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Abstract: In this study, a detailed analysis has been undertaken of the Bura flow structure downwind and over the

Dinaric Alps on 7 November 1999 during MAP IOP15. Grubiši  (2004) used the flight-level data from the

coordinated NCAR Electra and NOAA P-3 coast-parallel tracks and cross-mountain tracks by the Electra to

document the origin, structure and steadiness of secondary potential vorticity (PV) banners generated by the Dinaric

Alps. The observed flow structure is compared here with simulation results from the ALADIN/HR hydrostatic

mesoscale model run at the horizontal resolution of 8 km and the 2 km dynamical adaptation. The good agreement

between the flight-level data and model simulations provided the basis for the detailed analysis of the evolution and

structure of the Bura flow along the entire Adriatic during IOP 15.
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1. INTRODUCTION

Bura is a strong, gusty, northeasterly downslope wind along the eastern Adriatic coast that is strongly

influenced by local processes and orography. Knowledge of the mesoscale flow patterns increases the

forecasting skill for surface winds in the region, especially in hazardous situations. The observed

maximum Bura wind speed during IOP 15 locally at the Maslenica Bridge south of the Velebit Mountain

exceeded 40 m/s. The important basic upstream ingredients of a major Bura event are strong vertical wind

shear, and a typical Bura layer covered by a temperature inversion.

The width and maximum

height of the Dinaric Alps

increase from the northwest to

the southeast with the peak

heights up to 1.5 km in the

north to 2 km in its southern

part. Several prominent passes

and gaps are important factors

determining the along-coast

variability of the Bura and the

attendant PV banners

(Grubiši , 2004). In addition,

the detailed analysis of the

development and structure of

the Bura flow along the entire

Adriatic during IOP 15 is

presented. Figure 1 illustrates

the cross sections used in the

flow analysis. Cross sections

AC and AD has a same starting

point near Udine.

Figure 1. ALADIN/HR orography in the 8 km model domain. The

thick solid lines mark the cross sections shown in Figs. 2, 3 and 4.

176



2. FLIGHT TIME ANALYSIS

The aircraft mission during MAP IOP 15 was focused on documenting the secondary PV banners in

the wake of the Dinaric Alps during the strong Bura on November 7. The observed flow structure derived

from the NCAR Electra and NOAA P-3 flight-level data from the coordinated coast-parallel tracks and

the cross-mountain tracks by the Electra (Grubiši , 2004) is compared here with simulation results from

the ALADIN/HR hydrostatic mesoscale model run at the horizontal resolution of 8 km, and the

dynamical adaptation run on the 2 km grid. Comparison is also made with the COAMPS non-hydrostatic

model runs at the horizontal resolutions of 3 km, used in Grubiši  (2004).

All three numerical model results show the wake structure within the Bura flow over the Adriatic with

several separate low-level jets whose approximate widths are 25 – 50 km (Fig. 2). The high steadiness of

the wake structure was found. Steep lowering of isentropic surfaces shows a large amplitude mountain

wave on the lee side of the Dinaric Alps and reveals the presence of wave breaking below 3 km. The

generation of these flow features (separate low-level jets, hydraulic jump and wave breaking) resulted in

the formation of PV anomalies. The models simulated negative and positive PV banners were found to be

in good agreement with PV derived from observations (horizontal scale of ~25 km, maximum PV ~ 6 to

10 pvu).

Figure 2. ALADIN/HR model (8 km) 15 hours forecast, valid at 15 UTC, 7 November 1999: a)

horizontal wind speed (m/s, shaded), wind vectors and temperature (contouring interval 2ºC); b) potential

vorticity (pvu), in vertical cross-section AC (the Electra tracks marked by plus sign in Fig.1).

3. CROSS - MOUNTAIN FLOW

Vertical cross-section BE across the Dinaric Alps (Fig.3a), show the flow structure simulated by

ALADIN/HR 2 km dynamical adaptation. The results indicate a very strong influence of mountain’s

configuration on the wind speed and shear layers, particularly in the lower troposphere. A large-amplitude

mountain wave on the lee side of the coastal mountains is accompanied by intrusion of potentially much

warmer and drier air from aloft. Sharp gradients in high-resolution potential temperature field reveal the

presence of wave breaking above the mountain top, and wave flow downstream. The height of the

inversion layer reveals that the stable layers are sloping downward in the downstream region. A

comparison of the horizontal wind speed and direction for the 8 km (not shown here) and 2 km resolution

shows that the wind maximum (more than 35 m/s in the latter) is much closer to the ground and to the

mountain slope in the high-resolution model results. In between the coastal range and the Kvarner island

of Cres a second wind maximum is located.

Fig. 3b shows the prediction for the Bura-driven PV banners in the same vertical cross-section. High-

resolution ALADIN/HR simulation suggest the presence of several distinct maxima of PV. The strongest

PV maximum at a height of 2.5 km in the jump region is associated with strong wind shear. Several
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separate PV banners are found within the boundary layer separating individual wind maxima and wakes.

These PV anomalies have the characteristic horizontal scale of 10-20 km with the maximum amplitude up

to 8 pvu and are in good agreement with PV derived from observations. These results support the thesis

that the dissipation in the hydraulic jumps and the wave breaking regions is likely the dominant PV

generation mechanism in this case.

Figure 3. Vertical cross-section BE (marked by open circles in Fig.1): a) horizontal wind speed (m/s,

shaded), wind vectors and temperature (contouring interval 2ºC); b) potential vorticity (pvu).

ALADIN/HR dynamical adaptation model prediction data for 15 UTC, 7 November 1999.

4. UPSTREAM AND DOWNSTREAM BURA FLOW STRUCTURE

The good agreement between the flight-level data and model simulations provides the basis for the

detailed analysis of the development and structure of the upstream and downstream Bura flow along the

entire Adriatic and the Dinaric Alps during IOP 15.

Figure 4. Mountain-parallel vertical cross-sections: a) upstream section - FG (marked by open triangles

in Fig.1); b) downstream section - AD (marked by open squares in Fig.1) showing horizontal wind speed

(m/s, shaded), wind vectors and temperature (contouring interval 2ºC). ALADIN/HR model prediction

data for 15 UTC, 7 November 1999.
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The appearance of the northeasterly low-level jet over the western part of Croatia close to the 00 UTC

on November 7 was associated with the cold air outbreak in the rear of surface front and marks the

beginning of this Bura event. Many case studies of the Adriatic Bura storms indicate the presence of the

upstream low-level jet (Ivan an-Picek and Tutiš, 1996).

Numerical model results indicate that the upstream low-level jet position is crucial for the downstream

Bura flow generation (Fig. 4a). The latter is well correlated with the upwind distribution of mountain

passes and peaks along the coastal mountain range of Croatia. Figure 4b shows the wake structure within

the Bura flow over the northern Adriatic with several separate low-level jets. The main jet, whose

approximate width and height are 50 km and 1.5 km, originates as a flow through the Vratnik Pass (cross

section BE). The persistence of the upstream northeasterly low-level jet over the western part of Croatia is

one of the keys for explaining the strength and localization of this Bura event. With a well defined critical

level around 2 km (Fig.4b) and the wind turning from north-easterly low-level flow to south-soutwesterly

aloft, relatively high and broad Bosnian Dinaric mountains have shielded the southern Adriatic from the

strong Bura flow observed on the north Adriatic.

5. CONCLUSION

A detailed analysis of the Bura flow structure across the Dinaric Alps on 7 November 1999 during the

MAP IOP 15 has been undertaken. Numerical model results show the wake structure within the Bura

flow over the Adriatic with several separate low-level jets with approximate widths of 25 – 50 km. The

generation of these flow features (separate low-level jets, hydraulic jump and wave breaking) resulted

with the formation of PV anomalies. The models simulated negative and positive PV banners were found

to be in good agreement with PV derived from observations (horizontal scale of ~25 km, maximum PV ~

6 to 10 pvu). The model results indicate that the upstream low-level jet position and the upwind

distribution of mountain passes and peaks along the coastal mountain range of Croatia are crucial for the

downstream Bura flow generation. While the ALADIN/HR model is hydrostatic, the results from this

model simulations at 8 km resolution successfully captured the essence of the Bura dynamics, and

produced the PV banner structure over the Adriatic that was in good agreement with the observations and

the COAMPS non-hydrostatic model results at 3 km resolution. The evaluation of the model results at

different horizontal resolution clearly shows that substantial amount of additional information on the fine-

scale structure of the flow is obtained at higher model resolutions.
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