CONVEX MAPPINGS IN SEVERAL COMPLEX VARIABLES

HIDETAKA HAMADA AND GABRIELA KOHR

Kyushy Kyoritsu Univ., Japan and Babes-Bolyai Univ., Romania

ABSTRACT. Let B be the unit ball of \mathbb{C}^n with respect to an arbitrary norm. We will give a sufficient condition for a local diffeomorphism of C^1 class on B to be univalent and to have a convex image. Finally, we present an aplication on the complex ellipsoid $B(p_1, \ldots, p_n)$, where $p_1, \ldots, p_n \geq 1$.

1. INTRODUCTION AND PRELIMINARIES

Let \mathbf{C}^n denote the space of *n* complex variables $z = (z_1, \ldots, z_n)'$ with an arbitrary norm $|| \cdot ||$.

Let B be the unit ball of \mathbb{C}^n with respect to this norm and also, let $B_r = rB$, for $0 < r \leq 1$. The symbol ' means the transpose of vectors and matrices.

By $L(\mathbf{C}^n, \mathbf{C}^m)$ we denote the space of continuous linear operators from \mathbf{C}^n into \mathbf{C}^m with the standard operator norm. The letter I means the identity in $L(\mathbf{C}^n, \mathbf{C}^n)$. The class of holomorphic mappings from a domain $G \subset \mathbf{C}^n$ into \mathbf{C}^n is denoted by H(G). If $f \in H(G)$, we define

$$Df(z) = \left[\frac{\partial f_j}{\partial z_k}(z)\right]_{1 \le j,k \le n}$$

For a C^1 class mapping f from a domain $G \subset \mathbb{C}^n$ into \mathbb{C}^n , let

$$J_rf(z)=\detrac{\partial(u_1,v_1,\ldots,u_n,v_n)}{\partial(x_1,y_1,\ldots,x_n,y_n)},$$

where $z_j = x_j + \sqrt{-1}y_j$ and $f_j = u_j + \sqrt{-1}v_j$.

Suffridge [Su1], [Su2], Kikuchi [Ki] and Gong, Wang and Yu [Go-Wa-Yu2] gave analytic characterizations for locally biholomorphic mappings to be biholomorphic and convex.

¹⁹⁹¹ Mathematics Subject Classification. 32H, 30C45.

Key words and phrases. convexity, starlikeness, diffeomorphism.

Suffridge [Su1], [Su2] and Gong, Wang and Yu [Go-Wa-Yu2] obtained some necessary and sufficient conditions of convexity for holomorphic mappings defined on the unit ball of \mathbb{C}^n with respect to the Euclidean norm and an arbitrary norm. Also, Suffridge [Su2] characterized convex mappings on the unit ball of a complex Banach space, by a necessary and sufficient condition. On the other hand, Kikuchi [Ki] showed that Suffridge's results can be generalized to locally biholomorphic mappings on bounded domains in \mathbb{C}^n , for which the Bergman kernel function becomes infinite everywhere on the boundary.

Recently Hamada and Kohr [Ha-Ko1] gave necessary and sufficient conditions of convexity for locally biholomorphic mappings on bounded balanced pseudoconvex domains with C^1 plurisubharmonic defining functions.

In this paper we will obtain a sufficient condition of diffeomorphism and convexity for mappings of C^1 class on B. For other sufficient conditions of univalence on some domains in \mathbb{C}^n , see [Ko-Li].

2. Non-holomorphic case

We consider in this section a sufficient condition for a C^1 mapping from B into \mathbb{C}^n , with $J_r f(z) \neq 0$, for $z \in B$, to be univalent and to have a convex image.

If $f \in C^1(B)$, we say that f is convex if f is univalent on B and f(B) is a convex domain.

Also, if $f \in C^1(B)$ with f(0) = 0, we say that f is starlike if f is univalent on B and f(B) is a starlike domain with respect to zero.

For each $z \in \mathbf{C}^n \setminus \{0\}$, let

$$T(z) = \{ z^* \in L(\mathbf{C}^n, \mathbf{C}) : ||z^*|| = 1, \ z^*(z) = ||z|| \}.$$

Clearly, T(z) is nonempty, by the Hahn-Banach theorem.

On the other hand, if $f \in C^1(B)$, $J_r f(z) \neq 0$, $z \in B$, then there exists a neighborhood W_z of z such that f is a diffeormorphism of C^1 class between W_z and $f(W_z)$, thus there exist the following matrices

$$D_w f^{-1}(w) = \left[\frac{\partial (f|_{W_z})_j^{-1}}{\partial w_k}(w)\right]_{1 \le j,k \le n}$$

and

$$D_{\overline{w}}f^{-1}(w) = \left[\frac{\partial(f|_{W_z})_j^{-1}}{\partial\overline{w}_k}(w)\right]_{1 \le j,k \le n}$$

where w = f(z).

Recently Hamada and Kohr [Ha-Ko3] gave sufficient conditions for a local diffeomorphism of C^1 class on the unit ball of \mathbb{C}^n with respect to an arbitrary norm to be univalent and to have a Φ -like image. On the other hand, in [Ko2] and [Ha-Ko2], the authors obtained sufficient conditions of starlikeness and

spirallikeness for mappings of C^1 class on the unit ball of \mathbb{C}^n with a norm of C^1 class on $\mathbb{C}^n \setminus \{0\}$ and also, on bounded balanced pseudoconvex domains with C^1 plurisubharmonic defining functions.

In the following we prove a sufficient condition of diffeomorphism of C^1 class and convexity on the unit ball B with respect to an arbitrary norm $|| \cdot ||$.

THEOREM 2.1. Let $f \in C^1(B)$ such that $J_r f(z) \neq 0$, for all $z \in B$. If

(1) Re
$$z^* \left[D_w f^{-1}(f(z))(f(z) - f(u)) + D_{\overline{w}} f^{-1}(f(z))(\overline{f(z)} - \overline{f(u)}) \right] > 0,$$

for all $z, u \in B$, ||u|| < ||z||, and $z^* \in T(z)$, then f is convex.

PROOF. Since $J_r f(z) \neq 0$, for all $z \in B$, then f is a local diffeomorphism of C^1 class on B. We divide the proof into three steps, as follows.

First, we show that if f is univalent on B_r , then f is also univalent on \overline{B}_r , for all $r \in (0, 1)$. If this assertion does not hold, then there exist at least two distinct points $z_1, z_2 \in \overline{B}_r$ such that $f(z_1) = f(z_2) = w$. Because f is univalent on B_r and f is a local diffeomorphism, then $w \neq f(0)$. On the other hand, since f is a local diffeomorphism on B, there exists a curve $z_1(s): [-s_0, s_0] \to B \setminus \{0\}$, such that $z_1(s)$ is C^1 on $[-s_0, s_0]$, and

$$f(z_1(s)) = (1-s)f(z_1) + sf(0), \ s \in [-s_0, s_0],$$

with $z_1(0) = z_1$, for some $s_0 > 0$. Note that,

$$z_1(s) = z_1 - sw(z_1) + \epsilon(s), \ s \in (-s_0, s_0),$$

where $\lim_{s \to 0} \frac{\epsilon(s)}{s} = 0$, and

$$w(x) = D_w f^{-1}(f(x))(f(x) - f(0)) + D_{\overline{w}} f^{-1}(f(x))(\overline{f(x)} - \overline{f(0)}),$$

for $x \in B \setminus \{0\}$. Taking into account the relation (1), for u = 0, we deduce that

$$||z_1(s)|| \ge Rez_1^*(z_1(s)) = ||z_1|| - sRez_1^*(w(z_1)) + \epsilon(s) > ||z_1||,$$

for s negative, such that |s| is sufficiently small. Next, as in the proof of Theorem 2 of Suffridge [Su2], we conclude that $||z_1(s)||$ is strictly decreasing on $(-s_0, s_0)$, hence

$$||z_1(s)|| < ||z_1(0)|| = ||z_1|| \le r$$
,

for all $s \in (0, s_0]$, so $z_1(s) \in B_r$, for all $s \in (0, s_0]$. Thus, we obtain the curve $z_1(s)$, which falls in B_r , for $0 < s \le s_0$, such that $f(z_1(s)) = (1-s)f(z_1) + sf(0)$ and $z_1(0) = z_1$. Therefore, $z_1(s) = f^{-1}((1-s)f(z_1) + sf(0))$ is a univalent component of the inverse images of the curve $(1-s)f(z_1) + sf(0)$, for $0 \le s \le s_0$.

Suppose that $z_2(s)$ is another univalent component of the inverse images of the curve $(1-s)f(z_1) + sf(0)$, such that $z_2(s) \in B_r$, for sufficiently small s > 0, but with $z_2(0) = z_2$. Because f is injective on B_r , $z_1(s) = z_2(s)$, for sufficiently small s > 0. However, this contradicts with the assumption $z_1(0) \neq z_2(0)$. Hence, we conclude that f is also injective on \overline{B}_r .

In the second step we show that $\mathcal{M} = (0, 1]$, where

$$\mathcal{M} = \{ r \in (0,1] : f \text{ is injective on } B_r \}.$$

Since $J_r f(0) \neq 0$, there exists a small positive δ_1 such that f is a diffeomorphism of C^1 class from B_{δ_1} onto $f(B_{\delta_1})$. Therefore, \mathcal{M} is nonempty.

We next show that \mathcal{M} is closed.

If $0 < r_1 \in \mathcal{M}$, then all $r \in (0, r_1)$ fall in \mathcal{M} . Therefore, it suffices to show that if $r_1 > r$ and all $r \in \mathcal{M}$, then $r_1 \in \mathcal{M}$. If this assertion is not true, then there are at least two points $x_1, x_2 \in B_{r_1}$, such that $x_1 \neq x_2$, but, $f(x_1) = f(x_2)$. Since $||x_1|| < r_1$, $||x_2|| < r_1$, we can find a positive r_2 such that $\max\{||x_1||, ||x_2||\} \le r_2 < r_1$ and because f is univalent on B_{r_2} , we deduce that $f(x_1) \neq f(x_2)$. So, we get a contradiction, thus we must have \mathcal{M} closed.

Next, we show that \mathcal{M} is open. To this end, it suffices to show that if f is injective on B_r , then there exists a $\delta > 0$ small enough such that f is also injective on $B_{r+\delta}$. If this is not true, then there is a sequence $(\delta_p), \delta_p > 0, \lim_{p \to \infty} \delta_p = 0$, such that we can find two sequences $(x_p), (y_p)$, which satisfy the following conditions

$$x_p, y_p \in B_{r+\delta_p}, x_p \neq y_p, f(x_p) = f(y_p),$$

for all p = 1, 2, ...

Since (x_p) , (y_p) are bounded sequences, there exist two subsequences (x_{p_k}) , (y_{p_k}) of (x_p) and (y_p) , such that

$$\lim_{k\to\infty} x_{p_k} = x, \ \lim_{k\to\infty} y_{p_k} = y$$

and also,

$$f(x_{p_k}) = f(y_{p_k}), x_{p_k} \neq y_{p_k}, k = 1, 2, \dots$$

Then $x, y \in \overline{B}_r$.

If $x \neq y$, this is contrary to the result of first step. If x = y, then there are two points $x'_{p_k} \in (x_{p_k})$, $y'_{p_k} \in (y_{p_k})$ in any neighborhood of x = y such that $x'_{p_k} \neq y'_{p_k}$ and $f(x'_{p_k}) = f(y'_{p_k})$ and this is again a contradiction with f locally univalent on B.

Hence \mathcal{M} is a closed, open and nonempty subset of (0, 1], thus, $\mathcal{M} = (0, 1]$. In the last step we will show that $f(\overline{B}_r)$ is a convex set, for all $r \in (0, 1)$, using a similar idea as in [Go-Wa-Yu1].

Let $r \in (0,1)$ and $x, y \in \overline{B}_r$. Let $\sigma(f(x), f(y))$ be the closed segment between f(x) and f(y). We will show that $\sigma(f(x), f(y)) \subset f(\overline{B}_r)$.

We may assume that ||y|| < ||x||.

If we denote by $r(x,y) = \sigma(f(x), f(y)) \cap f(\overline{B}_r)$, then r(x,y) is a closed set.

First, we show that there exists a $\delta_1 > 0$ such that

(2)
$$(1-t)f(x) + tf(y) \in f(\overline{B}_r),$$

for all $t \in (0, \delta_1)$.

For this aim, let $v(x, y, t) = f^{-1}((1-t)f(x) + tf(y))$, for $t \in [-\varepsilon, \varepsilon]$, where ε is sufficiently small such that

$$(1-t)f(x) + tf(y) \in f(B), \quad t \in [-\varepsilon, \varepsilon].$$

Also, let

 $v(t) = v(x, y, t), \quad t \in [-\varepsilon, \varepsilon].$

As in the first step of our proof, we can show that ||v(t)|| > ||x||when t is negative, |t| sufficiently small. However, using the fact that $v(v(x, y, \varepsilon), y, s) = v(x, y, s + (1 - s)\varepsilon)$, we conclude that ||v(t)|| is strictly decreasing on a neighborhood of zero.

Hence, the relation (2) holds.

Next, we show that $\sigma(f(x), f(y))$ is contained in $f(\overline{B}_r)$. For this aim, it suffices to show that $\nu(x, y) = \emptyset$, where

$$u(x,y)=\sigma(f(x),f(y))\setminus r(x,y).$$

If we suppose that $\nu(x, y)$ is nonempty, then there exists

$$t^* = \inf\{t \in (0,1]: \ (1-t)f(x) + tf(y) \in
u(x,y)\}.$$

Since $\nu(x,y) = \{\sigma(f(x), f(y)) \setminus \{f(x), f(y)\}\} \setminus r(x,y)$ is an open set, as a subset of $\sigma(f(x), f(y))$, then

$$Q(t^*)=(1-t^*)f(x)+t^*f(y)\not\in\nu(x,y),$$

hence $Q(t^*) \in f(\overline{B}_r)$.

Let $z^* \in \overline{B}_r$ such that $f(z^*) = Q(t^*)$. If $||z^*|| > ||y||$, then the result of the first step can be applied and there exists a $\delta_2 > 0$ such that

 $(1-t)Q(t^*) + tf(y) \in f(\overline{B}_r),$

for all $t \in (0, \delta_2)$. However, when $||z^*|| \leq ||y||$, then the result of the first step cannot be applied. In this case we can show the existence of δ_2 directly.

Therefore,

$$(1-t-t^*+tt^*)f(x)+(t+t^*-tt^*)f(y)\in f(\overline{B}_r),$$

for all $t \in (0, \delta_2)$.

However, this is contrary to the definition of the infimum, hence we conclude that $\nu(x, y) = \emptyset$.

So, $\sigma(f(x), f(y)) \subset f(\overline{B}_r)$, as desired.

Since $f(B) = \bigcup_{0 < r < 1} f(\overline{B}_r)$ and $f(\overline{B}_r)$ is a convex set, for all $r \in (0, 1)$,

then f(B) is also a convex domain. This completes the proof.

REMARK 2.1. We note that if f is holomorphic in Theorem 2.1, then we obtain a similar sufficient condition of convexity, as in the finite dimensional case of Theorem 5 of Suffridge [Su2].

Also, if in Theorem 2.1 we assume that f(0) = 0, then we can obtain a similar sufficient condition of starlikeness on the unit ball *B* (cf. [Ko2], [Ha-Ko2], [Ha-Ko3]).

On the other hand, let D be a bounded balanced convex domain in \mathbb{C}^n . Also, let h be the Minkowski function of D. Then, it is well known that h is a norm on \mathbb{C}^n and D is the unit ball with respect to this norm (see [Ja-Pf]). Then Theorem 2.1 holds for D.

For example, let $B(p_1, \ldots, p_n)$ be the complex ellipsoid, where $p_1, \ldots, p_n \ge 1$ and

$$B(p_1,\ldots,p_n)=\bigg\{z\in\mathbf{C}^n:\sum_{j=1}^n|z_j|^{p_j}<1\bigg\},$$

for $z = (z_1, \ldots, z_n)' \in \mathbb{C}^n$. Then $B(p_1, \ldots, p_n)$ is a balanced convex domain in \mathbb{C}^n .

Also, if $f \in C^1(B(p_1, \ldots, p_n))$, let

$$w(x,y) = D_w f^{-1}(f(x))(f(x) - f(y)) + D_{\overline{w}} f^{-1}(f(x))(\overline{f(x)} - \overline{f(y)}),$$

for $x, y \in B(p_1, ..., p_n)$.

In this case, we obtain the following result.

COROLLARY 2.1. Let $f \in C^1(B(p_1, \ldots, p_n))$ such that $J_r f(z) \neq 0$, for all $z \in B(p_1, \ldots, p_n)$, where $p_1, \ldots, p_m > 1$, $p_{m+1} = \cdots = p_n = 1$. If

$$Re\sum_{j=1}^{m} p_{j}w_{j}(x,y)\frac{|x_{j}|^{p_{j}}}{h^{p_{j}}(x)x_{j}} + Re\sum_{\substack{j=m+1\\ z_{j}\neq 0}}^{n} w_{j}(x,y)\frac{|x_{j}|}{h(x)x_{j}} - \sum_{\substack{j=m+1\\ z_{j}=0}}^{n} \frac{|w_{j}(x,y)|}{h(x)} > 0,$$

for all $x = (x_1, \ldots, x_n)'$ and $y = (y_1, \ldots, y_n)' \in B(p_1, \ldots, p_n)$, with h(y) < h(x), then f is convex.

PROOF. We can use a similar idea as in the section 3 of [Su1].

Using similar notations and reasons as in the proof of Theorem 2.1, we wish to conclude that for given $x, y \in B(p_1, \ldots, p_n)$, with h(y) < h(x), then

$$h(v(x, y, t)) < h(x), \text{ for } 0 < t < \epsilon,$$

for some $\epsilon > 0$. This will be true provided

$$\sum_{j=1}^{n} \frac{|x_j - tw_j(x,y)|^{p_j}}{h^{p_j}(x)} < \sum_{j=1}^{n} \frac{|x_j|^{p_j}}{h^{p_j}(x)},$$

for t sufficiently small. That is

$$\sum_{\substack{j=1\\x_j\neq 0}}^{n} \frac{|x_j|^{p_j}}{h^{p_j}(x)} \left(1 - 2t Rew_j(x,y)/x_j + t^2 |w_j(x,y)/x_j|^2\right)^{p_j/2} + \sum_{\substack{x_j\neq 0\\x_j=0}}^{n} \frac{t^{p_j}}{h^{p_j}(x)} |w_j(x,y)|^{p_j} < \sum_{j=1}^{n} \frac{|x_j|^{p_j}}{h^{p_j}(x)}.$$

This condition is satisfied when

$$t\bigg(\sum_{\substack{j=1\\ x_j\neq 0}}^n -p_j \frac{|x_j|^{p_j}}{h^{p_j}(x)} Re \frac{w_j(x,y)}{x_j} + \sum_{\substack{j=m+1\\ x_j=0}}^n t^{p_j-1} \frac{|w_j(x,y)|^{p_j}}{h^{p_j}(x)}\bigg) < 0,$$

where t is sufficiently small positive. Therefore, if

$$Re\sum_{j=1}^{m} p_{j}w_{j}(x,y)\frac{|x_{j}|^{p_{j}}}{x_{j}h^{p_{j}}(x)} + Re\sum_{\substack{j=m+1\\x_{j}\neq 0}}^{n} w_{j}(x,y)\frac{|x_{j}|}{h(x)x_{j}} - \sum_{\substack{j=m+1\\x_{j}=0}}^{n} \frac{|w_{j}(x,y)|}{h(x)} > 0,$$

for $x = (x_1, \ldots, x_n)'$, $y = (y_1, \ldots, y_n)' \in B(p_1, \ldots, p_n)$, with h(y) < h(x), then, taking into account the proof of Theorem 2.1, we conclude that f is convex. This completes the proof. \Box

Further on, let

$$\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w}_j,$$

denote the inner scalar product on the Euclidean space \mathbb{C}^n , then from Theorem 2.1, we obtain the following consequence.

COROLLARY 2.2. Let
$$f \in C^1(B)$$
 such that $J_r f(z) \neq 0$, for all $z \in B$. If
Re $\langle D_w f^{-1}(f(z))(f(z) - f(u)) + D_{\overline{w}} f^{-1}(f(z))(\overline{f(z)} - \overline{f(u)}), z \rangle > 0$,
all $z \in B$ $||u|| \leq ||z||$ then f is conver

for all $z, u \in B$, ||u|| < ||z||, then f is convex.

References

- [Go-Wa-Yu1] Sh. Gong, Sh. Wang, Qi Yu, A necessary and sufficient condition that biholomorphic mappings are starlike on Reinhardt domains, Chin. Ann. Math., 13B(1992), 95-104.
- [Go-Wa-Yu2] Sh. Gong, Sh. Wang, Qi Yu, Biholomorphic convex mappings of ball in Cⁿ, Pacif. J. Math., 161(1993), 287-306.
- [Ha] H. Hamada, Starlike mappings on bounded balanced pseudoconvex domains with C^1 -plurisubharmonic defining functions, Pacif. J. Math., to appear.
- [Ha-Ko1] H. Hamada, G. Kohr, Some necessary and sufficient conditions of convexity on bounded balanced pseudoconvex domains in \mathbb{C}^n , Complex Variables, to appear.
- [Ha-Ko2] H. Hamada, G. Kohr, Spirallike non-holomorphic mappings on balanced pseudoconvex domains, Complex Variables, to appear.
- [Ha-Ko3] H. Hamada, G. Kohr, Φ -like C^1 mappings on the unit ball in \mathbb{C}^n , submitted.

- [Ja-Pf] M. Jarnicki, P. Pflug, Invariant Distances and Metrics in Complex Analysis, De Gruyter Exp. in Math., Berlin-New York, 1993.
- [Ki] K. Kikuchi, Starlike and convex mappings in several complex variables, Pacif. J. Math., 44, 2(1973), 569-580.
- [Ko1] G. Kohr, On some conditions of spirallikeness in Cⁿ, Complex Variables Theory Appl., 32(1997), 79-88.
- [Ko2] G. Kohr, Some sufficient conditions of starlikeness for mappings of C^1 class, Complex Variables, **36**(1998), 1-9.
- [Ko-Li] G. Kohr, P. Liczberski, Univalent Mappings of Several Complex Variables, Cluj-University Press, 1998.
- [Su1] T.J. Suffridge, The principle of subordination applied to functions of several complex variables, Pacif. J. Math., 33(1970), 241-248.
- [Su2] T.J. Suffridge, Starlike and convex maps in Banach spaces, Pacif. J. Math., 46(1973), 575-589.
- [Su3] T.J. Suffridge, Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, Lecture Notes in Math., 599(1976), 146-159.

Faculty of Engineering, Kyushy Kyoritsu University 1-8 Jiyugaoka, Yahatanishi-Ku, Kitakyushu 807-8585,Japan

Faculty of Mathematics, Babeș-Bolyai University 1 M. Kogălniceanu Str., 3400 Cluj-Napoca, Romania

E-mail address: hamada@kyukyo-u.ac.jp *E-mail address*: gkohr@math.ubbcluj.ro

Received: 20.02.99. Revised: 01.09.99.