CONVEX MAPPINGS IN SEVERAL COMPLEX VARIABLES

Hidetaka Hamada and Gabriela Kohr
Kyushy Kyoritsu Univ., Japan and Babeş-Bolyai Univ., Romania

Abstract. Let B be the unit ball of \mathbf{C}^{n} with respect to an arbitrary norm. We will give a sufficient condition for a local diffeomorphism of C^{1} class on B to be univalent and to have a convex image. Finally, we present an aplication on the complex ellipsoid $B\left(p_{1}, \ldots, p_{n}\right)$, where $p_{1}, \ldots, p_{n} \geq 1$.

1. Introduction and preliminaries

Let \mathbf{C}^{n} denote the space of n complex variables $z=\left(z_{1}, \ldots, z_{n}\right)^{\prime}$ with an arbitrary norm \|. \|.

Let B be the unit ball of C^{n} with respect to this norm and also, let $B_{r}=r B$, for $0<r \leq 1$. The symbol ' means the transpose of vectors and matrices.

By $L\left(\mathbf{C}^{n}, \mathbf{C}^{m}\right)$ we denote the space of continuous linear operators from \mathbf{C}^{n} into \mathbf{C}^{m} with the standard operator norm. The letter I means the identity in $L\left(\mathbf{C}^{n}, \mathbf{C}^{n}\right)$. The class of holomorphic mappings from a domain $G \subset \mathbf{C}^{n}$ into \mathbf{C}^{n} is denoted by $H(G)$. If $f \in H(G)$, we define

$$
D f(z)=\left[\frac{\partial f_{j}}{\partial z_{k}}(z)\right]_{1 \leq j, k \leq n} .
$$

For a C^{1} class mapping f from a domain $G \subset \mathbf{C}^{n}$ into \mathbf{C}^{n}, let

$$
J_{r} f(z)=\operatorname{det} \frac{\partial\left(u_{1}, v_{1}, \ldots, u_{n}, v_{n}\right)}{\partial\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)}
$$

where $z_{j}=x_{j}+\sqrt{-1} y_{j}$ and $f_{j}=u_{j}+\sqrt{-1} v_{j}$.
Suffridge [Su1], [Su2], Kikuchi [Ki] and Gong, Wang and Yu [Go-WaYu2] gave analytic characterizations for locally biholomorphic mappings to be biholomorphic and convex.

[^0]Suffridge [Su1], [Su2] and Gong, Wang and Yu [Go-Wa-Yu2] obtained some necessary and sufficient conditions of convexity for holomorphic mappings defined on the unit ball of \mathbf{C}^{n} with respect to the Euclidean norm and an arbitrary norm. Also, Suffridge [Su2] characterized convex mappings on the unit ball of a complex Banach space, by a necessary and sufficient condition. On the other hand, Kikuchi [Ki] showed that Suffridge's results can be generalized to locally biholomorphic mappings on bounded domains in C^{n}, for which the Bergman kernel function becomes infinite everywhere on the boundary.

Recently Hamada and Kohr [Ha-Ko1] gave necessary and sufficient conditions of convexity for locally biholomorphic mappings on bounded balanced pseudoconvex domains with C^{1} plurisubharmonic defining functions.

In this paper we will obtain a sufficient condition of diffeomorphism and convexity for mappings of C^{1} class on B. For other sufficient conditions of univalence on some domains in C^{n}, see [Ko -Li].

2. Non-holomorphic case

We consider in this section a sufficient condition for a C^{1} mapping from B into \mathbf{C}^{n}, with $J_{r} f(z) \neq 0$, for $z \in B$, to be univalent and to have a convex image.

If $f \in C^{1}(B)$, we say that f is convex if f is univalent on B and $f(B)$ is a convex domain.

Also, if $f \in C^{1}(B)$ with $f(0)=0$, we say that f is starlike if f is univalent on B and $f(B)$ is a starlike domain with respect to zero.

For each $z \in \mathbf{C}^{n} \backslash\{0\}$, let

$$
T(z)=\left\{z^{*} \in L\left(\mathbf{C}^{n}, \mathbf{C}\right):\left\|z^{*}\right\|=1, z^{*}(z)=\|z\|\right\} .
$$

Clearly, $T(z)$ is nonempty, by the Hahn-Banach theorem.
On the other hand, if $f \in C^{1}(B), J_{r} f(z) \neq 0, z \in B$, then there exists a neighborhood W_{z} of z such that f is a diffeormorphism of C^{1} class between W_{z} and $f\left(W_{z}\right)$, thus there exist the following matrices

$$
D_{w} f^{-1}(w)=\left[\frac{\partial\left(\left.f\right|_{W_{z}}\right)_{j}^{-1}}{\partial w_{k}}(w)\right]_{1 \leq j, k \leq n}
$$

and

$$
D_{\bar{w}} f^{-1}(w)=\left[\frac{\partial\left(f \mid W_{z}\right)_{j}^{-1}}{\partial \bar{w}_{k}}(w)\right]_{1 \leq j, k \leq n}
$$

where $w=f(z)$.
Recently Hamada and Kohr [Ha-Ko3] gave sufficient conditions for a local diffeomorphism of C^{1} class on the unit ball of \mathbf{C}^{n} with respect to an arbitrary norm to be univalent and to have a Φ-like image. On the other hand, in $[\mathrm{Ko} 2]$ and [Ha Ko 2], the authors obtained sufficient conditions of starlikeness and
spirallikeness for mappings of C^{1} class on the unit ball of \mathbf{C}^{n} with a norm of C^{1} class on $\mathbf{C}^{n} \backslash\{0\}$ and also, on bounded balanced pseudoconvex domains with C^{1} plurisubharmonic defining functions.

In the following we prove a sufficient condition of diffeomorphism of C^{1} class and convexity on the unit ball B with respect to an arbitrary norm $\|\cdot\|$.

Theorem 2.1. Let $f \in C^{1}(B)$ such that $J_{r} f(z) \neq 0$, for all $z \in B$. If (1) $\operatorname{Re} z^{*}\left[D_{w} f^{-1}(f(z))(f(z)-f(u))+D_{\bar{w}} f^{-1}(f(z))(\overline{f(z)}-\overline{f(u)})\right]>0$,
for all $z, u \in B,\|u\|<\|z\|$, and $z^{*} \in T(z)$, then f is convex.
Proof. Since $J_{r} f(z) \neq 0$, for all $z \in B$, then f is a local diffeomorphism of C^{1} class on B. We divide the proof into three steps, as follows.

First, we show that if f is univalent on B_{r}, then f is also univalent on \bar{B}_{r}, for all $r \in(0,1)$. If this assertion does not hold, then there exist at least two distinct points $z_{1}, z_{2} \in \bar{B}_{r}$ such that $f\left(z_{1}\right)=f\left(z_{2}\right)=w$. Because f is univalent on B_{r} and f is a local diffeomorphism, then $w \neq f(0)$. On the other hand, since f is a local diffeomorphism on B, there exists a curve $z_{1}(s):\left[-s_{0}, s_{0}\right] \rightarrow B \backslash\{0\}$, such that $z_{1}(s)$ is C^{1} on $\left[-s_{0}, s_{0}\right]$, and

$$
f\left(z_{1}(s)\right)=(1-s) f\left(z_{1}\right)+s f(0), s \in\left[-s_{0}, s_{0}\right],
$$

with $z_{1}(0)=z_{1}$, for some $s_{0}>0$. Note that,

$$
z_{1}(s)=z_{1}-s w\left(z_{1}\right)+\epsilon(s), s \in\left(-s_{0}, s_{0}\right),
$$

where $\lim _{s \rightarrow 0} \frac{\epsilon(s)}{s}=0$, and

$$
w(x)=D_{w} f^{-1}(f(x))(f(x)-f(0))+D_{\bar{w}} f^{-1}(f(x))(\overline{f(x)}-\overline{f(0)}),
$$

for $x \in B \backslash\{0\}$. Taking into account the relation (1), for $u=0$, we deduce that

$$
\left\|z_{1}(s)\right\| \geq \operatorname{Re} z_{1}^{*}\left(z_{1}(s)\right)=\left\|z_{1}\right\|-s \operatorname{Re} z_{1}^{*}\left(w\left(z_{1}\right)\right)+\epsilon(s)>\left\|z_{1}\right\|,
$$

for s negative, such that $|s|$ is sufficiently small. Next, as in the proof of Theorem 2 of Suffridge [Su2], we conclude that $\left\|z_{1}(s)\right\|$ is strictly decreasing on ($-s_{0}, s_{0}$), hence

$$
\left\|z_{1}(s)\right\|<\left\|z_{1}(0)\right\|=\left\|z_{1}\right\| \leq r
$$

for all $s \in\left(0, s_{0}\right]$, so $z_{1}(s) \in B_{r}$, for all $s \in\left(0, s_{0}\right]$. Thus, we obtain the curve $z_{1}(s)$, which falls in B_{r}, for $0<s \leq s_{0}$, such that $f\left(z_{1}(s)\right)=(1-s) f\left(z_{1}\right)+$ $s f(0)$ and $z_{1}(0)=z_{1}$. Therefore, $z_{1}(s)=f^{-1}\left((1-s) f\left(z_{1}\right)+s f(0)\right)$ is a univalent component of the inverse images of the curve $(1-s) f\left(z_{1}\right)+s f(0)$, for $0 \leq s \leq s_{0}$.

Suppose that $z_{2}(s)$ is another univalent component of the inverse images of the curve $(1-s) f\left(z_{1}\right)+s f(0)$, such that $z_{2}(s) \in B_{r}$, for sufficiently small $s>0$, but with $z_{2}(0)=z_{2}$. Because f is injective on $B_{r}, z_{1}(s)=z_{2}(s)$,
for sufficiently small $s>0$. However, this contradicts with the assumption $z_{1}(0) \neq z_{2}(0)$. Hence, we conclude that f is also injective on \bar{B}_{r}.

In the second step we show that $\mathcal{M}=(0,1]$, where

$$
\mathcal{M}=\left\{r \in(0,1]: f \text { is injective on } B_{r}\right\} .
$$

Since $J_{\tau} f(0) \neq 0$, there exists a small positive δ_{1} such that f is a diffeomorphism of C^{1} class from $B_{\delta_{1}}$ onto $f\left(B_{\delta_{1}}\right)$. Therefore, \mathcal{M} is nonempty.

We next show that \mathcal{M} is closed.
If $0<r_{1} \in \mathcal{M}$, then all $r \in\left(0, r_{1}\right)$ fall in \mathcal{M}. Therefore, it suffices to show that if $r_{1}>r$ and all $r \in \mathcal{M}$, then $r_{1} \in \mathcal{M}$. If this assertion is not true, then there are at least two points $x_{1}, x_{2} \in B_{r_{1}}$, such that $x_{1} \neq x_{2}$, but, $f\left(x_{1}\right)=f\left(x_{2}\right)$. Since $\left\|x_{1}\right\|<r_{1},\left\|x_{2}\right\|<r_{1}$, we can find a positive r_{2} such that $\max \left\{\left\|x_{1}\right\|,\left\|x_{2}\right\|\right\} \leq r_{2}<r_{1}$ and because f is univalent on $B_{r_{2}}$, we deduce that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. So, we get a contradiction, thus we must have \mathcal{M} closed.

Next, we show that \mathcal{M} is open. To this end, it suffices to show that if f is injective on B_{r}, then there exists a $\delta>0$ small enough such that f is also injective on $B_{r+\delta}$. If this is not true, then there is a sequence $\left(\delta_{p}\right), \delta_{p}>0, \lim _{p \rightarrow \infty} \delta_{p}=0$, such that we can find two sequences $\left(x_{p}\right),\left(y_{p}\right)$, which satisfy the following conditions

$$
x_{p}, y_{p} \in B_{r+\delta_{p}}, x_{p} \neq y_{p}, f\left(x_{p}\right)=f\left(y_{p}\right),
$$

for all $p=1,2, \ldots$.
Since $\left(x_{p}\right),\left(y_{p}\right)$ are bounded sequences, there exist two subsequences $\left(x_{p_{k}}\right),\left(y_{p_{k}}\right)$ of $\left(x_{p}\right)$ and (y_{p}), such that

$$
\lim _{k \rightarrow \infty} x_{p_{k}}=x, \lim _{k \rightarrow \infty} y_{p_{k}}=y
$$

and also,

$$
f\left(x_{p_{k}}\right)=f\left(y_{p_{k}}\right), x_{p_{k}} \neq y_{p_{k}}, k=1,2, \ldots
$$

Then $x, y \in \bar{B}_{r}$.
If $x \neq y$, this is contrary to the result of first step. If $x=y$, then there are two points $x_{p_{k}}^{\prime} \in\left(x_{p_{k}}\right), y_{p_{k}}^{\prime} \in\left(y_{p_{k}}\right)$ in any neighborhood of $x=y$ such that $x_{p_{k}}^{\prime} \neq y_{p_{k}}^{\prime}$ and $f\left(x_{p_{k}}^{\prime}\right)=f\left(y_{p_{k}}^{\prime}\right)$ and this is again a contradiction with f locally univalent on B.

Hence \mathcal{M} is a closed, open and nonempty subset of $(0,1]$, thus, $\mathcal{M}=(0,1]$.
In the last step we will show that $f\left(\bar{B}_{r}\right)$ is a convex set, for all $r \in(0,1)$, using a similar idea as in [Go-Wa-Yu1].

Let $r \in(0,1)$ and $x, y \in \bar{B}_{r}$. Let $\sigma(f(x), f(y))$ be the closed segment between $f(x)$ and $f(y)$. We will show that $\sigma(f(x), f(y)) \subset f\left(\bar{B}_{r}\right)$.

We may assume that $\|y\|<\|x\|$.
If we denote by $r(x, y)=\sigma(f(x), f(y)) \cap f\left(\bar{B}_{r}\right)$, then $r(x, y)$ is a closed set.

First, we show that there exists a $\delta_{1}>0$ such that

$$
\begin{equation*}
(1-t) f(x)+t f(y) \in f\left(\bar{B}_{r}\right) \tag{2}
\end{equation*}
$$

for all $t \in\left(0, \delta_{1}\right)$.
For this aim, let $v(x, y, t)=f^{-1}((1-t) f(x)+t f(y))$, for $t \in[-\varepsilon, \varepsilon]$, where ε is sufficiently small such that

$$
(1-t) f(x)+t f(y) \in f(B), \quad t \in[-\varepsilon, \varepsilon] .
$$

Also, let

$$
v(t)=v(x, y, t), \quad t \in[-\varepsilon, \varepsilon]
$$

As in the first step of our proof, we can show that $\|v(t)\|>\|x\|$ when t is negative, $|t|$ sufficiently small. However, using the fact that $v(v(x, y, \varepsilon), y, s)=v(x, y, s+(1-s) \varepsilon)$, we conclude that $\|v(t)\|$ is strictly decreasing on a neighborhood of zero.

Hence, the relation (2) holds.
Next, we show that $\sigma(f(x), f(y))$ is contained in $f\left(\bar{B}_{r}\right)$. For this aim, it suffices to show that $\nu(x, y)=\emptyset$, where

$$
\nu(x, y)=\sigma(f(x), f(y)) \backslash r(x, y)
$$

If we suppose that $\nu(x, y)$ is nonempty, then there exists

$$
t^{*}=\inf \{t \in(0,1]:(1-t) f(x)+t f(y) \in \nu(x, y)\}
$$

Since $\nu(x, y)=\{\sigma(f(x), f(y)) \backslash\{f(x), f(y)\}\} \backslash r(x, y)$ is an open set, as a subset of $\sigma(f(x), f(y))$, then

$$
Q\left(t^{*}\right)=\left(1-t^{*}\right) f(x)+t^{*} f(y) \notin \nu(x, y)
$$

hence $Q\left(t^{*}\right) \in f\left(\bar{B}_{r}\right)$.
Let $z^{*} \in \bar{B}_{r}$ such that $f\left(z^{*}\right)=Q\left(t^{*}\right)$. If $\left\|z^{*}\right\|>\|y\|$, then the result of the first step can be applied and there exists a $\delta_{2}>0$ such that

$$
(1-t) Q\left(t^{*}\right)+t f(y) \in f\left(\bar{B}_{r}\right)
$$

for all $t \in\left(0, \delta_{2}\right)$. However, when $\left\|z^{*}\right\| \leq\|y\|$, then the result of the first step cannot be applied. In this case we can show the existence of δ_{2} directly.

Therefore,

$$
\left(1-t-t^{*}+t t^{*}\right) f(x)+\left(t+t^{*}-t t^{*}\right) f(y) \in f\left(\bar{B}_{r}\right)
$$

for all $t \in\left(0, \delta_{2}\right)$.
However, this is contrary to the definition of the infimum, hence we conclude that $\nu(x, y)=\emptyset$.

So, $\sigma(f(x), f(y)) \subset f\left(\bar{B}_{r}\right)$, as desired.
Since $f(B)=\bigcup_{0<r<1} f\left(\bar{B}_{r}\right)$ and $f\left(\bar{B}_{r}\right)$ is a convex set, for all $r \in(0,1)$, then $f(B)$ is also a convex domain. This completes the proof.

REmark 2.1. We note that if f is holomorphic in Theorem 2.1, then we obtain a similar sufficient condition of convexity, as in the finite dimensional case of Theorem 5 of Suffridge [Su2].

Also, if in Theorem 2.1 we assume that $f(0)=0$, then we can obtain a similar sufficient condition of starlikeness on the unit ball B (cf. [Ko2], [$\mathrm{Ha}-\mathrm{Ko} 2$], [$\mathrm{Ha}-\mathrm{Ko} 3$]).

On the other hand, let D be a bounded balanced convex domain in \mathbf{C}^{n}. Also, let h be the Minkowski function of D. Then, it is well known that h is a norm on \mathbf{C}^{n} and D is the unit ball with respect to this norm (see [Ja-Pf]). Then Theorem 2.1 holds for D.

For example, let $B\left(p_{1}, \ldots, p_{n}\right)$ be the complex ellipsoid, where $p_{1}, \ldots, p_{n} \geq$ 1 and

$$
B\left(p_{1}, \ldots, p_{n}\right)=\left\{z \in \mathbf{C}^{n}: \sum_{j=1}^{n}\left|z_{j}\right|^{p_{j}}<1\right\}
$$

for $z=\left(z_{1}, \ldots, z_{n}\right)^{\prime} \in \mathbf{C}^{n}$. Then $B\left(p_{1}, \ldots, p_{n}\right)$ is a balanced convex domain in C^{n}.

Also, if $f \in C^{1}\left(B\left(p_{1}, \ldots, p_{n}\right)\right)$, let

$$
w(x, y)=D_{w} f^{-1}(f(x))(f(x)-f(y))+D_{\bar{w}} f^{-1}(f(x))(\overline{f(x)}-\overline{f(y)})
$$

for $x, y \in B\left(p_{1}, \ldots, p_{n}\right)$.
In this case, we obtain the following result.
Corollary 2.1. Let $f \in C^{1}\left(B\left(p_{1}, \ldots, p_{n}\right)\right)$ such that $J_{r} f(z) \neq 0$, for all $z \in B\left(p_{1}, \ldots, p_{n}\right)$, where $p_{1}, \ldots, p_{m}>1, p_{m+1}=\cdots=p_{n}=1$.

If
$R e \sum_{j=1}^{m} p_{j} w_{j}(x, y) \frac{\left|x_{j}\right|^{p_{j}}}{h^{p_{j}}(x) x_{j}}+R e \sum_{\substack{j=m+1 \\ x_{j} \neq 0}}^{n} w_{j}(x, y) \frac{\left|x_{j}\right|}{h(x) x_{j}}-\sum_{\substack{j=m+1 \\ x_{j}=0}}^{n} \frac{\left|w_{j}(x, y)\right|}{h(x)}>0$,
for all $x=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$ and $y=\left(y_{1}, \ldots, y_{n}\right)^{\prime} \in B\left(p_{1}, \ldots, p_{n}\right)$, with $h(y)<$ $h(x)$, then f is convex.

Proof. We can use a similar idea as in the section 3 of [Su1].
Using similar notations and reasons as in the proof of Theorem 2.1, we wish to conclude that for given $x, y \in B\left(p_{1}, \ldots, p_{n}\right)$, with $h(y)<h(x)$, then

$$
h(v(x, y, t))<h(x), \text { for } 0<t<\epsilon
$$

for some $\epsilon>0$. This will be true provided

$$
\sum_{j=1}^{n} \frac{\left|x_{j}-t w_{j}(x, y)\right|^{p_{j}}}{h^{p_{j}}(x)}<\sum_{j=1}^{n} \frac{\left|x_{j}\right|^{p_{j}}}{h^{p_{j}}(x)}
$$

for t sufficiently small. That is

$$
\begin{gathered}
\sum_{\substack{j=1 \\
x_{j} \neq 0}}^{n} \frac{\left|x_{j}\right|^{p_{j}}}{h^{p_{j}}(x)}\left(1-2 t \operatorname{Re} w_{j}(x, y) / x_{j}+t^{2}\left|w_{j}(x, y) / x_{j}\right|^{2}\right)^{p_{j} / 2}+ \\
+\sum_{\substack{j=1 \\
x_{j}=0}}^{n} \frac{t^{p_{j}}}{h^{p_{j}}(x)}\left|w_{j}(x, y)\right|^{p_{j}}<\sum_{j=1}^{n} \frac{\left|x_{j}\right|^{p_{j}}}{h^{p_{j}}(x)}
\end{gathered}
$$

This condition is satisfied when

$$
t\left(\sum_{\substack{j=1 \\ x_{j} \neq 0}}^{n}-p_{j} \frac{\left|x_{j}\right|^{p_{j}}}{h^{p_{j}}(x)} R e \frac{w_{j}(x, y)}{x_{j}}+\sum_{\substack{j=m+1 \\ x_{j}=0}}^{n} t^{p_{j}-1} \frac{\left|w_{j}(x, y)\right|^{p_{j}}}{h^{p_{j}}(x)}\right)<0,
$$

where t is sufficiently small positive. Therefore, if

$$
R e \sum_{j=1}^{m} p_{j} w_{j}(x, y) \frac{\left|x_{j}\right|^{p_{j}}}{x_{j} h^{p_{j}}(x)}+R e \sum_{\substack{j=m+1 \\ x_{j} \neq 0}}^{n} w_{j}(x, y) \frac{\left|x_{j}\right|}{h(x) x_{j}}-\sum_{\substack{j=m+1 \\ x_{j}=0}}^{n} \frac{\left|w_{j}(x, y)\right|}{h(x)}>0
$$

for $x=\left(x_{1}, \ldots, x_{n}\right)^{\prime}, y=\left(y_{1}, \ldots, y_{n}\right)^{\prime} \in B\left(p_{1}, \ldots, p_{n}\right)$, with $h(y)<h(x)$, then, taking into account the proof of Theorem 2.1, we conclude that f is convex. This completes the proof.

Further on, let

$$
\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}
$$

denote the inner scalar product on the Euclidean space \mathbf{C}^{n}, then from Theorem 2.1, we obtain the following consequence.

Corollary 2.2. Let $f \in C^{1}(B)$ such that $J_{r} f(z) \neq 0$, for all $z \in B$. If $\operatorname{Re}\left\langle D_{w} f^{-1}(f(z))(f(z)-f(u))+D_{\bar{w}} f^{-1}(f(z))(\overline{f(z)}-\overline{f(u)}), z\right\rangle>0$, for all $z, u \in B,\|u\|<\|z\|$, then f is convex.

References

[Go-Wa-YuI] Sh. Gong, Sh. Wang, Qi Yu, A necessary and sufficient condition that biholomorphic mappings are starlike on Reinhardt domains, Chin. Ann. Math., 13B(1992), 95-104.
[Go-Wa-Yu2] Sh. Gong, Sh. Wang, Qi Yu, Biholomorphic convex mappings of ball in C^{n}, Pacif. J. Math., 161(1993), 287-306.
[Ha] H. Hamada, Starlike mappings on bounded balanced pseudoconvex domains with C^{1} plurisubharmonic defining functions, Pacif. J. Math., to appear.
[Ha-Kol] H. Hamada, G. Kohr, Some necessary and sufficient conditions of convexity on bounded balanced pseudoconvex domains in \mathbf{C}^{n}, Complex Variables, to appear.
[Ha-Ko2] H. Hamada, G. Kohr, Spirallike non-holomorphic mappings on balanced pseudoconvex domains, Complex Variables, to appear.
[Ha-Ko3] H. Hamada, G. Kohr, Φ-like C^{1} mappings on the unit ball in C^{n}, submitted.
[Ja-Pf] M. Jarnicki, P. Pflug, Invariant Distances and Metrics in Complex Analysis, De Gruyter Exp. in Math., Berlin-New York, 1993.
[Ki] K. Kikuchi, Starlike and convex mappings in several complex variables, Pacif. J. Math., 44, 2(1973), 569-580.
[Ko1] G. Kohr, On some conditions of spirallikeness in \mathbf{C}^{n}, Complex Variables Theory Appl., 32(1997), 79-88.
[Ko2] G. Kohr, Some sufficient conditions of starlikeness for mappings of C^{1} class, Complex Variables, 36(1998), 1-9.
[Ko-Li] G. Kohr, P. Liczberski, Univalent Mappings of Several Complex Variables, ClujUniversity Press, 1998.
[Su1] T.J. Suffridge, The principle of subordination applied to functions of several complex variables, Pacif. J. Math., 33(1970), 241-248.
[Su2] T.J. Suffridge, Starlike and convex maps in Banach spaces, Pacif. J. Math., 46(1973), 575-589.
[Su3] T.J. Suffridge, Starlikeness, convexity and other geornetric properties of holomorphic maps in higher dimensions, Lecture Notes in Math., 599(1976), 146-159.

Faculty of Engineering, Kyushy Kyoritsu University 1 - 8 Jiyugaoka, YahatanishiKu, Kitakyushu 807-8585,Japan

Faculty of Mathematics, Babeş-Bolyal University 1 M. Kogălniceanu Str., 3400 Cluj-Napoca, Romania

E-mail address: hamada@kykyo-u.ac.jp
E-mail address: gkohr@math.ubbcluj.ro
Received: 20.02.99.
Revised: 01.09.99.

[^0]: 1991 Mathematics Subject Classification. 32H, 30 C 45.
 Key words and phrases. convexity, starlikeness, diffeomorphism.

