale povjerenja [à � 3.5á, à + 3.5á] koji odgovaraju
svakoj pretpostavljenoj populaciji. Osam unesenih
outliera zapravo se nalazi ispod donjih pragova i oni
se mogu eliminirati prije izračunavanja C (jednadž-
ba (4)). Rezultat je konačno isti kao da outlieri nisu
ni bili prisutni.
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Therefore, a two-step procedure is proposed.
The first step is to carry out the GA procedure
as described above, without considering the
metadata record. Then, the GA minimizes the
cost function

(5)

where N stands for the number of coinci-
dences between change points and explana-
tions found in metadata. The t-test is again
used to verify the significance of all supposed
shifts in µ; β3 is set to 1 if all assumed change
points are found significant, 0 otherwise. With
the lesson learned from Figure 4a, another
prerequisite for β3 to assume the value of 1 is
that the number of change points be not re-
duced compared to the optimum solution de-
tected during the first run of the GA; other-
wise the bonus cannot be awarded.

It is acceptable to express uncertainty about a
datum contained in the metadata. For exam-
ple, if an available source reports a change at
the station “that took place at some time in
the year 1942” and a series of monthly aver-
ages is tested for homogeneity, the change
points between December 1941 and Decem-
ber 1942 may be considered consistent with
the metadata information. Hence, whenever a
change point is indicated in that period, N is
increased by one (if two change points during
this year are indicated, the bonus for being in
compliance with the metadata is to be awarded
only once).

Figure 4b provides an example of change-
point detection taking into consideration (im-
precise) metadata information.

5. PARALLEL ANALYSIS OF SEVERAL
SERIES

Besides metadata, the use of reference series
is another prominent concept in the distinc-
tion between climatic and artificial changes in
a meteorological time series. A reference se-
ries is designed in such a way that it contains
the climatic variability prevailing in an area
(i.e. the variability found at the majority of
stations) and yet is devoid of the inhomo-
geneities present in single station records.
Subtracting the proper reference series from a
climatological record should leave only the ar-
tificial inhomogeneities which can thus be un-
ambiguously revealed.

10 Hrvatski meteoroloπki Ëasopis � Croatian Meteorological Journal, 41, 2006.

between a specific statistical change point and
a physical cause documented in the metadata
record is normally inferred. With a metadata
record considered to be trustworthy, the final
positioning is determined in accordance with
the supplementary data. Thus, the statistical
analysis is overruled, which is perfectly accept-
able if all the indicated shifts are still statisti-
cally significant for the adjusted configuration.
Because of the impacts of random noise, the
objectively determined positions can never be
considered sacrosanct and a slight modifica-
tion on a sound basis appears permissible.

A direct numerical inclusion of this philoso-
phy into cost function (4) proved difficult
since one cannot determine on a scientifically
reasonable basis how much an agreement be-
tween the analysis and metadata record is
worth in numerical terms, weighed against a
decrease in statistical significance. Nonethe-
less, an experiment with a variant of Equation
4 with a large relative weight on metadata
agreement compared to the other terms gave
an instructive result: For the series shown in
Figure 4a, significant change points could be
forced far away from positions 26�50, where
the two present breaks are actually located.
For example, one could postulate a (single)
change point at position 84 if metadata show
that a shift at that position might be explained
by station history. As Figure 4a features a
simulated series, where the truth is known,
that hypothesis can be rejected immediately.
A basically correct analysis has been effective-
ly destroyed due to an overvaluation of meta-
data, which can normally only indicate a larger
probability for a shift in the series at that point
of time; an actual shift is, however, not
assured. (If, for whatever reason, a specific
change point is considered to be sure, the im-
plications on the algorithm are trivial and
need not be scrutinized here. One would sim-
ply constrain the GA to investigate only bit se-
quences with a ‘1’ in the right position.) The
warning signal in the case of Figure 4a is the
reduction in the number of change points, in-
dicating that one has abandoned the original
concept of merely repositioning change
points. Hence, a desirable feature to be imple-
mented in the algorithm is that not a single
significant change point should be sacrificed
for reaching an agreement between metadata
and another change point.
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Figure 4. Metadata inclusion into the GA procedure. a) Simulated time series superimposed by the popula-
tion means (bold line). The first row of arrows indicates change points found by the GA procedure without
metadata information. The arrow in the second row points to element no. 84, where a significant change
point could be positioned if metadata indicate a relevant event there, along with a reduction in the number of
change points from two to one. b) Simulated time series superimposed by populations’ means (bold line).
Arrows indicate change-point positions derived from the proposed two-step procedure. First row: without
metadata information. Second row: with metadata information, using Equation 5, i.e. taking care that the
number of change points is not reduced. It is assumed that metadata provide a somewhat vague information
that a change point somewhere between observations 27 and 31 (region shaded in the graphics) appears likely.

Slika 4. Uključivanje podataka o postaji (metadata) u postupak GA. a) Simulirani vremenski nizovi s pri-
padajućim srednjacima populacija (podebljana crta). Prvi red strelica označava točke promjene pronađene
postupkom GA bez informacija iz podataka o postaji. Strelica u drugom redu pokazuje element br. 84, gdje
bi se mogla nalaziti signifikantna točka promjene ako podaci o postaji upućuju na značajni događaj na tom
mjestu, uz smanjenje broja točaka promjene s dvije na jednu. b) Simulirani vremenski nizovi s pripadajućim
srednjacima populacija (podebljana crta). Strelice pokazuju položaje točaka promjene dobivene predloženim
dvostupanjskim postupkom. Prvi red, bez informacija iz podataka o postaji. Drugi red, s informacijama iz
podataka o postaji, korištenjem jednadžbe (5), tj. vodeći računa da se broj točaka promjene ne smanjuje.
Pretpostavlja se da podaci o postaji daju donekle neodređenu informaciju da bi se jedna točka promjene
mogla vjerojatno nalaziti između motrenja 27 i 31 (osjenčano područje na slici).
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The interesting question is, of course, how to
construct an average climate series when the
available material is comprised of possibly in-
homogeneous series with artificial breaks being
yet unidentified. Literature has documented di-
verse reactions to the paradox. Some deve-
loped procedures to “diminish the effect of an
inhomogeneity in the candidate station” (Pe-
terson and Easterling, 1994). Others (e.g.
Caussinus and Mestre, 2004) entirely rejected
the use of reference series for which the
alleged absence of artificial inhomogeneities
cannot actually be proven.

There are a couple of ways to contrast series
without the explicit construction of a reference
series. Menne and Duchon (2001) consider
difference series between adjacent stations
and test whether these series show the charac-
teristics of white noise. If the test fails at a cer-
tain station for several of its neighbours, a
non-climatological inhomogeneity in the se-

ries is likely. Caussinus and Mestre (1997) also
consider difference series, but apply the
change-point detection procedure and look
for congruent change points. If a certain sta-
tion is involved in a considerable number of
difference series with a shift at (about) the
same time, this points to an artificial inhomo-
geneity at this station. The simplest example is
the case of three series A, B and C. If a change
point is common to the difference series A-B
and B-C (but absent in A-C), it eventually
leads to the conclusion that series B alone ex-
hibits an inhomogeneity there which, in turn,
is probably artificial.

The latter approach is of particular interest
here since it can be integrated fairly easily into
the GA framework. In fact, the procedure has
by and large already been devised in the previous
section when considering the inclusion of
metadata. Now, however, it is not coherence
with a reference event that is sought but the si-

a) b)
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multaneity of change points where not a single
one is given at the beginning.

Figure 5 shows an example of three series to
which inhomogeneities were introduced,
namely:

• series A, with change points imposed at po-
sitions 20 and 44;

• series B, change points at positions 33 and 58;
• series C, one change point at position 71.

No assumption had to be made about super-
imposed climatic variability because it would
have been eliminated anyway through the use
of difference series in the analysis process.
Precautions were taken, however, to ensure
that the three simulated series had a reason-
able amount of correlation between them (be-
fore adding the artificial jumps), because mutual
correlation between the series is a prerequisite
of the Caussinus&Mestre method (as well as
of the method of reference series). To view
poorly correlated series in conjunction could
well mean mixing climatologically incompara-
ble regions, thus invalidating all subsequent
conclusions.

Figure 5 documents the results of the opti-
mization of the cost function (4) undertaken
for the three difference series A-B, B-C and
A-C. Building upon the preliminary analyses
for the three difference series, the GA then
minimized the cost function

(6)

where N stands for the number of concurrent
change points found in any two series (generally,
the two difference series with a common
change point need to have one original series
in common in order to contribute to N; in the
simple three-series case, this is always ful-
filled). The overbar in Equation 6 indicates
averaging over all difference series. The factor
β3 has the same function as in Equation 5: it is
set to 1 if all supposed shifts in µ are found sig-
nificant (again using the t-test), 0 otherwise.
Another prerequisite for awarding the bonus
is that, by analogy to the previous section, for
each series, the number of change points is not
reduced compared to the optimum solution
detected during the runs for the single series.

For this application, a natural algorithmic ex-
tension to be added to mutation type I of the
GA is a simultaneous shifting of those change

points which contribute to N. This is a promis-
ing mechanism for improving C, since the
bonus of coincidence could be retained while
a somewhat better positioning is sought. It is
of course much more efficient to include this
search explicitly into the procedure rather
than relying on the random processes to inci-
dentally yield the same modifications.

When performing the optimization of C (Eq.
6) for the case in Figure 5, the change-point in-
dications are somewhat shifted. Coinciding,
statistically confirmed change points are re-
ported at:

(a) position 22 for A-B and A-C (consequent-
ly the inhomogeneities are expected to
originate from series A);

(b) position 34 for A-B and B-C (probable ori-
gin: series B);

(c) position 40, where the situation is similar
to (a);

(d) position 50, where the situation is similar
to (b) (Interestingly, the original analyses
indicated a coincidence at position 62
which has now been shifted 12 positions to
the left. With the truth known, one would
prefer the positions at No. 62, but statistics
decided otherwise. If such a pattern were
observed for a real climatological series,
one would consult metadata to seek clarifi-
cation.);

(e) position 78 for A-C and B-C; inhomogene-
ity in series C as probable cause.

The good consistency of these results with the
designed change-point configurations is obvious.

The increase of change points in the analysis
of series B-C may require explanation: For
cost function (4), the term decided against the
assumption of three change points (by a very
narrow margin). Since a staircase configura-
tion added to s2

r /s2 in (4) at most 1, the bonus
term provided no stimulus towards such a so-
lution, either. With the cost function (6), how-
ever, the decision between the two statistically
possible solutions was clearly in favour of the
change-point triplet since all three change
points coincide with the counterparts of the
other two difference series.

6. ONLINE ANALYSIS

Change-point detection becomes an even
more challenging task if the application de-
mands the identification of the change point

12 Hrvatski meteoroloπki Ëasopis � Croatian Meteorological Journal, 41, 2006.
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13A. Jann: Genetic algorithms: towards their use in the homogenization of climatological records

Figure 5. Left column: Simulated time series A, B and C with imposed change points; bold lines show courses
of the populations’ means for each series. Right column: Analyses of difference series A-B, B-C and A-C
(bold lines show the corresponding differences of populations’ means = populations’ means of the difference
series). The arrows and numbers in the upper halves of the panels indicate the change-point positions ob-
tained when analysing each difference series in isolation. The positions indicated in the lower halves were ob-
tained from a subsequent coupled analysis of the three series, using cost function (6).

Slika 5. Lijevi stupac: Simulirani vremenski nizovi A, B i C s definiranim točkama promjene. Podebljane crte
prikazuju hodove srednjaka populacija za svaki niz. Desni stupac: Analize nizova razlika A-B, B-C i A-C
(podebljane crte prikazuju odgovarajuće razlike srednjaka populacija = srednjake populacija nizova razlika).
Strelice i brojevi na gornjoj polovini slike prikazuju položaje točaka promjene dobivene pri analizi svakog
niza razlika posebno. Označeni položaji na donjoj polovini slike dobiveni su naknadnom analizom kombi-
nacije tri niza podataka, upotrebom cost funkcije dane u jednadžbi 6.
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soon after its occurrence. The performance of
procedures in a real-time framework is critical
in fields such as bacteriological infections
(Whittaker and Frühwirth-Schnatter, 1994),
short-range forecasting of severe weather by
means of meteorological radars (e.g. Brown-
ing and Collier, 1989) and industrial quality
control. Quality assurance is also an area
where climatological variables may become
the subject of continuous real-time inspection
(a procedure which is often termed ‘online
analysis’). Menne and Duchon (2001) empha-
size how important it is to detect potential in-
homogeneities quickly so that corrective
measures can be soon applied to the affected
station. Another situation, where the focus is
on the most recent sections of a climatological
series and quick answers are desirable, is when
public interest so dictates, with the global
warming issue probably being the most promi-
nent example.

Interestingly, however, there is no need to jus-
tify the set-up of an online mode with reference
to the nature of the application. As will be
shown shortly, even the analysis of a climato-
logical series that terminated, say, 50 years
ago could benefit from performing the analy-
sis as if it were a real-time application.

6.1. Aspects of practical implementation

Figure 6 shows an example where the GA op-
timized the cost function (4) not only for the
entire 100-element series but also for the par-
tial series comprising the first 10, 11, ... 99 ele-
ments. The visualization of the results of the
increasing length of the series confirms the ex-
pectation that any run can greatly benefit
from the preceding run. Of course, if the op-
posite were true ∑ with change-point positions
fluctuating pronouncedly with any newly in-
cluded observation ∑ one would have to ques-
tion either the robustness of the statistical pro-
cedure or the solvability of the statistical prob-
lem as a whole. For the (representative) exam-
ple in Figure 6, it is obvious that, usually, using
the previously obtained optimum as a starting
point and adding a 0 at the end of the bit se-
quence, the solution is either given already at
the very beginning or found in the first itera-
tion through the mechanisms of mutation type
I. Hence, computing time can be considerably
reduced by exploiting the available informa-
tion rather than starting the procedure after
each observation from scratch.

It is almost trivial that, also in terms of the
quality of the final result, an unaltered GA
profits from preceding optimization runs for
shorter sub-series. If the solutions of the pre-
vious runs resemble the final solution, they
strongly facilitate finding the latter; if the opti-
mum change-point configurations of the pre-
cursors are completely different from the solu-
tion for the entire series, the situation is the
same as for an uninformed GA. With the GA
performing a random walk, inappropriate
starting sequences are very quickly eliminated
and do not impact the algorithm negatively.

In order to find out whether the additional
computational effort incurred by investigating
the partial series can be compensated by such
a measure as lowering Q from 200 to 30, for
example, a small simulation experiment was
launched. The test material consisted of 100
series, each comprising 100 random numbers
representing samples from a normal distribu-
tion with mean 0 and standard deviation 1,
shortly written as N(0,1). Each series was
modified through adding an increment ∆µ to
its elements No. 30 to 50, i.e. two change
points were imposed at events 29 and 50 so
that the distribution first changed to N(∆µ,1)
and returned to N(0,1) later. The analyses of
the entire series (Q=200) were compared with
the final results of the online analyses with
Q=30, nit=20. The used increments were
∆µ=1.0 and ∆µ=1.5, and for both values the
outcome showed 93 of the 100 series to have
been analyzed identically by the two ap-
proaches. Evaluating the few instances with
differing outcomes gave an ambiguous result,
as ∑ besides several cases where the expected
benefit was observed ∑ there were a couple of
situations identified where results for the
shorter series apparently suggested a certain
suboptimal configuration, and with a low Q,
the number of investigated alternatives was
too small to find the path to the existing better
solution (for Q=20, the problem aggravated to
such an extent that the online mode appeared
to be of questionable value).

In climatology, the ultimate analysis, i.e. the
one for the entire series, normally has highest
priority. For such applications, experience
suggests that the valuable information from
the analyses of sub-series can, indeed, often be
obtained from a ‘quick mode’, i.e. from runs
with smaller Q. To be on the safe side, a higher

14 Hrvatski meteoroloπki Ëasopis � Croatian Meteorological Journal, 41, 2006.
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Figure 6. Left panel: Simulated time series with the course of population means superimposed as a bold line.
Right panel: Results of change-point detection (via optimization of cost function (4) by the GA) for the in-
creasing length of the series. The crosses mark the positions of the detected change points; for the sake of
clarity, the result for the full series is depicted by diamonds.

Slika 6. Lijeva slika: Simulirani vremenski nizovi s pripadnim hodom srednjaka populacija (podebljana crta).
Desna slika: Rezultati pronalaženja točaka promjene (optimizacijom cost funkcije (4) pomoću GA) za pro-
duženje niza. Križići označavaju položaje pronađenih točaka promjena. Da bi se dobilo na jasnoći, rezultat za
cijeli niz označen je rombovima.

Q should be used in the last run, where the
complete series is analyzed. As already ar-
gued, the process certainly benefits ∑ or is at
least not impacted negatively ∑ from such a
proceeding in terms of the final result (com-
pared to the analysis of the complete series
alone).

6.2. The benefit of online analyses from a
theoretical statistical viewpoint

By increasing the length of the series stepwise,
it is assured that the change points appear one
by one. This situation is fundamentally different
(and much more favourable) compared to the
immediate analysis of the whole series where
each inspected sample is potentially a mixture
of several populations: it is reasonable to
expect that a test like the t-test, designed for
dealing with a single (additional) change
point, can, under these circumstances, be em-
ployed in much better accordance with its
actual capabilities.

For schemes sequentially setting change
points one by one, this opens up an option to
approach the global optimum much better
than otherwise possible. Figure 7 illustrates
this. The classical sequential approaches per-
form poorly for the examined series, which is
the same as that in Figure 6 (only the first 99
elements of the series were used, though, be-
cause the full series exhibits a statistical

“anomaly” which will be discussed shortly). In
the first step, the best single change point from
minimization of either s2

r or p (Eq. 2) is found
to be at No. 39. To find the second change
point, one has the ‘classical sequential’ options
to either
• investigate the two sub-series of the first 39

elements and the other 60 elements

• or to adjust for the differences in the two
sub-series’ means and to repeat the test on
the adjusted series.

Both tactics failed to identify a second signifi-
cant change point (for the significance thresh-
old pt=0.01), which is to be attributed to the
unfortunate positioning of change point No. 1
in an area where actually none is present.

By performing a kind of online analysis, a
clear indication of six change points could be
obtained for the series in Figure 7, even with-
out resort to a global optimizer. The change-
point positions do actually not deviate very
much from the results of the GA shown in Fig-
ure 6. The procedure employed used the bit
sequence representing the solution of the pre-
ceding run and investigated C (Eq. 4) for all
possible change-point configurations with one
or two additional change points on the right
side of the last but one change point. The pro-
ceeding was motivated by the patterns in Figure 6,
indicating that it is advisable to allow the last
identified change point to vary slightly in its
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position or even to be withdrawn in favour of
a better configuration. On the other hand,
when a solution with m significant change
points first appeared, the position of the m∑1-th
change point was definitively fixed. When,
temporarily, no solution for these fixed
change points could be found, no change-
point configuration was plotted in Figure 7;
the once accepted change points were never-
theless retained. This heuristic approach
worked well in the case shown, which serves to
illustrate how significant the benefits can be
compared to classical sequential techniques.
Yet, obviously, certain further refinements are
necessary if such an algorithm were to be em-
ployed for operational applications.

A similar motivation is behind the sometimes
followed practice of investigating partial series
of prescribed length, hoping that in the shorter
series only single change points will have to be
dealt with. Depending on the relation between
the chosen sub-series length and the distances
between actual change points, such a proce-
dure might either still have multiple change
points in an investigated sample or neglect in-
formation on the involved populations, which
would be useful for setting the change points
precisely. It may therefore be necessary to try
several sub-series lengths before arriving at
firm conclusions (compare Moberg and
Alexandersson, 1997). The approach intro-
duced above is of a more dynamic character,
adjusting itself to the actual lengths of sub-se-
ries with constant means.

Nevertheless, it is, of course, not the intention
here to advocate this methodology too much
since the GA shall still yield better solutions.
Yet, even a perfect global optimizer, if it could
be constructed, would derive benefit from on-
line analyses, which comes from documentary
diagrams such as those in Figure 6, right panel.
In the case shown, it is particularly important
to plot the change points as a function of the
length of the series since in the final run the
last included value pushed the rightmost
change point below the significance threshold
pt=0.01. Merging the two populations also
affected the significance level of the next
change point to the left, and, eventually, even
a third change point vanished. If one had only
the analysis for the entire series, the signals of
three change points � indicated fairly consis-
tently in the analyses of the partial series �

would be overlooked. In fact, by virtue of the
simulation approach, we can state with cer-
tainty that the signals lost for length 100 are
coupled with true change points.

Unfortunately, the temporary disappearance
of signals shown is not a rare or particularly
curious effect of random noise. In fact, the
very same series yielded two more instances of
such a pattern at lengths 81�82 and 93, but the
GA, with its receptiveness to the addition of
any number of change points at any stage, was
in both instances capable to master the situa-
tion. It reinstated the temporarily lost change
points soon afterwards. These examples alert
that even when a statistically optimal result
for the full series is known, the picture could
nevertheless be incomplete. Valuable insight
into the uncertainty inherent in the analysis is
obtainable from the scrutiny of partial series.

16 Hrvatski meteoroloπki Ëasopis � Croatian Meteorological Journal, 41, 2006.

Figure 7. Results of change-point detection for the
increasing length of the series; a sequential tech-
nique that adds one or two change points and al-
lows for the disappearance of the rightmost change
point of the preceding solution. The crosses mark
the positions of the detected change points. The in-
vestigated series is the same as in Figure 6. For
lengths where no solution is given, the significance
of one or more change points temporarily fell be-
low the prescribed threshold.

Slika 7. Rezultati pronalaženja točaka promjene za
produženi niz; sekvencijalna tehnika koja dodaje je-
dnu ili dvije točke promjene i uzima u obzir nestanak
krajnje desne točke promjene iz prethodnog
rješenja. Križići označavaju položaje pronađenih
točaka promjene. Proučavani niz je isti kao onaj na
slici 6. Za dužine kod kojih nema rješenja, signifi-
kantnost jedne ili dviju točaka promjene je privre-
meno palo ispod praga.
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7. CONCLUSION

The main argument behind the introduction
of the GA method is that it targets on global
optima and thus can be expected to yield re-
sults closer to the true solution than the sim-
pler methods proposed in earlier works. That
the GA matches the expectations has been
demonstrated in the previous paper (Jann,
2000) for simulated, perfect data sets. It is,
however, undoubtedly true that any method
would have little value in climatology if it
could not cope with deviations from the ideal
case (outliers) or if it were incompatible with
the wish to re-position change points on the
basis of metadata records. Hence, these issues
had to be addressed before application in
practice is envisaged. It showed that a relatively
straightforward inclusion of concepts dealing
with outliers and metadata into the GA
framework can be accomplished.

Perhaps, the universality of the GA technique
should be emphasized: though the experiments
presented generally made use of the t-test, none
of the arguments in favour of the GA proce-
dure, which is concerned with optimization as-
pects only, relied on the characteristics of this
two-sample test. There is even no reason to
limit oneself to cost functions comprising a two-
sample test; successful experiments, where
some genuinely global cost functions devoid of
any two-sample concept were fed into the GA
in a quite analogous fashion as Equations 4∑6,
have already been carried out:

• Rhoades and Salinger (1993) in their section
3.4 obtained the positions of a prescribed
number of change points through minimiza-
tion of s2

r (using dynamic programming for
optimization). Leaving the question aside
how to determine the “right” number of
change points, one has almost the same ex-
pression as in Equation 4 that is minimized.
Thus, results can be expected to be very
similar, e.g. searching for six change points
for the series in Figure 7, just one change
point was shifted by three positions com-
pared to the result for cost function (4) (that
configuration exhibited one marginally in-
significant t-value, hence the difference).

• Arising from Bayesian inference, Zurbenko
et al. (1996) used a cost function

(7)
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• (n: sample size). Like Equation 4, this ex-
pression ∑ called the Schwarz criterion ∑
combines the minimization of s2

r and a term
to control the number of change points. This
term is comparatively punitive on large num-
bers of breaks (which may be a desirable or
disadvantageous feature depending on the
application, cf. Menne and Williams, 2005),
e.g. for the case in Figure 7, the magnitude
of the shifts had to be increased from 1.5 to 2
in order to allow for a 6-breaks solution.
With the cost functions being very similar in
other respects, it is not surprising that the
(independent) GA runs for Equation 4 and
Equation 7, respectively, then yielded identi-
cal results.

• The (also Bayesian) approach of Caussinus
and Mestre (1997) has a global scope, too,
though in the practical implementation they
confined themselves to a more limited view;
later, the change-point detection part was re-
ported to be amenable to global optimization
by dynamic programming (Caussinus and
Mestre, 2004). The full framework, featuring
an implicit outlier detection, seems to be not
approachable by this global optimization tool,
though (Ibid.). The problem can, however,
fairly easily be solved with the GA, by intro-
ducing a code ‘2’ to indicate outliers and using
the same GA mechanisms of mutation for the
new byte type as for the change-point code ‘1’.
Similar verifications of inhomogeneity/outlier
mixtures as in Figure 3 were successfully
carried out also for the Caussinus&Mestre
cost function (jumps had to be larger and out-
liers more severe, however, since the penalty
function is even more restrictive than the
Schwarz formulation, cf. Menne and
Williams, 2005). It shows that ∑ since the GA
poses virtually no requirement on the cost
function ∑ this optimization method gives the
freedom to select even such an involved sta-
tistical formulation if that suits the posed ho-
mogenization problem best.
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