A SPECIAL CLASS OF UNIVALENT OPERATORS

TEODOR BULBOACĂ

Abstract

Let $H(U)$ be the space of analytic functions in the unit disk U and let $h \in H(U)$. We define a subset $\mathcal{K}_{(\beta, \gamma), h} \subset H(U)$ such that the operator $A_{(\beta, \gamma), h}: \mathcal{K}_{(\beta, \gamma), h} \longrightarrow H(U)$ given by

$$
A_{(\beta, \gamma), h}(f)(z)=\left[\frac{\beta+\gamma}{h^{\gamma}(z)} \int_{0}^{z} f^{\beta}(t) h^{\gamma-1}(t) h^{\prime}(t) d t\right]^{1 / \beta}
$$

is well defined. Then we determine a class of functions whose images by $A_{(\beta, \gamma), h}$ operators are univalent. In addition, we give some particular cases of our main result obtained for appropriate choices of h, β and γ.

1. Introduction

Let $H(U)$ be the space of all analytic functions in the unit disk $U=\{z \in$ $\mathbf{C}:|z|<1\}$ and let $h \in \mathcal{A}=\left\{h \in H(U): h(0)=0, h^{\prime}(0) \neq 0, h(z) h^{\prime}(z) \neq\right.$ 0 , for $0<|z|<1\}$. For $f \in \mathcal{K}_{(\beta, \gamma), h} \subset H(U)$ let $F=A_{(\beta, \gamma), h}(f)$ where

$$
\begin{equation*}
F(z)=\left[\frac{\beta+\gamma}{h^{\gamma}(z)} \int_{0}^{z} f^{\beta}(t) h^{\gamma-1}(t) h^{\prime}(t) d t\right]^{1 / \beta}, \beta, \gamma \in \mathbf{C} \tag{1.1}
\end{equation*}
$$

This type of integral operators and different particular cases were studied in several papers like [1], [2], [3], [6], [7], [8] and others.

In the present paper, first we will determine sufficient conditions on h and the correspondent classes $\mathcal{K}_{(\beta, \gamma), h}$ such that the operator given by (1.1) will be well defined. Then we will find a class of functions whose images by $A_{(\beta, \gamma), h}$ operator are univalent in U and in addition some particular cases obtained for different choices of h, β and γ will be given.

2. Preliminaries

In order to prove our main results, we will need the following definitions and lemmas presented in this section.

[^0]Like in [8], let $c \in \mathbf{C}$ with $R e c>0$ and let $N=N(c)=\frac{|c| \sqrt{1+2 R e c}+I m c}{R e c}$. Considering the univalent function $k(z)=\frac{2 N z}{1-z^{2}}$, we define the "open door" function

$$
\begin{equation*}
R_{c}(z)=k\left(\frac{z+b}{1+\bar{b} z}\right), z \in U \tag{2.1}
\end{equation*}
$$

Note that R_{c} is univalent in $U, R_{c}(0)=c$ and $R_{c}(U)=k(U)$ is the complex plane slit along the half lines $\operatorname{Re} w=0, \operatorname{Im} w \geq N$ and $\operatorname{Re} w=0, \operatorname{Im} w \leq$ $-N$.

For $f, g \in H(U)$ we say that f is subordinate to g, written $f(z) \prec g(z)$, if g is univalent in $U, f(0)=g(0)$ and $f(U) \subset g(U)$.

We denote by $A=\left\{f \in H(U): f(0)=f^{\prime}(0)-1=0\right\}$ and let $D=\{\phi \in$ $H(U): \phi(z) \neq 0$ for $z \in U, \phi(0)=1\}$.

Lemma 1. [4] Let $\phi, \Phi \in D$ and let $\alpha, \beta, \gamma, \delta \in \mathbf{C}$ with $\beta \neq 0, \alpha+\delta=\beta+\gamma$ and $\operatorname{Re}(\alpha+\delta)>0$. If $f \in A$ satisfies

$$
\alpha \frac{z f^{\prime}(z)}{f(z)}+\frac{z \phi^{\prime}(z)}{\phi(z)}+\delta \prec R_{\alpha+\delta}(z)
$$

where R_{c} is defined by (2.1) and if the function F is defined by

$$
\begin{equation*}
F=A_{\beta, \gamma}(f) \text { where } A_{\beta, \gamma}(f)(z)=\left[\frac{\beta+\gamma}{z^{\gamma}} \int_{0}^{z} f^{\beta}(t) t^{\gamma-1} d t\right]^{1 / \beta} \tag{2.2}
\end{equation*}
$$

then

$$
F \in A, \frac{F(z)}{z} \neq 0, z \in U \text { and } \operatorname{Re}\left[\beta \frac{z F^{\prime}(z)}{F(z)}+\frac{z \Phi^{\prime}(z)}{\Phi(z)}+\gamma\right]>0, z \in U
$$

(All powers in (2.2) are principal ones.)
A function $f \in A$ is called a starlike function of order $\alpha, \alpha<1$, if $\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\alpha$ for all $z \in U$ and we denote by $S^{*}(\alpha)$ the class of all these functions.

Lemma 2. [9] Let $\beta>0, \beta+\gamma>0$ and consider the integral operator $A_{\beta, \gamma}$ defined by (2.2). If $\alpha \in\left[-\frac{\gamma}{\beta}, 1\right)$, then the order of starlikeness of the class $A_{\beta, \gamma}\left(S^{*}(\alpha)\right)$, i.e. the largest number $\delta=\delta(\alpha ; \beta, \gamma)$ such that $A_{\beta, \gamma}\left(S^{*}(\alpha)\right) \subset$ $S^{*}(\delta)$ is given by $\delta(\alpha ; \beta, \gamma)=\inf \{\operatorname{Re} q(z): z \in U\}$, where

$$
q(z)=\frac{1}{\beta Q(z)}-\frac{\gamma}{\beta} \quad \text { and } \quad Q(z)=\int_{0}^{1}\left(\frac{1-z}{1-t z}\right)^{2 \beta(1-\alpha)} t^{\beta+\gamma-1} d t
$$

Moreover if $\alpha \in\left[\alpha_{0}, 1\right)$, where $\alpha_{0}=\max \left\{\frac{\beta-\gamma-1}{2 \beta} ;-\frac{\gamma}{\beta}\right\}$ and $g=A_{\beta, \gamma}(f)$ where $f \in S^{*}(\alpha)$, then

$$
R e \frac{z g^{\prime}(z)}{g(z)}>\delta(\alpha ; \beta, \gamma)=\frac{1}{\beta}\left[\frac{\beta+\gamma}{{ }_{2} F_{1}\left(1,2 \beta(1-\alpha), \beta+\gamma+1 ; \frac{1}{2}\right)}-\gamma\right], z \in U
$$

where ${ }_{2} F_{1}$ represents the hypergeometric function.
The next lemma concerns subordination (or Loewner) chains. A function $L(z ; t), z \in U, t \geq 0$ is called a subordination chain if $L(\cdot ; t)$ is analytic and univalent in U for all $t \geq 0, L(z ; \cdot)$ is continuously differentiable on $[0,+\infty)$ for all $z \in U$ and $L(z ; s) \prec L(z ; t)$ when $0 \leq s \leq t[10, \mathrm{p} .157]$.

Lemma 3. [10, p. 159] The function $L(z ; t)=a_{1}(t) z+\cdots$ with $a_{1}(t) \neq 0$ for all $t \geq 0$ and $\lim _{t \rightarrow+\infty}\left|a_{1}(t)\right|=+\infty$ is a subordination chain if and only if

$$
R e\left[z \frac{\partial L / \partial z}{\partial L / \partial t}\right]>0, z \in U, t \geq 0
$$

The next lemma is a slight modification of a result of K. Sakaguchi which provides a sufficient condition for univalence.
Lemma 4. [11, Corollary 3] Let Re $\beta>-\frac{1}{2}$ and for $F \in H(U)$, with $F^{\prime}(0) \neq 0$ let

$$
\begin{equation*}
J(\beta, F)(z)=(\beta-1) \frac{z F^{\prime}(z)}{F(z)}+\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}+1 \tag{2.3}
\end{equation*}
$$

If $\operatorname{Re} J(1, F)(z)>-\frac{1}{2}, z \in U$ or $\operatorname{Re} J(\beta, F)(z)>-\frac{1}{2}, z \in U$ when $\beta \neq 1$ and $F(0)=0$, then F is univalent in U.

The last lemma deals with the univalent solutions of Briot-Bouquet differential equations and represents a simplified form of Theorem 1 from [5].

Lemma 5. [5, Theorem 1] Let $\beta, \gamma \in \mathbf{C}$ with $\beta \neq 0$ and let $h(z)=c+h_{1} z+\cdots$ be analytic in U. If Re $[\beta h(z)+\gamma]>0, z \in U$ then the solution of the differential equation

$$
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=h(z), \text { with } q(0)=c
$$

is analytic in U and the solution satisfies $R e[\beta q(z)+\gamma]>0, z \in U$.

3. Main Results

Our first result gives us sufficient conditions on h function such that the integral operator (1.1) is well defined.

Theorem 1. Let $\beta, \gamma \in \mathbf{C}$ with $\operatorname{Re}(\beta+\gamma)>0$ and let $h \in \mathcal{A}$. Then the integral operator given by (1.1) is well defined on the subset
$\mathcal{K}_{(\beta, \gamma), h}=\left\{f \in H(U): f(0)=0, f^{\prime}(0) \neq 0, \beta \frac{z f^{\prime}(z)}{f(z)}+J(\gamma, h)(z) \prec R_{\beta+\gamma}(z)\right\}$.
Proof. In order to prove our theorem we will use Lemma 1 for $\alpha:=\beta$ and $\gamma:=\delta$. Taking in this lemma $\phi(z)=\left(\frac{h(z)}{z}\right)^{\gamma-1} h^{\prime}(z)$ and $\Phi(z)=\left(\frac{h(z)}{z}\right)^{\gamma}$, since $h \in \mathcal{A}$ we easily deduce $\phi, \Phi \in D$.

A simple computation shows that $\frac{z \phi^{\prime}(z)}{\phi(z)}=J(\gamma, h)(z)-\gamma$ hence the condition

$$
\begin{gathered}
\beta \frac{z f^{\prime}(z)}{f(z)}+\frac{z \phi^{\prime}(z)}{\phi(z)}+\gamma \prec R_{\beta+\gamma}(z) \quad \text { is equivalent to } \\
\beta \frac{z f^{\prime}(z)}{f(z)}+J(\gamma, h)(z) \prec R_{\beta+\gamma}(z)
\end{gathered}
$$

i.e. $\quad f \in \mathcal{K}_{(\beta, \gamma), h}$ and using Lemma 1 we deduce that the function $F=$ $A_{(\beta, \gamma), h}(f)$ is analytic in U. \square
Theorem 2. Let $\beta, \gamma \in \mathbf{C}$ with $\beta+\gamma>0$. For a function $h \in \mathcal{A}$ we denote by

$$
m=\inf \left\{\operatorname{Re} \gamma \frac{z h^{\prime}(z)}{h(z)}: z \in U\right\} \quad \text { and by } \quad M=\sup \left\{\operatorname{Re} \gamma \frac{z h^{\prime}(z)}{h(z)}: z \in U\right\}
$$

Let δ be a real number such that

$$
\begin{equation*}
m-(\beta+\gamma)<\delta \leq \min \left\{m ; m-\frac{\beta+\gamma-1}{2}\right\} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \{0 ; M\} \leq \frac{\beta+\gamma}{{ }_{2} F_{1}\left(1,2(\beta+\gamma+\delta-m), \beta+\gamma+1 ; \frac{1}{2}\right)} \tag{3.2}
\end{equation*}
$$

and suppose that h function satisfies the inequality

$$
\begin{equation*}
\operatorname{Re} J(-\gamma, h)(z) \geq-\frac{1}{2}-\frac{\beta+\gamma}{{ }_{2} F_{1}\left(1,2(\beta+\gamma+\delta-m), \beta+\gamma+1 ; \frac{1}{2}\right)}, z \in U \tag{3.3}
\end{equation*}
$$

If $f \in \mathcal{K}_{(\beta, \gamma), h}$ and Re $J(\beta, f)(z)>-\delta, z \in U$, then $F=A_{(\beta, \gamma), h}(f)$ given by (1.1) is univalent in U. In addition f is also univalent in U.

Proof. Since $f \in \mathcal{K}_{(\beta, \gamma), h}$, using Theorem 1 we have that $F=A_{(\beta, \gamma), h}(f)$ is analytic in U and by (1.1) we deduce

$$
\begin{equation*}
f(z)=\frac{1}{(\beta+\gamma)^{1 / \beta}} F(z)\left[\beta \frac{h(z)}{h^{\prime}(z)} \frac{F^{\prime}(z)}{F(z)}+\gamma\right]^{1 / \beta} \tag{3.4}
\end{equation*}
$$

Letting

$$
\begin{equation*}
L(z ; t)=\frac{1}{(\beta+\gamma)^{1 / \beta}} F(z)\left[(1+t) \beta \frac{h(z)}{h^{\prime}(z)} \frac{F^{\prime}(z)}{F(z)}+\gamma\right]^{1 / \beta}, t \geq 0 \tag{3.5}
\end{equation*}
$$

we will prove that $L(z ; t)$ is a subordination chain. Using (3.5), a simple computation shows

$$
\begin{equation*}
z \frac{\partial L / \partial z}{\partial L / \partial t}=(1+t) T(z)+\gamma \frac{z h^{\prime}(z)}{h(z)} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
T(z)=J(\beta, F)(z)+\frac{z h^{\prime}(z)}{h(z)}-\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}-1 \tag{3.7}
\end{equation*}
$$

According to Lemma 3 and using (3.5), to prove that $L(z ; t)$ is a subordination chain it is sufficient to show the next two inequalities:
(3.8) $\operatorname{Re} T(z)>0, z \in U$ and $\operatorname{Re}\left\{T(z)+\gamma \frac{z h^{\prime}(z)}{h(z)}\right\}>0, z \in U$.

From $f^{\prime}(0) \neq 0$ we have $F^{\prime}(0) \neq 0$ and if $L(z ; t)=a_{1}(t) z+\cdots$ we get $\lim _{t \rightarrow+\infty}\left|a_{1}(t)\right|=\lim _{t \rightarrow+\infty}\left|\frac{\partial L(0 ; t)}{\partial z}\right|=\lim _{t \rightarrow+\infty}\left|\frac{F^{\prime}(0)}{(\beta+\gamma)^{1 / \beta}}(t \beta+\beta+\gamma)^{1 / \beta}\right|=+\infty$.

Since

$$
J(\beta, f)(z)=p(z)+\frac{z p^{\prime}(z)}{p(z)}-\gamma \frac{z h^{\prime}(z)}{h(z)} \quad \text { where } \quad p(z)=T(z)+\gamma \frac{z h^{\prime}(z)}{h(z)}
$$

using the assumption $\operatorname{Re} J(\beta, f)(z)>-\delta, z \in U$, we deduce

$$
\begin{equation*}
\operatorname{Re}\left\{p(z)+\frac{z p^{\prime}(z)}{p(z)}\right\}>-\delta+m, z \in U \tag{3.9}
\end{equation*}
$$

Considering the differential equation

$$
p(z)+\frac{z p^{\prime}(z)}{p(z)}=J(\beta, f)(z)+\gamma \frac{z h^{\prime}(z)}{h(z)}
$$

from (3.1) we have

$$
\operatorname{Re}\left\{J(\beta, f)(z)+\gamma \frac{z h^{\prime}(z)}{h(z)}\right\}>-\delta+m \geq 0, z \in U
$$

and by Lemma 5 we conclude that this equation has an analytic solution in U.

Denoting by $q(z)=\frac{p(z)}{\beta+\gamma}$, then $q(0)=1$ and from (3.9) we obtain

$$
\begin{equation*}
\operatorname{Re}\left\{q(z)+\frac{z q^{\prime}(z)}{(\beta+\gamma) q(z)}\right\}>\frac{m-\delta}{\beta+\gamma}, z \in U \tag{3.10}
\end{equation*}
$$

Since (3.10) holds, by using Lemma 2 for $\beta:=\beta+\gamma, \gamma:=0, \alpha:=\frac{m-\delta}{\beta+\gamma}$ we obtain

$$
\operatorname{Re} q(z)>\frac{1}{{ }_{2} F_{1}\left(1,2(\beta+\gamma+\delta-m), \beta+\gamma+1 ; \frac{1}{2}\right)}, z \in U
$$

or

$$
\begin{equation*}
\operatorname{Re} p(z)>\frac{\beta+\gamma}{{ }_{2} F_{1}\left(1,2(\beta+\gamma+\delta-m), \beta+\gamma+1 ; \frac{1}{2}\right)}, z \in U \tag{3.11}
\end{equation*}
$$

From (3.11) and (3.2) we deduce

$$
\begin{gathered}
\operatorname{Re} T(z)>\frac{\beta+\gamma}{{ }_{2} F_{1}\left(1,2(\beta+\gamma+\delta-m), \beta+\gamma+1 ; \frac{1}{2}\right)}-\operatorname{Re} \gamma \frac{z h^{\prime}(z)}{h(z)}> \\
>\frac{\beta+\gamma}{{ }_{2} F_{1}\left(1,2(\beta+\gamma+\delta-m), \beta+\gamma+1 ; \frac{1}{2}\right)}-M \geq 0, z \in U
\end{gathered}
$$

hence $\operatorname{Re} T(z)>0, z \in U$.
Similarly, from (3.11) and (3.2) we have

$$
\begin{equation*}
\operatorname{Re}\left\{T(z)+\gamma \frac{z h^{\prime}(z)}{h(z)}\right\}>\frac{\beta+\gamma}{{ }_{2} F_{1}\left(1,2(\beta+\gamma+\delta-m), \beta+\gamma+1 ; \frac{1}{2}\right)}>0, z \in U \tag{3.12}
\end{equation*}
$$

hence both conditions of (3.8) are satisfied and according to Lemma 3, the function $L(z ; t)$ is a subordination chain; thus $f(z)=L(z ; 0)$ is univalent in U.

Using (3.7) we obtain

$$
J(\beta, F)(z)=T(z)+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}+1-\frac{z h^{\prime}(z)}{h(z)}=T(z)+\gamma \frac{z h^{\prime}(z)}{h(z)}+J(-\gamma, h)(z)
$$

and by combining this equality with (3.12) and (3.3) we get

$$
\begin{aligned}
\operatorname{Re} J(\beta, F)(z) & >\frac{\beta+\gamma}{{ }_{2} F_{1}\left(1,2(\beta+\gamma+\delta-m), \beta+\gamma+1 ; \frac{1}{2}\right)} \\
& +\operatorname{Re} J(-\gamma, h)(z) \geq-\frac{1}{2}, z \in U
\end{aligned}
$$

hence by Lemma 4, the function F is univalent in U, which completes the proof of the theorem.

4. Particular Cases

1. Taking $h(z)=z e^{\lambda z}, \lambda \leq 1$ in Theorem 2 , for the case $\gamma \in \mathbf{R}$ we have $m=\gamma-|\gamma||\lambda|$ and $M=\gamma+|\gamma||\lambda|$. Then (3.3) becomes

$$
\begin{array}{r}
\operatorname{Re}\left[1-\gamma(1+\lambda z)-\frac{1}{1+\lambda z}\right] \geq \\
-\frac{1}{2}-\frac{\beta+\gamma}{{ }_{2} F_{1}\left(1,2(\beta+\gamma+\delta-m), \beta+\gamma+1 ; \frac{1}{2}\right)}, z \in U \tag{4.1}
\end{array}
$$

Let consider the case $\beta+\gamma \geq 1$ and let $\delta:=\gamma-|\gamma||\lambda|-\frac{\beta+\gamma-1}{2}$. Then ${ }_{2} F_{1}\left(1,2(\beta+\gamma+\delta-m), \beta+\gamma+1 ; \frac{1}{2}\right)=2$ and (4.1) is equivalent to

$$
\begin{equation*}
\operatorname{Re}\left[-\gamma \lambda z-\frac{1}{1+\lambda z}\right] \geq-\frac{3}{2}-\frac{\beta-\gamma}{2}, z \in U \tag{4.2}
\end{equation*}
$$

Since

$$
\operatorname{Re}\left[-\gamma \lambda z-\frac{1}{1+\lambda z}\right]>-|\gamma||\lambda|-\frac{1}{1-|\lambda|}, z \in U
$$

we deduce that (4.2) holds if $\quad 2|\gamma||\lambda|^{2}-(\beta-\gamma+2|\gamma|+3)|\lambda|+\beta-\gamma+1 \geq 0$ and using Theorem 2 we obtain:

Corollary 1. Let $\beta, \gamma \in \mathbf{R}$ with $\beta+\gamma \geq 1$ and let $\lambda \in \mathbf{C}$ with $|\lambda| \leq 1$ such that

$$
2|\gamma||\lambda| \leq \beta-\gamma
$$

and

$$
2|\gamma||\lambda|^{2}-(\beta-\gamma+2|\gamma|+3)|\lambda|+\beta-\gamma+1 \geq 0
$$

If $f \in H(U)$ with $f(0)=0, f^{\prime}(0) \neq 0$ and $\beta \frac{z f^{\prime}(z)}{f(z)}+1+\gamma(1+\lambda z)-\frac{1}{1+\lambda z} \prec R_{\beta+\gamma}(z)$ satisfies

$$
\operatorname{Re} J(\beta, f)(z)>|\gamma||\lambda|+\frac{\beta-\gamma-1}{2}, z \in U
$$

then $F=A_{(\beta, \gamma), z e^{\lambda z}}(f)$ is univalent in U; in addition f is also univalent in U.
2. Taking $h(z)=\frac{z}{1+\lambda z}, \lambda \leq 1$ in Theorem 2 , a simple calculus shows that if $\gamma \geq 0$ then $m=\frac{\gamma}{1+|\lambda|}$ and $M=\frac{\gamma}{1-|\lambda|}$.

Let consider the case $\beta+\gamma \geq 1$ and let $\delta:=\frac{\gamma}{1+|\lambda|}-\frac{\beta+\gamma-1}{2}$. By similar reasons to the first particular case, (3.3) becomes

$$
\operatorname{Re}\left\{\frac{-\gamma-1}{1+\lambda z}+\frac{1-\lambda z}{1+\lambda z}\right\} \geq-\frac{1}{2}-\frac{\beta+\gamma}{2}, z \in U
$$

and since

$$
\operatorname{Re}\left\{\frac{-\gamma-1}{1+\lambda z}+\frac{1-\lambda z}{1+\lambda z}\right\}>\frac{-\gamma-1}{1-|\lambda|}+\frac{1-|\lambda|}{1+|\lambda|}, z \in U
$$

by using Theorem 2 we have:
Corollary 2. Let $\beta, \gamma \in \mathbf{R}$ with $\gamma \geq 0$ and $\beta+\gamma \geq 1$ and let $\lambda \in \mathbf{C}$ such that

$$
\frac{-\gamma-1}{1-|\lambda|}+\frac{1-|\lambda|}{1+|\lambda|} \geq-\frac{1}{2}-\frac{\beta+\gamma}{2}
$$

and

$$
|\lambda| \leq \frac{\beta-\gamma}{\beta+\gamma}
$$

If $f \in H(U)$ with $f(0)=0, f^{\prime}(0) \neq 0$ and $\beta \frac{z f^{\prime}(z)}{f(z)}+\frac{\gamma-\lambda z}{1+\lambda z} \prec R_{\beta+\gamma}(z)$ satisfies

$$
\operatorname{Re} J(\beta, f)(z)>\frac{\beta+\gamma-1}{2}-\frac{\gamma}{1+|\lambda|}, z \in U
$$

then $F=A_{(\beta, \gamma), \frac{\bar{z}}{1+\lambda=}}(f)$ is univalent in U; in addition f is also univalent in U.

References

[1] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135(1969), 337-351
[2] R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16(1965), 755-758
[3] W.M. Causey and W.L. White, Starlikeness of certain functions with integral representations, J. Math. Anal. Appl., 64(1978), 458-466
[4] S.S. Miller and P.T. Mocanu, Classes of univalent integral operators, J. Math. Anal. Appl., 157,1(1991), 147-165
[5] S.S. Miller and P.T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations, 67(1987), 199-211
[6] S.S. Miller and P.T. Mocanu, Integral operators on certain classes of analytic functions, Univalent Functions, Fractional Calculus and their Applications, Halstead Press, J.Willey (1989), 153-166
[7] S.S. Miller, P.T. Mocanu and M.O. Reade, Starlike integral operators, Pacific J. Math., 79(1978), 157-168
[8] P.T. Mocanu, Some integral operators and starlike functions, Rev. Roum. Math. Pures Appl., 31(1986), 231-235
[9] P.T. Mocanu, D. Ripeanu and I. Şerb, The order of starlikeness of certain integral operators, Mathematica (Cluj), 23(46)(1981), 225-230
[10] Ch. Pommerenke, "Univalent Functions", Vanderhoeck and Ruprecht, Göttingen, 1975
[11] K. Sakaguchi, A note on p-valent functions, J. Math. Soc. Japan, 14(1962), 312-321
Address: Faculty of Mathematics and Computer Science,, Babes-Bolyai University, 3400 Cluj-Napoca, Romania
E-mail address: bulboaca@math.ubbcluj.ro
(Received: 10.2.1998.)
(Revised: 8.6.1998.)

[^0]: 1991 Mathematics Subject Classification. Primary 30C80; Secondary 30C45, 30E20.
 Key words and phrases. Integral operator, univalent function, differential subordination, subordination chain, starlike function.

