FUNCTIONAL BOUNDARY VALUE PROBLEMS WITHOUT GROWTH RESTRICTIONS

Svatoslav Staněk
Palacký University, Czech Republic

Abstract

Let $J=[0, T]$ and $F: C^{0}(J) \times C^{0}(J) \times \mathbb{R} \rightarrow L_{1}(J)$ be an operator. Existence theorems for the functional differential equation $\left(g\left(x^{\prime}(t)\right)\right)^{\prime}=\left(F\left(x, x^{\prime}, x^{\prime}(t)\right)\right)(t)$ with functional boundary conditions generalizing the non-homogeneous Dirichlet boundary conditions and nonhomogeneous mixed boundary conditions are given. Existence results are proved by the Leray-Schauder degree theory under some sign conditions imposed upon F.

1. Introduction

Let $J=[0, T]$ be a compact interval. Consider the functional differential equation

$$
\begin{equation*}
\left(g\left(x^{\prime}(t)\right)\right)^{\prime}=\left(F\left(x, x^{\prime}, x^{\prime}(t)\right)\right)(t) . \tag{1}
\end{equation*}
$$

Here $g: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing homeomorphism with inverse $g^{-1}: \mathbb{R} \rightarrow \mathbb{R}$, $g(0)=0$ and $F: C^{0}(J) \times C^{0}(J) \times \mathbb{R} \rightarrow L_{1}(J),(x, y, a) \longmapsto(F(x, y, a))(t)$ is an operator having the following properties:
(a) $(F(x, y, z(t)))(t) \in L_{1}(J)$ for $x, y, z \in C^{0}(J)$,
(b) $\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}, z_{n}\right)=(x, y, z)$ in $C^{0}(J) \times C^{0}(J) \times C^{0}(J) \Rightarrow$ $\lim _{n \rightarrow \infty}\left(F\left(x_{n}, y_{n}, z_{n}(t)\right)\right)(t)=(F(x, y, z(t)))(t)$ in $L_{1}(J)$,
(c) for each $d \in(0, \infty)$ there exists $k_{d} \in L_{1}(J)$, such that $x, y \in C^{0}(J)$,
$a \in \mathbb{R},\|x\|+\|y\|+|a| \leq d \Rightarrow|(F(x, y, a))(t)| \leq k_{d}(t)$ for a.e. $t \in J$, where $\|x\|=\max \{|x(t)| ; t \in J\}$ for $x \in C^{0}(J)$ is the norm in $C^{0}(J)$.

[^0]A prototype of the operator F in (1) is the operator

$$
(F(x, y, a))(t)=f(t, x(t), y(t), a)
$$

where $f: J \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ satisfies the Caratheodory conditions on $J \times \mathbb{R}^{3}$ ($f \in \operatorname{Car}\left(J \times \mathbb{R}^{3}\right)$ for short) or more generally

$$
(F(x, y, a))(t)=\left(P_{1}(x, y)\right)(t) h(a)+\left(P_{2}(x, y)\right)(t)
$$

and

$$
(F(x, y, a))(t)=\int_{t}^{T-t} f_{1}(s, a x(s), y(s), a) d s+f_{2}(t, x(t), y(t), a)
$$

where $P_{1}, P_{2}: C^{0}(J) \times C^{0}(J) \rightarrow L_{1}(J), h: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and, for each $d \in(0, \infty)$, there exists $l_{d} \in L_{1}(J)$ such that $x, y \in C^{0}(J),\|x\|+\|y\| \leq d$ $\Rightarrow\left|\left(P_{1}(x, y)\right)(t)\right| \leq l_{d}(t),\left|\left(P_{2}(x, y)\right)(t)\right| \leq l_{d}(t)$ for a.e. $t \in J$ and $f_{1}, f_{2} \in$ $\operatorname{Car}\left(J \times \mathbb{R}^{3}\right)$ 。

Together with (1) consider the functional boundary conditions

$$
\begin{equation*}
x\left(\alpha_{1}\left(x, x^{\prime}\right)\right)=p_{1}\left(x, x^{\prime}\right), \quad x\left(\alpha_{2}\left(x, x^{\prime}\right)\right)=p_{2}\left(x, x^{\prime}\right) \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
x\left(\beta_{1}\left(x, x^{\prime}\right)\right)=r_{1}\left(x, x^{\prime}\right), \quad x^{\prime}\left(\beta_{2}\left(x, x^{\prime}\right)\right)=r_{2}\left(x, x^{\prime}\right) \tag{3}
\end{equation*}
$$

Here $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}: C^{0}(J) \times C^{0}(J) \rightarrow J$ and $p_{1}, p_{2}, r_{1}, r_{2}: C^{0}(J) \times C^{0}(J) \rightarrow$ \mathbb{R} are continuous functionals. We see that (2) (with $\alpha_{1}\left(x, x^{\prime}\right)=0, \alpha_{2}\left(x, x^{\prime}\right)=$ $T, p_{1}\left(x, x^{\prime}\right)=A, p_{2}\left(x, x^{\prime}\right)=B$ for $\left.x \in C^{1}(J)\right)$ gives the nonhomogeneous Dirichlet boundary conditions and (3) (with $r_{1}\left(x, x^{\prime}\right)=A, r_{2}\left(x, x^{\prime}\right)=B$ and $\beta_{1}\left(x, x^{\prime}\right)=0, \beta_{2}\left(x, x^{\prime}\right)=T$ resp. $\beta_{1}\left(x, x^{\prime}\right)=T, \beta_{2}\left(x, x^{\prime}\right)=0$ for $\left.x \in C^{1}(J)\right)$ gives the nonhomogeneous mixed boundary conditions.

We say that $x \in C^{1}(J)$ is a solution of the boundary value problem (BVP for short) (1), (j) ($j=2,3)$ if $g\left(x^{\prime}(t)\right)$ is absolutely continuous on J, x satisfies boundary conditions (j) and (1) is satisfied for a.e. $t \in J$.

We observe that Brykalov [B] considered among others the differential equation

$$
x^{\prime \prime}+a_{1}(t) x^{\prime}+a_{0}(t) x=f\left(t, x, x^{\prime}\right)
$$

together with boundary conditions (2) (actually with more general boundary conditions, in which α_{i}, p_{i} can depend also on $x^{\prime \prime}$). For this BVP he proved an existence result under the assumptions that $a_{0}, a_{1} \in L_{1}(J), a_{0}(t) \leq 0$, $f \in \operatorname{Car}\left(J \times \mathbb{R}^{2}\right)$ satisfies the growth condition $|f(t, x, y)| \leq \gamma(t)+A_{0}|x|^{1-\varepsilon_{0}}+$ $A_{1}|y|^{1-\varepsilon_{1}}$ for a.e. $t \in J$ and each $x, y \in \mathbb{R}$ where $\gamma \in L_{1}(J), \gamma(t) \geq 0, A_{i} \in$ $(0, \infty), \varepsilon_{i} \in(0,1)(i=0,1)$ and $\left|p_{1}\left(x, x^{\prime}\right)-p_{2}\left(x, x^{\prime}\right)\right| \leq \lambda\left|\alpha_{1}\left(x, x^{\prime}\right)-\alpha_{2}\left(x, x^{\prime}\right)\right|$, $\left|p_{j}\left(x, x^{\prime}\right)\right| \leq N(j=1,2)$ for all x having the absolutely continuous derivative on J with positive constants λ and N.

In this paper we prove existence results for BVPs (1), (2) and (1), (3) providing that F satisfies only sign conditions. Our results are proved by the topological degree method (see e.g. [D] and [M]). We generalize the results of
$[\mathrm{K}]$ for the Dirichlet conditions where the differential equation $x^{\prime \prime}=h\left(t, x, x^{\prime}\right)$, $h \in C^{0}\left(J \times \mathbb{R}^{2}\right)$ was studied. We note that our results are close those of [RT] for the Dirichlet conditions where another type of the functional differential equation was considered. This functional differential equation without growth restrictions and with nonlinear functional boundary conditions was considered in [S]. Some existence results for the equation $x^{\prime \prime}=h\left(t, x, x^{\prime}\right)$ with continuous h without growth restrictions was given by Rodriguez and Tineo [RT] for the Dirichlet problem and by Ruyun Ma [R] for an m-point boundary value problem.

The following assumptions will be needed throughout the paper:
$\left(H_{1}\right) \alpha_{1}\left(x, x^{\prime}\right)<\alpha_{2}\left(x, x^{\prime}\right), \quad x \in C^{1}(J) ;$
$\left(H_{2}\right)$ There exists a positive constant μ such that

$$
\left|p_{1}\left(x, x^{\prime}\right)-p_{2}\left(x, x^{\prime}\right)\right| \leq \mu\left(\alpha_{2}\left(x, x^{\prime}\right)-\alpha_{1}\left(x, x^{\prime}\right)\right), \quad x \in C^{1}(J)
$$

$\left(H_{3}\right)$ There exist positive constants A_{1}, A_{2} such that

$$
\left|p_{i}\left(x, x^{\prime}\right)\right| \leq A_{i}, \quad x \in C^{1}(J), \quad i=1,2
$$

$\left(H_{4}\right)$ There exist $L_{1}, L_{2}, L_{3}, L_{4} \in \mathbb{R}$ such that $L_{1}, L_{4} \in(-\infty,-\mu], L_{2}, L_{3} \in$ $[\mu, \infty), L_{1} \neq L_{4}, L_{2} \neq L_{3}$ and

$$
\begin{aligned}
& \left(F\left(x, y, L_{1}\right)\right)(t) \leq 0 \leq\left(F\left(x, y, L_{2}\right)\right)(t) \\
& \left(F\left(x, y, L_{3}\right)\right)(t) \leq 0 \leq\left(F\left(x, y, L_{4}\right)\right)(t)
\end{aligned}
$$

for a.e. $t \in J$ and each $x, y \in C^{0}(J),\|x\| \leq U, D \leq y(t) \leq H$ for $t \in J$, where

$$
\begin{gathered}
U=\min \left\{A_{1}, A_{2}\right\}+T \max \{-D, H\}, \quad D=\min \left\{L_{1}, L_{4}\right\} \\
H=\max \left\{L_{2}, L_{3}\right\}
\end{gathered}
$$

$\left(H_{5}\right)$ There exist positive constants M, N such that

$$
\left|r_{1}\left(x, x^{\prime}\right)\right| \leq M, \quad\left|r_{2}\left(x, x^{\prime}\right)\right| \leq N, \quad x \in C^{1}(J)
$$

$\left(H_{6}\right)$ There exist $K_{1}, K_{2}, K_{3}, K_{4} \in \mathbb{R}$ such that $K_{1}, K_{4} \in(-\infty,-N], K_{2}$, $K_{3} \in[N, \infty), K_{1} \neq K_{4}, K_{2} \neq K_{3}$ and

$$
\begin{aligned}
& \left(F\left(x, y, K_{1}\right)\right)(t) \leq 0 \leq\left(F\left(x, y, K_{2}\right)\right)(t) \\
& \left(F\left(x, y, K_{3}\right)\right)(t) \leq 0 \leq\left(F\left(x, y, K_{4}\right)\right)(t)
\end{aligned}
$$

for a.e. $t \in J$ and each $x, y \in C^{0}(J),\|x\| \leq U_{*}, D_{*} \leq y(t) \leq H_{*}$ for $t \in J$, where

$$
\begin{gathered}
U_{*}=M+T \max \left\{-D_{*}, H_{*}\right\}, \quad D_{*}=\min \left\{K_{1}, K_{4}\right\}, \\
H_{*}=\max \left\{K_{2}, K_{3}\right\}
\end{gathered}
$$

2. $\operatorname{BVP}(1),(2)$

Assume that assumptions $\left(H_{1}\right)-\left(H_{4}\right)$ are satisfied. Let $\left|L_{4}-L_{1}\right|>\frac{2}{n_{0}}$, $\left|L_{3}-L_{2}\right|>\frac{2}{n_{0}}$ for an $n_{0} \in \mathbb{N}$. Set

$$
\begin{array}{ll}
E_{1}=L_{1}+\frac{\operatorname{sign}\left(L_{4}-L_{1}\right)-1}{2}\left(L_{1}-L_{4}\right), & E_{2}=L_{2}+\frac{\operatorname{sign}\left(L_{3}-L_{2}\right)-1}{2}\left(L_{2}-L_{3}\right), \\
E_{3}=L_{3}-\frac{\operatorname{sign}\left(L_{3}-L_{2}\right)-1}{2}\left(L_{2}-L_{3}\right), & E_{4}=L_{4}-\frac{\operatorname{sign}\left(L_{4}-L_{1}\right)-1}{2}\left(L_{1}-L_{4}\right) .
\end{array}
$$

Then $E_{1}<E_{4} \leq-\mu, \mu \leq E_{2}<E_{3}$ and $D=E_{1} ; H=E_{3}$.
For each $n \geq n_{0}, x, y \in C^{0}(J)$ and $a \in \mathbb{R}$, define $\bar{x}, \bar{y} \in C^{0}(J)$ and $[a]_{n} \in \mathbb{R}$ by

$$
\left.\begin{array}{c}
\bar{x}(t)= \begin{cases}U & \text { for } x(t)>U \\
x(t) & \text { for }|x(t)| \leq U \\
-U & \text { for } x(t)<-U,\end{cases} \\
\tilde{y}(t)= \begin{cases}E_{3} & \text { for } y(t)>E_{3} \\
y(t) & \text { for } E_{1} \leq y(t) \leq E_{3} \\
E_{1} & \text { for } y(t)<E_{1},\end{cases} \\
{[a]_{n}= \begin{cases}E_{3} & \text { for } a \geq E_{3} \\
a & \text { for } E_{2}+\frac{2}{n}<a<E_{3} \\
-E_{2}+2 a-\frac{2}{n} & \text { for } E_{2}+\frac{1}{n}<a \leq E_{2}+\frac{2}{n} \\
E_{2} & \text { for } E_{2}<a \leq E_{2}+\frac{1}{n}\end{cases} } \\
E_{4} \\
-E_{4}+2 a+\frac{2}{n} \\
a \\
a \\
E_{1}
\end{array}{\text { for } E_{4} \leq a \leq E_{2}}^{E_{4}-\frac{2}{n} \leq a<E_{4}-\frac{1}{n}} \begin{array}{l}
\text { for } E_{1} \leq a<E_{4}-\frac{2}{n}
\end{array}\right\}
$$

Clearly $\lim _{n \rightarrow \infty}[a]_{n}=a$ for $a \in\left[E_{1}, E_{3}\right]$ and for any $z \in C^{0}(J), E_{1} \leq$ $z(t) \leq E_{3}$, we have $\lim _{n \rightarrow \infty}[z(t)]_{n}=z(t)$ uniformly on J.

Let $p: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with the property:

$$
|p(v)| \leq 1 \quad \text { for } v \in \mathbb{R}
$$

$$
\begin{align*}
& p(v)=1 \text { for } v \in\left[L_{4}-\frac{1}{n_{0}}, L_{4}\right] \cup\left[L_{2}, L_{2}+\frac{1}{n_{0}}\right] \text {, } \tag{5}\\
& p(v)=-1 \quad \text { for } v \in\left[L_{1}-\frac{1}{n_{0}}, L_{1}\right] \cup\left[L_{3}, L_{3}+\frac{1}{n_{0}}\right] \text {. }
\end{align*}
$$

Set

$$
\left(F_{n}(x, y, a)\right)(t)=\left(F\left(\bar{x}, \tilde{y},[a]_{n}\right)\right)(t)+\frac{p(a)}{n}
$$

fir $(x, y, a) \in C^{0}(J) \times C^{0}(J) \times \mathbb{R}$ and $n \in \mathbb{N}, n \geq n_{0}$.
Consider the two-parameter family of the functional differential equations

$$
\left(g\left(x^{\prime}(t)\right)\right)^{\prime}=\lambda\left(F_{n}\left(x, x^{\prime}, x^{\prime}(t)\right)\right)(t), \quad \lambda \in[0,1], n \geq n_{0} . \quad\left(6_{n}\right)_{\lambda}
$$

Lemma 2.1. (A priori estimates). Let assumptions $\left(H_{1}\right)-\left(H_{4}\right)$ be satisfied with $L_{1}<L_{4}$ and $L_{2}<L_{3}$ and let $B V P\left(6_{n}\right)_{\lambda}$, (2) has a solution u for some $\lambda \in[0,1]$ and $n \geq n_{0}$. Then the estimates

$$
\|u\| \leq U+\frac{T}{n}, \quad L_{1}-\frac{1}{n}<u^{\prime}(t)<L_{3}+\frac{1}{n}
$$

for $t \in J$ are fulfilled.
Proof. Set $t_{1}=\alpha_{1}\left(u, u^{\prime}\right), t_{2}=\alpha_{2}\left(u, u^{\prime}\right)$. Then $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$ imply $t_{1}<t_{2},\left|u\left(t_{2}\right)-u\left(t_{1}\right)\right|=\left|p_{2}\left(u, u^{\prime}\right)-p_{1}\left(u, u^{\prime}\right)\right| \leq \mu\left(t_{2}-t_{1}\right)$, and so $\frac{\left|u\left(t_{2}\right)-u\left(t_{1}\right)\right|}{t_{2}-t_{1}} \leq \mu$. Hence

$$
\begin{equation*}
\left|u^{\prime}(\xi)\right| \leq \mu \tag{7}
\end{equation*}
$$

where ξ lies between t_{1} and t_{2}. If $\lambda=0$ then $g\left(u^{\prime}(t)\right) \equiv$ const., and so (cf. (7))

$$
\left|u^{\prime}(t)\right|=\left|u^{\prime}(\xi)\right| \leq \mu, \quad t \in J .
$$

Let $\lambda \in(0,1]$. Let $u^{\prime}\left(T_{1}\right)=\max \left\{u^{\prime}(t) ; t \in J\right\} \geq L_{3}+\frac{1}{n}$ with a $T_{1} \in J$. Assume $T_{1} \in(\xi, T]$. Then there exist $t_{*} \in\left(\xi, T_{1}\right)$ and $\varepsilon_{*}>0$ such that $u^{\prime}\left(t_{*}\right)=L_{3}, u^{\prime}\left(t_{*}+\varepsilon_{*}\right)=L_{3}+\frac{1}{n}$ and $L_{3} \leq u^{\prime}(t) \leq L_{3}+\frac{1}{n}$ for $t \in\left[t_{*}, t_{*}+\varepsilon_{*}\right]$. Integrating the equality

$$
\begin{equation*}
\left(g\left(u^{\prime}(t)\right)\right)^{\prime}=\lambda\left(F_{n}\left(u, u^{\prime} ; u^{\prime}(t)\right)\right)(t) \tag{8}
\end{equation*}
$$

for a.e. $t \in J$ from t_{*} to $t_{*}+\varepsilon_{*}$ we obtain

$$
\begin{gathered}
g\left(u^{\prime}\left(t_{*}+\varepsilon_{*}\right)\right)-g\left(u^{\prime}\left(t_{*}\right)\right)=\lambda \int_{t_{*}}^{t_{*}+\varepsilon_{*}}\left(F_{n}\left(u, u^{\prime}, u^{\prime}(t)\right)\right)(t) d t \\
=\lambda \int_{t_{*}}^{t_{*}+\varepsilon_{*}}\left(\left(F\left(\bar{u}, \tilde{u^{\prime}}, L_{3}\right)\right)(t)+\frac{p\left(u^{\prime}(t)\right)}{n}\right) d t \\
\leq \frac{\lambda}{n} \int_{t_{*}}^{t_{*}+\varepsilon_{*}} p\left(u^{\prime}(t)\right) d t=-\frac{\lambda \varepsilon_{*}}{n}<0
\end{gathered}
$$

which contradicts $g\left(u^{\prime}\left(t_{*}+\varepsilon_{*}\right)\right)-g\left(u^{\prime}\left(t_{*}\right)\right)=g\left(L_{3}+\frac{1}{n}\right)-g\left(L_{3}\right)>0$. Assume $T_{1} \in[0, \xi)$. Then there exist $t_{0} \in\left(T_{1}, \xi\right]$ and $\varepsilon_{0}>0$ such that $u^{\prime}\left(t_{0}-\varepsilon_{0}\right)=$ $L_{2}+\frac{1}{n}, u^{\prime}\left(t_{0}\right)=L_{2}$ and $L_{2} \leq u^{\prime}(t) \leq L_{2}+\frac{1}{n}$ for $t \in\left[t_{0}-\varepsilon_{0}, t_{0}\right]$. Integrating (8) from $t_{0}-\varepsilon_{0}$ to t_{0} we have

$$
g\left(u^{\prime}\left(t_{0}\right)\right)-g\left(u^{\prime}\left(t_{0}-\varepsilon_{0}\right)\right)=\lambda \int_{t_{0}-\varepsilon_{0}}^{t_{0}}\left(F_{n}\left(u, u^{\prime}, u^{\prime}(t)\right)\right)(t) d t
$$

$$
\begin{aligned}
& =\lambda \int_{t_{0}-\varepsilon_{0}}^{t_{0}}\left(\left(F\left(\bar{u}, \tilde{u^{\prime}}, L_{2}\right)\right)(t)+\frac{p\left(u^{\prime}(t)\right)}{n}\right) d t \\
& \geq \frac{\lambda}{n} \int_{t_{0}-\varepsilon_{0}}^{t_{0}} p\left(u^{\prime}(t)\right) d t=\frac{\lambda \varepsilon_{0}}{n}>0
\end{aligned}
$$

which contradicts $g\left(u^{\prime}\left(t_{0}\right)\right)-g\left(u^{\prime}\left(t_{0}-\varepsilon_{0}\right)\right)=g\left(L_{2}\right)-g\left(L_{2}+\frac{1}{n}\right)<0$. Hence $u^{t}(t)<L_{3}+\frac{1}{n}$ for $t \in J$.

Let $u^{\prime}\left(T_{2}\right)=\min \left\{u^{\prime}(t) ; t \in J\right\} \leq L_{1}-\frac{1}{n}$ for some $T_{2} \in J$. Assume $T_{2} \in(\xi, T]$. Then there exist $t_{+} \in\left[\xi, T_{2}\right)$ and $\varepsilon_{+}>0$ such that $u^{\prime}\left(t_{+}\right)=L_{4}$, $u^{\prime}\left(t_{+}+\varepsilon_{+}\right)=L_{4}-\frac{1}{n}$ and $L_{4}-\frac{1}{n} \leq u^{\prime}(t) \leq L_{4}$ for $t \in\left[t_{+}, t_{+}+\varepsilon_{+}\right]$. Integrating (8) from t_{+}to $t_{+}+\varepsilon_{+}$we obtain

$$
\begin{gathered}
g\left(u^{\prime}\left(t_{+}+\varepsilon_{+}\right)\right)-g\left(u^{\prime}\left(t_{+}\right)\right)=\lambda \int_{t_{+}}^{t_{+}+\varepsilon_{+}}\left(F_{n}\left(u, u^{\prime}, u^{\prime}(t)\right)\right)(t) d t \\
=\lambda \int_{t_{+}}^{t_{+}+\varepsilon_{+}}\left(\left(F\left(\bar{u}, \tilde{u^{\prime}}, L_{4}\right)\right)(t)+\frac{p\left(u^{\prime}(t)\right)}{n}\right) d t \\
\geq \frac{\lambda}{n} \int_{t_{+}}^{t_{+}+\varepsilon_{+}} p\left(u^{\prime}(t)\right) d t=\frac{\lambda \varepsilon_{+}}{n}>0
\end{gathered}
$$

which contradicts $g\left(u^{\prime}\left(t_{+}+\varepsilon_{+}\right)\right)-g\left(u^{\prime}\left(t_{+}\right)\right)=g\left(L_{4}-\frac{1}{n}\right)-g\left(L_{4}\right)<0$. If $T_{2} \in[0, \xi)$ then there exist $t_{-} \in\left(T_{2}, \xi\right)$ and $\varepsilon_{-}>0$ such that $\left.u^{\prime}\left(t_{-}-\varepsilon_{-}\right)\right)=$ $L_{1}-\frac{1}{n}, u^{\prime}\left(t_{-}\right)=L_{1}, L_{1}-\frac{1}{n} \leq u^{\prime}(t) \leq L_{1}$ for $t \in\left[t_{-}-\varepsilon_{-}, t_{-}\right]$. Integrating (8) from $t_{-}-\varepsilon_{-}$to t_{-}we have

$$
\begin{gathered}
g\left(u^{\prime}\left(t_{-}\right)\right)-g\left(u^{\prime}\left(t_{-}-\varepsilon_{-}\right)\right)=\lambda \int_{t_{-}-\varepsilon_{-}}^{t_{-}}\left(F_{n}\left(u, u^{\prime}, u^{\prime}(t)\right)\right)(t) d t \\
=\lambda \int_{t_{-} \varepsilon_{-}}^{t_{-}}\left(\left(F\left(\bar{u}, \tilde{u^{\prime}}, L_{1}\right)\right)(t)+\frac{p\left(u^{\prime}(t)\right)}{n}\right) d t \\
\quad \leq \frac{\lambda}{n} \int_{t_{-}-\varepsilon_{-}}^{t_{-}} p\left(u^{\prime}(t)\right) d t=-\frac{\lambda \varepsilon_{-}}{n}<0
\end{gathered}
$$

which contradicts $g\left(u^{\prime}\left(t_{-}\right)\right)-g\left(u^{\prime}\left(t_{-}-\varepsilon_{-}\right)\right)=g\left(L_{1}\right)-g\left(L_{1}-\frac{1}{n}\right)>0$. Hence $\min \left\{u^{\prime}(t) ; t \in J\right\}>L_{1}-\frac{1}{n}$.

Let $A_{i}=\min \left\{A_{1}, A_{2}\right\}$. Then

$$
\begin{gathered}
|u(t)|=\left|u\left(t_{i}\right)+\int_{t_{i}}^{t} u^{\prime}(s) d s\right| \leq \min \left\{A_{1}, A_{2}\right\}+T \max \left\{-L_{1}+\frac{1}{n}, L_{3}+\frac{1}{n}\right\} \\
=\min \left\{A_{1}, A_{2}\right\}+\left(\max \left\{-L_{1}, L_{3}\right\}+\frac{1}{n}\right) T=U+\frac{T}{n}
\end{gathered}
$$

for $t \in J$. Hence the lemma is proved.

Corollary 2.2. (A priori estimates). Let assumptions $\left(H_{1}\right)-\left(H_{4}\right)$ be satisfied. Let u be a solution of $B V P\left(6_{n}\right)_{\lambda}$, (2) for some $n \geq n_{0}$ and $\lambda \in[0,1]$. Then

$$
\|u\| \leq U+\frac{T}{n}, \quad D-\frac{1}{n}<u^{\prime}(t)<H+\frac{1}{n}, \quad t \in J
$$

Proof. If $L_{1}<L_{4}, L_{2}<L_{3}$, the assertion follows from Lemma. 2.1. Let $L_{1}>L_{4}, L_{2}<L_{3}$. Then by the same procedure as in the proof of Lemma 2.1 we prove

$$
\|u\| \leq U+\frac{T}{n}, \quad L_{4}-\frac{1}{n}<u^{\prime}(t)<L_{3}+\frac{1}{n}, \quad t \in J
$$

Similarly for $L_{2}>L_{3}$.
Lemma 2.3. Let assumptions $\left(H_{1}\right)-\left(H_{4}\right)$ be satisfied with $L_{1}<L_{4}$ and $L_{2}<L_{3}$. Then for sufficiently large $n \in \mathbb{N} B V P\left(6_{n}\right)_{1}$, (2) has a solution u satisfying the inequalities

$$
\|u\| \leq U+\frac{T}{n}, \quad L_{1}-\frac{1}{n}<u^{\prime}(t)<L_{3}+\frac{1}{n}, \quad t \in J
$$

Proof. Fix $n \in \mathbb{N}, n \geq n_{0}$. Set $K=\max \{-D, H\}$,

$$
\begin{gathered}
G(v)=\max \{g(v),-g(-v)\} \quad \text { for } v \in[0, \infty) \\
\Omega=\left\{(x, y, z, b, c) ;(x, y, z, b, c) \in C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}\right. \\
\\
\|x\|<U+(1+\mu) T,\|y\|<K+1,\|z\|<K+1 \\
\\
|b|<U+(1+\mu) T,|c|<G(K+1)\}
\end{gathered}
$$

and define the operators

$$
\begin{gathered}
Z: \bar{\Omega} \rightarrow C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}, \\
W:[0,1] \times \bar{\Omega} \rightarrow C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}
\end{gathered}
$$

by

$$
\begin{gathered}
Z(x, y, z, b, c)=\left(b+g^{-1}(c) t, g^{-1}(c), g^{-1}(c), b-x\left(\alpha_{1}(x, y)\right), c-x\left(\alpha_{2}(x, y)\right)\right) \\
W(\lambda, x, y, z, b, c)=\lambda Z(x, y, z, b, c)
\end{gathered}
$$

We first prove that

$$
\begin{equation*}
D(I-Z, \Omega, 0) \neq 0 \tag{9}
\end{equation*}
$$

where " D " is the Leray-Schauder degree and I is the identical operator on the Banach space $C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}$. It is easy to check that W is a compact operator. Assume

$$
W\left(\lambda_{0}, x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right)=\left(x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right)
$$

for some $\left(\lambda_{0}, x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right) \in[0,1] \times \partial \Omega$. Then

$$
\begin{equation*}
x_{0}(t)=\lambda_{0}\left(b_{0}+g^{-1}\left(c_{0}\right) t\right), \quad y_{0}(t)=\lambda_{0} g^{-1}\left(c_{0}\right), \quad z_{0}(t)=\lambda_{0} g^{-1}\left(c_{0}\right) \tag{10}
\end{equation*}
$$

$$
\begin{align*}
b_{0} & =\lambda_{0}\left(b_{0}-x_{0}\left(\alpha_{1}\left(x_{0}, y_{0}\right)\right)\right) \tag{11}\\
c_{0} & =\lambda_{0}\left(c_{0}-x_{0}\left(\alpha_{2}\left(x_{0}, y_{0}\right)\right)\right) \tag{12}
\end{align*}
$$

From (10)-(12) we deduce that $y_{0}=x_{0}^{\prime}$,

$$
\begin{align*}
& b_{0}=\lambda_{0}\left(b_{0}-\lambda_{0} b_{0}-\lambda_{0} g^{-1}\left(c_{0}\right) \alpha_{1}\left(x_{0}, x_{0}^{\prime}\right)\right) \\
& c_{0}=\lambda_{0}\left(c_{0}-\lambda_{0} b_{0}-\lambda_{0} g^{-1}\left(c_{0}\right) \alpha_{2}\left(x_{0}, x_{0}^{\prime}\right)\right) \tag{13}
\end{align*}
$$

and so

$$
\begin{gather*}
b_{0}=-\frac{\lambda_{0}^{2} g^{-1}\left(c_{0}\right) \alpha_{1}\left(x_{0}, x_{0}^{\prime}\right)}{1-\lambda_{0}+\lambda_{0}^{2}} \tag{14}\\
\left(1-\lambda_{0}\right)\left(b_{0}-c_{0}\right)=\lambda_{0}^{2} g^{-1}\left(c_{0}\right)\left(\alpha_{2}\left(x_{0}, x_{0}^{\prime}\right)-\alpha_{1}\left(x_{0}, x_{0}^{\prime}\right)\right) \tag{15}
\end{gather*}
$$

If $\lambda_{0}=0$ then $\left(x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right)=(0,0,0,0,0)$. Assume $\lambda_{0}=1$. Then (cf. (13)) $b_{0}=-g^{-1}\left(c_{0}\right) \alpha_{1}\left(x_{0}, x_{0}^{\prime}\right), b_{0}=-g^{-1}\left(c_{0}\right) \alpha_{2}\left(x_{0}, x_{0}^{\prime}\right)$, and consequently $0=g^{-1}\left(c_{0}\right)\left(\alpha_{1}\left(x_{0}, x_{0}^{\prime}\right)-\alpha_{2}\left(x_{0}, x_{0}^{\prime}\right)\right)$. Since $\alpha_{2}\left(x_{0}, x_{0}^{\prime}\right)-\alpha_{1}\left(x_{0}, x_{0}^{\prime}\right)>0$ by $\left(H_{1}\right), c_{0}=0$ and (10) and (14) show that ($\left.x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right)=(0,0,0,0,0)$. Let $\lambda_{0} \in(0,1)$. Assume $c_{0} \neq 0$. Then from (14) and (15) we obtain that

$$
-\left(1-\lambda_{0}\right)\left(\frac{c_{0}}{g^{-1}\left(c_{0}\right)}+\frac{\lambda_{0}^{2} \alpha_{1}\left(x_{0}, x_{0}^{\prime}\right)}{1-\lambda_{0}+\lambda_{0}^{2}}\right)=\lambda_{0}^{2}\left(\alpha_{2}\left(x_{0}, x_{0}^{\prime}\right)-\alpha_{1}\left(x_{0}, x_{0}^{\prime}\right)\right)
$$

Since $-\left(1-\lambda_{0}\right)\left(\frac{c_{0}}{g^{-1}\left(c_{0}\right)}+\frac{\lambda_{0}^{2} \alpha_{1}\left(x_{0}, x_{0}^{\prime}\right)}{1-\lambda_{0}+\lambda_{0}^{2}}\right)<0$ and $\lambda_{0}^{2}\left(\alpha_{2}\left(x_{0}, x_{0}^{\prime}\right)-\alpha_{1}\left(x_{0}, x_{0}^{\prime}\right)\right)>0$, we obtain a contradiction. Hence $c_{0}=0$, and so ($\left.x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right)=(0,0,0$, 0,0).

We have proved $\left(x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right)=(0,0,0,0,0) \notin \partial \Omega$, a contradiction. By the theory of homotopy (see e.g. [D] and [M])

$$
\begin{gathered}
D(I-Z, \Omega, 0)=D(I-W(1, \cdot, \cdot \cdot, \cdot \cdot), \Omega, 0) \\
=D(I-W(0, \cdot, \cdot, \cdot, \cdot \cdot), \Omega, 0)=D(I, \Omega, 0)=1,
\end{gathered}
$$

which proves (9).
Let the operators

$$
\begin{gathered}
Z_{1}: \bar{\Omega} \rightarrow C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}, \\
W_{1}:[0,1] \times \bar{\Omega} \rightarrow C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}
\end{gathered}
$$

be given by

$$
\begin{gathered}
Z_{1}(x, y, z, b, c)=Z(x, y, z, b, c)+\left(0,0,0, p_{1}(x, y), p_{2}(x, y)\right) \\
W_{1}(\lambda, x, y, z, b, c)=Z(x, y, z, b, c)+\lambda\left(0,0,0, p_{1}(x, y), p_{2}(x, y)\right)
\end{gathered}
$$

Then W_{1} is a compact operator and $W_{1}(1, \cdot, \cdot, \cdot, \cdot, \cdot)=Z_{1}(\cdot, \cdot, \cdot, \cdot, \cdot)$. Assume

$$
W_{1}\left(\lambda_{1}, x_{1}, y_{1}, z_{1}, b_{1}, c_{1}\right)=\left(x_{1}, y_{1}, z_{1}, b_{1}, c_{1}\right)
$$

for a $\left(\lambda_{1}, x_{1}, y_{1}, z_{1}, b_{1}, c_{1}\right) \in[0,1] \times \partial \Omega$. Then

$$
\begin{gathered}
x_{1}(t)=b_{1}+g^{-1}\left(c_{1}\right) t, \quad y_{1}(t)=g^{-1}\left(c_{1}\right), \quad z_{1}(t)=g^{-1}\left(c_{1}\right) \\
x_{1}\left(\alpha_{1}\left(x_{1}, x_{1}^{\prime}\right)\right)=\lambda_{1} p_{1}\left(x_{1}, x_{1}^{\prime}\right), \quad x_{1}\left(\alpha_{2}\left(x_{1}, x_{1}^{\prime}\right)\right)=\lambda_{1} p_{2}\left(x_{1}, x_{1}^{\prime}\right)
\end{gathered}
$$

and so
$b_{1}+g^{-1}\left(c_{1}\right) \alpha_{1}\left(x_{1}, x_{1}^{\prime}\right)=\lambda_{1} p_{1}\left(x_{1}, x_{1}^{\prime}\right), \quad b_{1}+g^{-1}\left(c_{1}\right) \alpha_{2}\left(x_{1}, x_{1}^{\prime}\right)=\lambda_{1} p_{2}\left(x_{1}, x_{1}^{\prime}\right)$.
Thus (cf. $\left(H_{1}\right),\left(H_{2}\right)$ and $\left.\left(H_{4}\right)\right)$

$$
\begin{gathered}
\left|g^{-1}\left(c_{1}\right)\right|\left(\alpha_{2}\left(x_{1}, x_{1}^{\prime}\right)-\alpha_{1}\left(x_{1}, x_{1}^{\prime}\right)\right)=\lambda_{1}\left|p_{1}\left(x_{1}, x_{1}^{\prime}\right)-p_{2}\left(x_{1}, x_{1}^{\prime}\right)\right| \\
\leq \mu\left(\alpha_{2}\left(x_{1}, x_{1}^{\prime}\right)-\alpha_{1}\left(x_{1}, x_{1}^{\prime}\right)\right)
\end{gathered}
$$

which yields $\left|g^{-1}\left(c_{1}\right)\right| \leq \mu$. Whence

$$
\left|b_{1}\right| \leq \mu T+\min \left\{A_{1}, A_{2}\right\} \leq U
$$

Consequently,

$$
\left\|x_{1}\right\| \leq U+\mu T, \quad\left\|y_{1}\right\| \leq \mu, \quad\left\|z_{1}\right\| \leq \mu, \quad\left|b_{1}\right| \leq U, \quad\left|c_{1}\right| \leq G(\mu)
$$

which contradicts $\left(x_{1}, y_{1}, z_{1}, b_{1}, c_{1}\right) \in \partial \Omega$. Thus (cf. (9))

$$
\begin{gather*}
D\left(I-Z_{1}, \Omega, 0\right)=D\left(I-W_{1}(1, \cdot, \cdot, \cdot, \cdot), \Omega, 0\right) \\
=D\left(I-W_{1}(0,, \cdot, \cdot \cdot \cdot, \cdot \cdot), \Omega, 0\right)=D(I-Z, \Omega, 0) \neq 0 . \tag{16}
\end{gather*}
$$

Finally define

$$
\begin{aligned}
& S: \bar{\Omega} \rightarrow C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2} \\
& V:[0,1] \times \bar{\Omega} \rightarrow C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}
\end{aligned}
$$

by

$$
\begin{aligned}
S(x, y, z, b, c)= & \left(b+\int_{0}^{t} g^{-1}\left(c+\int_{0}^{s}\left(F_{n}(x, y, z(\nu))\right)(\nu) d \nu\right) d s\right. \\
& g^{-1}\left(c+\int_{0}^{t}\left(F_{n}(x, y, z(s))\right)(s) d s\right) \\
& g^{-1}\left(c+\int_{0}^{t}\left(F_{n}(x, y, z(s))\right)(s) d s\right) \\
& \left.b-x\left(\alpha_{1}(x, y)\right)+p_{1}(x, y), c-x\left(\alpha_{2}(x, y)\right)+p_{2}(x, y)\right)
\end{aligned}
$$

$$
\begin{aligned}
V(\lambda, x, y, z, b, c)= & \left(b+\int_{0}^{t} g^{-1}\left(c+\lambda \int_{0}^{s}\left(F_{n}(x, y, z(\nu))\right)(\nu) d \nu\right) d s\right. \\
& g^{-1}\left(c+\lambda \int_{0}^{t}\left(F_{n}(x, y, z(s))\right)(s) d s\right) \\
& g^{-1}\left(c+\lambda \int_{0}^{t}\left(F_{n}(x, y, z(s))\right)(s) d s\right) \\
& \left.b-x\left(\alpha_{1}(x, y)\right)+p_{1}(x, y), c-x\left(\alpha_{2}(x, y)\right)+p_{2}(x, y)\right)
\end{aligned}
$$

Obviously, if (x, y, z, b, c) is a fixed point of the operator S, then x is a solution of BVP $\left(6_{n}\right)_{1}$, (2) and $x^{\prime}=y=z, b=x(0), c=g\left(x^{\prime}(0)\right)$. Conversely, if x is a solution of BVP $\left(6_{n}\right)_{1}$, (2) and $\left(x, x^{\prime}, x^{\prime}, x(0), g\left(x^{\prime}(0)\right)\right) \in \bar{\Omega}$, then $\left(x, x^{\prime}, x^{\prime}, x(0), g\left(x^{\prime}(0)\right)\right)$ is a fixed point of S.

To prove that V is a compact operator, let $\left\{\left(\lambda_{j}, x_{j}, y_{j}, z_{j}, b_{j}, c_{j}\right)\right\} \subset[0,1] \times$ $\bar{\Omega}$. Set

$$
\left(u_{j}, v_{j}, w_{j}, B_{j}, C_{j}\right)=V\left(\lambda_{j}, x_{j}, y_{j}, z_{j}, b_{j}, c_{j}\right), \quad j \in \mathbb{N}
$$

and

$$
P(v)=\max \left\{g^{-1}(v),-g^{-1}(-v)\right\}, \quad v \in[0, \infty)
$$

Then

$$
\begin{gathered}
u_{j}(t)=b_{j}+\int_{0}^{t} g^{-1}\left(c_{j}+\lambda_{j} \int_{0}^{s}\left(F_{n}\left(x_{j}, y_{j}, z_{j}(\nu)\right)\right)(\nu) d \nu\right) d s \\
v_{j}(t)=w_{j}(t)=g^{-1}\left(c_{j}+\lambda_{j} \int_{0}^{t}\left(F_{n}\left(x_{j}, y_{j}, z_{j}(s)\right)\right)(s) d s\right)\left(=u_{j}^{\prime}(t)\right)
\end{gathered}
$$

$B_{j}=b_{j}-x_{j}\left(\alpha_{1}\left(x_{j}, x_{j}^{\prime}\right)\right)+p_{1}\left(x_{j}, x_{j}^{\prime}\right), \quad C_{j}=c_{j}-x_{j}\left(\alpha_{2}\left(x_{j}, x_{j}^{\prime}\right)\right)+p_{2}\left(x_{j}, x_{j}^{\prime}\right)$, and from the property (c) of F and (5), it follows that there exists $k \in L_{1}(J)$ such that
(17) $\quad\left|\left(F_{n}\left(x_{j}, y_{j}, z_{j}(t)\right)\right)(t)\right| \leq k(t) \quad$ for a.e. $t \in J$ and each $j \in \mathbb{N}$.

Consequently,

$$
\begin{gathered}
\left|u_{j}(t)\right| \leq U+(1+\mu) T+T P\left(G(K+1)+\int_{0}^{T} k(t) d t\right), \\
\left|u_{j}^{\prime}(t)\right|=\left|v_{j}(t)\right|=\left|w_{j}(t)\right| \leq P\left(G(K+1)+\int_{0}^{T} k(t) d t\right), \\
\left|g\left(u_{j}^{\prime}\left(t_{1}\right)\right)-g\left(u_{j}^{\prime}\left(t_{2}\right)\right)\right|=\left|g\left(v_{j}\left(t_{1}\right)\right)-g\left(v_{j}\left(t_{2}\right)\right)\right| \leq\left|\int_{t_{1}}^{t_{2}} k(t) d t\right| \\
\left|B_{j}\right| \leq 2(U+(1+\mu) T)+A_{1}, \quad\left|C_{j}\right| \leq G(K+1)+U+(1+\mu) T+A_{2}
\end{gathered}
$$

for $t, t_{1}, t_{2} \in J$ and $j \in \mathbb{N}$. Going if necessary to a subseguence, we can assume, by the Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem, that $\left\{\left(u_{j}, v_{j}, w_{j}, B_{j}, C_{j}\right)\right\}$ is convergent in $C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}$. Since V is continuous (see the property (b) of F and the definition of F_{n}), the compactness of V is proved.

Assume

$$
V\left(\lambda_{0}, x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right)=\left(x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right)
$$

for some $\left(\lambda_{0}, x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right) \in[0,1] \times \partial \Omega$. Then x_{0} is a solution of BVP $\left(6_{n}\right)_{\lambda_{0}},(2)$ and $x_{0}^{\prime}=y_{0}=z_{0}, b_{0}=x_{0}(0), c_{0}=g\left(x_{0}^{\prime}(0)\right)$. By Lemma 2.1, $\left\|x_{0}\right\| \leq U+\frac{T}{n}, L_{1}-\frac{1}{n}<x_{0}^{\prime}(t)<L_{3}+\frac{1}{n}$ for $t \in J$, and so

$$
\left\|y_{0}\right\|=\left\|z_{0}\right\|<K+1, \quad\left|b_{0}\right| \leq U+\frac{T}{n}, \quad\left|c_{0}\right|<G(K+1)
$$

which contradicts $\left(x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right) \in \partial \Omega$.
By the theory of homotopy (cf. (16))

$$
\begin{gathered}
D(I-S, \Omega, 0)=D(I-V(1, \cdot, \cdot, \cdot \cdot \cdot \cdot \cdot), \Omega, 0) \\
=D(I-V(0, \cdot, \cdot, \cdot \cdot \cdot \cdot \cdot \cdot), \Omega, 0)=D\left(I-Z_{1}, \Omega, 0\right) \neq 0
\end{gathered}
$$

Consequently, there exists a fixed point $(u, v, z, b, c) \in \Omega$ of the operator S. Then u is a solution of BVP $\left(6_{n}\right)_{1}$, (2) and Lemma 2.1 shows that $\|u\| \leq U+\frac{T}{n}$, $L_{1}-\frac{1}{n}<u^{\prime}(t)<L_{3}+\frac{1}{n}$ for $t \in J$.

Corollary 2.4. Let assumptions $\left(H_{1}\right)-\left(H_{4}\right)$ be satisfied. Then for sufficiently large $n \in \mathbb{N} B V P\left(6_{n}\right)_{1}$, (2) has a solution u satisfying

$$
\|u\| \leq U+\frac{T}{n}, \quad D-\frac{1}{n}<u^{\prime}(t)<H+\frac{1}{n}, \quad t \in J
$$

Proof. If $L_{1}<L_{4}, L_{2}<L_{3}$, the assertion follows from Lemma 2.3. Let $L_{1}>L_{4}, L_{2}<L_{3}$. By the same arguments as in the proof of Lemma 2.3 we prove that for sufficiently large $n \in \mathbb{N}$ BVP $\left(6_{n}\right)_{1}$, (2) has a solution u such that

$$
\|u\| \leq U+\frac{T}{n}, \quad L_{4}-\frac{1}{n}<u^{\prime}(t)<L_{3}+\frac{1}{n}, \quad t \in J
$$

Similarly for $L_{2}>L_{3}$.
ThEOREM 2.5. Let assumptions $\left(H_{1}\right)-\left(H_{4}\right)$ be satisfied. Then BVP (1), (2) has a solution u and the estimates

$$
\begin{equation*}
\|u\| \leq U, \quad D \leq u^{\prime}(t) \leq H \tag{18}
\end{equation*}
$$

for $t \in J$ are fulfilled.
Proof. By Corollary 2.4, BVP $\left(6_{n}\right)_{1}$, (2) has a solution u_{n} for sufficiently large $n \in \mathbb{N}$ and

$$
\left\|u_{n}\right\| \leq U+\frac{T}{n}, \quad D-\frac{1}{n} \leq u_{n}^{\prime}(t) \leq H+\frac{1}{n}, \quad t \in J
$$

Moreover, the property (c) of F implies that there is $k_{1} \in L_{1}(J)$ such that $\mid\left(F_{n}\left(u_{n}, u_{n}^{\prime}, u_{n}^{\prime}(t)\right)(t) \mid \leq k_{1}(t)\right.$ for a.e. $t \in J$, and so

$$
\left|g\left(u_{n}^{\prime}\left(t_{1}\right)\right)-g\left(u_{n}^{\prime}\left(t_{2}\right)\right)\right| \leq\left|\int_{t_{1}}^{t_{2}} k_{1}(t) d t\right|
$$

for $t_{1}, t_{2} \in J$ and sufficiently large $n \in \mathbb{N}$. Thus $\left\{u_{n}\right\},\left\{u_{n}^{\prime}\right\}$ are bounded in $C^{0}(J),\left\{u_{n}^{\prime}(t)\right\}$ is equicontinuous on J since g is a continuous and increasing function. By the Arzelà-Ascoli theorem, we can choose a subsequence $\left\{u_{k_{n}}\right\}$ converging (in $C^{1}(J)$) to u. One can see that u fulfils (2) and (18), and (see the property (b) of F)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(F_{k_{n}}\left(u_{k_{n}}, u_{k_{n}}^{\prime}, u_{k_{n}}^{\prime}(t)\right)\right)(t) \\
& =\lim _{n \rightarrow \infty}\left(\left(F\left(\bar{u}_{k_{n}}, \tilde{u}_{k_{n}},\left[u_{k_{n}^{\prime}}^{\prime}(t)\right]_{k_{n}}\right)\right)(t)+\frac{p\left(u_{k_{n}}^{\prime}(t)\right)}{k_{n}}\right) \\
& =\left(F\left(u, u^{\prime}, u^{\prime}(t)\right)\right)(t)
\end{aligned}
$$

in $L_{1}(J)$. Thus, u is a solution of BVP (1), (2) satisfying inequalities (18).
Example 2.1. Let $J=[0,3]$ and $h: \mathbb{R} \rightarrow \mathbb{R}, F_{1}: C^{0}(J) \times C^{0}(J) \rightarrow$ $L_{1}(J)$ be continuous and $h\left(L_{i}\right)=0(i=1,2,3,4)$ where $L_{1}<L_{4} \leq-2$, $2 \leq L_{2}<L_{3}$. Consider BVP

$$
\begin{align*}
\left(g\left(x^{\prime}(t)\right)\right)^{\prime} & =h\left(x^{\prime}(t)\right)\left(F_{1}\left(x, x^{\prime}\right)\right)(t), \tag{19}\\
x\left(\frac{2|x(\xi)|}{1+x^{2}(\xi)}\right) & =\sin \left(\int_{0}^{3} \sqrt{|x(t)|+\left(x^{\prime}(t)\right)^{2}} d t\right), \\
x\left(3-\left|\sin x^{\prime}(\varepsilon)\right|\right) & =\cos x(\nu),
\end{align*}
$$

where $\xi, \varepsilon, \nu \in J$. Applying Theorem 2.5 (with $F(x, y, a)=h(a) F_{1}(x, y)$, $\mu=2, A_{1}=A_{2}=1, \alpha_{1}(x, y)=\frac{2|x(\xi)|}{1+x^{2}(\xi)}, \alpha_{2}(x, y)=3-|\sin y(\varepsilon)|$, $\left.p_{1}(x, y)=\sin \left(\int_{0}^{3} \sqrt{|x(t)|+(y(t))^{2}} d t\right), p_{2}(x, y)=\cos x(\nu),\right)$, BVP (19), (20) has a solution u satisfying the inequalities

$$
\|u\| \leq 1+3 \max \left\{-L_{1}, L_{3}\right\}, \quad L_{1} \leq u^{\prime}(t) \leq L_{3}
$$

for $t \in J$.

3. BVP (1), (3)

In $[\mathrm{RS}]$ problems for second order functional differential equations with boundary conditions $\alpha(x)=0, x^{\prime}(1)=0$ or $\alpha(x)=0, x^{\prime}(0)=0$ were also considered. Here $\alpha: C^{0}([0,1]) \rightarrow \mathbb{R}$ is a linear bounded and increasing (i.e. $x, y \in C^{0}([0,1]), x(t)<y(t)$ for $\left.t \in[0,1] \Rightarrow \alpha(x)<\alpha(y)\right)$ functional. We observe that $\alpha(x)=0$ for an $x \in C^{0}([0,1])$ implies $x(\xi)=0$ with a $\xi \in[0,1]$. The authors proved existence results for the above BVPs under assumptions which are of the type of our assumption (H_{6}) but only with two constants
K_{1}, K_{2} or K_{3}, K_{4}. We observe that these assumptions are not sufficient for existence results of BVP (1), (3) as follows from Example 3.1.

EXAMPLE 3.1. Consider the differential equation $x^{\prime \prime}=\varepsilon x^{\prime 3}$ on $J=[0,2]$ with the boundary conditions $x\left(\frac{3}{4}\right)=0, x^{\prime}(1)=1$. Here $\varepsilon= \pm 1$. This BVP is the special case of BVP (1), (3) (with $F(x, y, a)=\varepsilon a^{3}, \beta_{1}(x, y)=\frac{3}{4}$, $\left.\beta_{2}(x, y)=1, r_{1}(x, y)=0, r_{2}(x, y)=1\right)$. Clearly, $(F(x, y,-2))(t)=-8 \varepsilon$, $(F(x, y, 2))(t)=8 \varepsilon$ for $t \in J$ and $x, y \in C^{0}(J)$. But our BVPs have no solution since for $\varepsilon=-1$ (resp. $\varepsilon=1$) the unique solution is defined only on the interval $\left(\frac{1}{2}, 2\right]$ (resp. $\left[0, \frac{3}{2}\right)$).

The proofs of existence results for BVP (1), (3) are very similar to those for BVP (1), (2). Let assumptions (H_{5}) and (H_{6}) be satisfied and let $\left|K_{4}-K_{1}\right|>$ $\frac{2}{n_{0}},\left|K_{3}-K_{2}\right|>\frac{2}{n_{0}}$ for an $n_{0} \in \mathbb{N}$. Set

$$
\begin{aligned}
& E_{1}^{*}=K_{1}+\frac{\operatorname{sign}\left(K_{4}-K_{1}\right)-1}{2}\left(K_{1}-K_{4}\right), E_{2}^{*}=K_{2}+\frac{\operatorname{sign}\left(K_{3}-K_{2}\right)-1}{2}\left(K_{2}-K_{3}\right), \\
& E_{3}^{*}=K_{3}-\frac{\operatorname{sign}\left(K_{3}-K_{2}\right)-1}{2}\left(K_{2}-K_{3}\right), E_{4}^{*}=K_{4}-\frac{\operatorname{sign}\left(K_{1}-K_{1}\right)-1}{2}\left(K_{1}-K_{4}\right) .
\end{aligned}
$$

Then $E_{1}^{*}<E_{4}^{*} \leq-N, N \leq E_{2}^{*}<E_{3}^{*}$ and $D_{*}=E_{1}^{*}, H_{*}=E_{3}^{*}$. For each $n \geq n_{0}, x, y \in C^{0}(J)$ and $a \in \mathbb{R}$, define $x_{*}, \hat{y} \in C^{0}(J)$ and $\{a\}_{n} \in \mathbb{R}$ by

$$
\begin{gathered}
x_{*}(t)= \begin{cases}U_{*} & \text { for } x(t)>U_{*} \\
x(t) & \text { for }|x(t)| \leq U_{*} \\
-U_{*} & \text { for } x(t)<-U_{*},\end{cases} \\
\hat{y}(t)= \begin{cases}H_{*} & \text { for } y(t)>H_{*} \\
y(t) & \text { for } D_{*} \leq y(t) \leq H_{*} \\
D_{*} & \text { for } y(t)<D_{*},\end{cases} \\
\{a\}_{n}= \begin{cases}E_{3}^{*} & \text { for } a \geq E_{3}^{*} \\
a & \text { for } E_{2}^{*}+\frac{2}{n}<a<E_{3}^{*} \\
-E_{2}^{*}+2 a-\frac{2}{n} & \text { for } E_{2}^{*}+\frac{1}{n}<a \leq E_{2}^{*}+\frac{2}{n} \\
E_{2}^{*} & \text { for } E_{2}^{*}<a \leq E_{2}^{*}+\frac{1}{n} \\
E_{4}^{*} & \text { for } E_{4}^{*} \leq a \leq E_{2}^{*} \\
-E_{4}^{*}+2 a+\frac{2}{n} & \text { for } E_{4}^{*}-\frac{1}{n} \leq a<E_{4}^{*} \\
a & \text { for } E_{1}^{*} \leq \frac{2}{n} \leq a<E_{4}^{*}-\frac{1}{n} \\
E_{1}^{*} & \text { for } a<E_{1}^{*} .\end{cases}
\end{gathered}
$$

Let $l: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with the property:

$$
|l(v)| \leq 1 \quad \text { for } v \in \mathbb{R},
$$

$$
\begin{align*}
& l(v)=1 \quad \text { for } v \in\left[K_{4}-\frac{1}{n_{0}}, K_{4}\right] \cup\left[K_{2}, K_{2}+\frac{1}{n_{0}}\right], \tag{21}\\
& l(v)=-1 \quad \text { for } v \in\left[K_{1}-\frac{1}{n_{0}}, K_{1}\right] \cup\left[K_{3}, K_{3}+\frac{1}{n_{0}}\right] .
\end{align*}
$$

Set

$$
\left(F_{n}^{*}(x, y, a)\right)(t)=\left(F\left(x_{*}, \hat{y},\{a\}_{n}\right)\right)(t)+\frac{l(a)}{n}
$$

for $(x, y, a) \in C^{0}(J) \times C^{0}(J) \times \mathbb{R}$ and $n \in \mathbb{N}, n \geq n_{0}$.
Consider the two-parameter family of the functional differential equations

$$
\left(g\left(x^{\prime}(t)\right)\right)^{\prime}=\lambda\left(F_{n}^{*}\left(x, x^{\prime}, x^{\prime}(t)\right)\right)(t), \quad \lambda \in[0,1], n \geq n_{0} . \quad\left(22_{n}\right)_{\lambda}
$$

Lemma 3.1. (A priori estimates). Let assumptions $\left(H_{5}\right)$ and $\left(H_{6}\right)$ be satisfied with $K_{1}<K_{4}$ and $K_{2}<K_{3}$ and let BVP $\left(22_{n}\right)_{\lambda}$, (3) has a solution u for some $\lambda \in[0,1]$ and $n \geq n_{0}$. Then

$$
\|u\| \leq U_{*}+\frac{T}{n}, \quad K_{1}-\frac{1}{n}<u^{\prime}(t)<K_{3}+\frac{1}{n}
$$

for $t \in J$.
Proof. Set $T_{1}=\beta_{1}\left(u, u^{\prime}\right), T_{2}=\beta_{2}\left(u, u^{\prime}\right)$. By $\left(H_{5}\right)$,

$$
\begin{equation*}
\left|u^{\prime}\left(T_{2}\right)\right| \leq N \tag{23}
\end{equation*}
$$

If $\lambda=0, g\left(u^{\prime}(t)\right) \equiv$ const.; hence (cf. (23)) $\left|u^{\prime}(t)\right| \leq N$ for $t \in J$. Let $u^{\prime}(\xi)=\max \left\{u^{\prime}(t) ; t \in J\right\} \geq K_{3}+\frac{1}{n}$ with a $\xi \in J$. If $\xi \in\left(T_{2}, T\right]$, then there exist $t_{0} \in\left(T_{2}, \xi\right)$ and $\varepsilon_{0}>0$ such that $u^{\prime}\left(t_{0}\right)=K_{3}, u^{\prime}\left(t_{0}+\varepsilon_{0}\right)=K_{3}+\frac{1}{n}$ and $K_{3} \leq u^{\prime}(t) \leq K_{3}+\frac{1}{n}$ for $t \in\left[t_{0}, t_{0}+\varepsilon_{0}\right]$. Integrating the equality

$$
\left(g\left(u^{\prime}(t)\right)^{\prime}=\lambda\left(F_{n}^{*}\left(u, u^{\prime}, u^{\prime}(t)\right)\right)(t)\right.
$$

for a.e. $t \in J$ from t_{0} to $t_{0}+\varepsilon_{0}$ we obtain

$$
\begin{gathered}
g\left(u^{\prime}\left(t_{0}+\varepsilon_{0}\right)\right)-g\left(u^{\prime}\left(t_{0}\right)\right)=\lambda \int_{t_{0}}^{t_{0}+\varepsilon_{0}}\left(F_{n}^{*}\left(u, u^{\prime}, u^{\prime}(t)\right)\right)(t) d t \\
=\lambda \int_{t_{0}}^{t_{0}+\varepsilon_{0}}\left(\left(F\left(u_{*}, \widehat{u^{\prime}}, K_{3}\right)\right)(t)+\frac{l\left(u^{\prime}(t)\right)}{n}\right) d t \\
\leq \frac{\lambda}{n} \int_{t_{0}}^{t_{0}+\varepsilon_{0}} l\left(u^{\prime}(t)\right) d t=-\frac{\lambda \varepsilon_{0}}{n}<0
\end{gathered}
$$

which contradicts $g\left(u^{\prime}\left(t_{0}+\varepsilon_{0}\right)\right)-g\left(u^{\prime}\left(t_{0}\right)\right)=g\left(K_{3}+\frac{1}{n}\right)-g\left(K_{3}\right)>0$. The next part of the proof of the inequalities $K_{1}-\frac{1}{n}<u^{\prime}(t)<K_{3}+\frac{1}{n}, t \in J$, is similar to that of Lemma 2.1 (with $L_{i}=K_{i}(i=1,2,3,4)$ and $\left.\mu=N\right)$ and therefore it is omitted.

Since $|u(t)|=\left|u\left(T_{1}\right)+\int_{T_{1}}^{t} u^{\prime}(s) d s\right| \leq\left|r_{1}\left(u, u^{\prime}\right)\right|+\left|\int_{T_{1}}^{t}\right| u^{\prime}(s)|d s| \leq M+$ $T \max \left\{-K_{1}+\frac{1}{n}, K_{3}+\frac{1}{n}\right\}=M+\left(\max \left\{-K_{1}, K_{3}\right\}+\frac{1}{n}\right) T$ for $t \in J$, we have $\|u\| \leq U_{*}+\frac{T}{n}$.

From Lemma 3.1 and applying the same procedure as in the proof of Corollary 2.2 we obtain the following corollary.

Corollary 3.2. (A priori estimates). Let assumptions $\left(H_{5}\right)$ and (H_{6}) be satisfied. Let u be a solution of $B V P\left(22_{n}\right)_{\lambda}$; (3) for some $n \geq n_{0}$ and $\lambda \in[0,1]$. Then

$$
\|u\| \leq U_{*}+\frac{T}{n}, \quad D_{*}-\frac{1}{n}<u^{\prime}(t)<H_{*}+\frac{1}{n}
$$

for $t \in J$.
Lemma 3.3. Let assumptions $\left(H_{5}\right)$ and $\left(H_{6}\right)$ be satisfied with $K_{1}<K_{4}$ and $K_{2}<K_{3}$. Then for sufficiently large $n \in \mathbb{N} B V P\left(22_{n}\right)_{1}$, (3) has a solution u satisfying

$$
\|u\| \leq U_{*}+\frac{T}{n}, \quad K_{1}-\frac{1}{n}<u^{\prime}(t)<K_{3}+\frac{1}{n}, \quad t \in J
$$

Proof. Fix $n \in \mathbb{N}, n \geq n_{0}$. Set $K_{*}=\max \left\{-D_{*}, H_{*}\right\}$,

$$
\begin{aligned}
& G(v)=\max \{g(v),-g(-v)\}, \quad P(v)=\max \left\{g^{-1}(v),-g^{-1}(-v)\right\}, \quad v \in[0, \infty) \\
& \Omega=\left\{(x, y, z, b, c) ;(x, y, z, b, c) \in C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}\right. \\
&\|x\|<2 U_{*}+1,\|y\|<K_{*}+1,\|z\|<K_{*}+1 \\
&\left.|b|<2 U_{*}+1,|c|<G\left(K_{*}+1\right)\right\}
\end{aligned}
$$

and define the operators

$$
\begin{gathered}
Z_{*}: \bar{\Omega} \rightarrow C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}, \\
W_{*}:[0,1] \times \bar{\Omega} \rightarrow C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}
\end{gathered}
$$

by

$$
\begin{gathered}
Z_{*}(x, y, z, b, c)=\left(b+g^{-1}(c) t, g^{-1}(c), g^{-1}(c), b-x\left(\beta_{1}(x, y)\right), c-x^{\prime}\left(\beta_{2}(x, y)\right)\right) \\
W_{*}(\lambda, x, y, z, b, c)=\lambda Z_{*}(x, y, z, b, c)
\end{gathered}
$$

It can be shown without difficulties that W_{*} is a compact operator. Assume

$$
W_{*}\left(\lambda_{0}, x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right)=\left(x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right)
$$

for some $\left(\lambda_{0}, x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right) \in[0,1] \times \partial \Omega$. Then

$$
\begin{gathered}
x_{0}(t)=\lambda_{0}\left(b_{0}+g^{-1}\left(c_{0}\right) t\right), \quad x_{0}^{\prime}(t)=y_{0}(t)=z_{0}(t)=\lambda_{0} g^{-1}\left(c_{0}\right) \\
b_{0}=\lambda_{0}\left(b_{0}-x_{0}\left(\beta_{1}\left(x_{0}, x_{0}^{\prime}\right)\right)\right), \quad c_{0}=\lambda_{0}\left(c_{0}-x_{0}^{\prime}\left(\beta_{2}\left(x_{0}, x_{0}^{\prime}\right)\right)\right)
\end{gathered}
$$

and so

$$
\begin{gather*}
b_{0}=\lambda_{0}\left(b_{0}-\lambda_{0} b_{0}-\lambda_{0} g^{-1}\left(c_{0}\right) \beta_{1}\left(x_{0}, x_{0}^{\prime}\right)\right) \tag{24}\\
c_{0}=\lambda_{0}\left(c_{0}-\lambda_{0} g^{-1}\left(c_{0}\right)\right)
\end{gather*}
$$

Thus

$$
\left(1-\lambda_{0}\right) c_{0}=-\lambda_{0}^{2} g^{-1}\left(c_{0}\right)
$$

If $\lambda_{0} \in\{0,1\}$ then $c_{0}=0$. Assume $\lambda_{0} \in(0,1)$. If $c_{0} \neq 0$ then $\frac{c_{0}}{g^{-1}\left(c_{0}\right)}=$ $-\frac{\lambda_{0}^{2}}{1-\lambda_{0}}$, which contradicts $\frac{c_{0}}{g^{-1}\left(c_{0}\right)}>0,-\frac{\lambda_{0}^{2}}{1-\lambda_{0}}<0$. Hence $c_{0}=0$, and consequently (cf. (24)) $b_{0}\left(1-\lambda_{0}+\lambda_{0}^{2}\right)=0$ which gives $b_{0}=0$ since $1-\lambda_{0}+\lambda_{0}^{2}>$ 0 . We have proved: $\left(x_{0}, y_{0}, z_{0}, b_{0}, c_{0}\right)=(0,0,0,0,0)$, a contradiction. By the theory of homotopy

$$
\begin{align*}
& D\left(I-Z_{*}, \Omega, 0\right)=D\left(I-W_{*}(1, \cdot, \cdot, \cdot, \cdot \cdot), \Omega, 0\right) \\
& =D\left(I-W_{*}(0, \cdot, \cdot \cdot \cdot, \cdot), \Omega, 0\right)=D(I, \Omega, 0)=1 \tag{25}
\end{align*}
$$

Let the operators

$$
\begin{gathered}
Z_{* 1}: \bar{\Omega} \rightarrow C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}, \\
W_{* 1}:[0,1] \times \bar{\Omega} \rightarrow C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}
\end{gathered}
$$

be given by

$$
\begin{gathered}
Z_{* 1}(x, y, z, b, c)=Z_{*}(x, y, z, b, c)+\left(0,0,0, r_{1}(x, y), r_{2}(x, y)\right) \\
W_{* 1}(\lambda, x, y, z, b, c)=Z_{*}(x, y, z, b, c)+\lambda\left(0,0,0, r_{1}(x, y), r_{2}(x, y)\right)
\end{gathered}
$$

Then $W_{* 1}$ is a compact operator. Assume

$$
W_{* 1}\left(\lambda_{1}, x_{1}, y_{1}, z_{1}, b_{1}, c_{1}\right)=\left(x_{1}, y_{1}, z_{1}, b_{1}, c_{1}\right)
$$

for some $\left(\lambda_{1}, x_{1}, y_{1}, z_{1}, b_{1}, c_{1}\right) \in[0,1] \times \partial \Omega$. Then

$$
\begin{gather*}
x_{1}(t)=b_{1}+g^{-1}\left(c_{1}\right) t, \quad x_{1}^{\prime}(t)=y_{1}(t)=z_{1}(t)=g^{-1}\left(c_{1}\right), \tag{26}\\
x_{1}\left(\beta_{1}\left(x_{1}, x_{1}^{\prime}\right)\right)=\lambda_{1} r_{1}\left(x_{1}, x_{1}^{\prime}\right), \quad x_{1}^{\prime}\left(\beta_{2}\left(x_{1}, x_{1}^{\prime}\right)\right)=\lambda_{1} r_{2}\left(x_{1}, x_{1}^{\prime}\right),
\end{gather*}
$$

and so

$$
\begin{gather*}
b_{1}+g^{-1}\left(c_{1}\right) \beta_{1}\left(x_{1}, x_{1}^{\prime}\right)=\lambda_{1} r_{1}\left(x_{1}, x_{1}^{\prime}\right) \tag{27}\\
g^{-1}\left(c_{1}\right)=\lambda_{1} r_{2}\left(x_{1}, x_{1}^{\prime}\right) \tag{28}
\end{gather*}
$$

From (28) and (H_{5}) we obtain (see the definition of the function G)

$$
\left|c_{1}\right| \leq G(N)
$$

and then (cf. (27), (28) and (H_{5}))

$$
\left|b_{1}\right| \leq\left|g^{-1}\left(c_{1}\right)\right| T+M \leq\left|r_{2}\left(x_{1}, x_{1}^{\prime}\right)\right| T+M \leq N T+M
$$

and consequently (cf. (26), (28) and (H_{5}))

$$
\left\|x_{1}\right\| \leq 2 N T+M, \quad\left\|x_{1}^{\prime}\right\|=\left\|y_{1}\right\|=\| z_{1} \mid \leq N
$$

We see that $\left(x_{1}, y_{1}, z_{1}, b_{1}, c_{1}\right) \notin \partial \Omega$, a contradiction. Thus (cf. (25))

$$
\begin{gather*}
D\left(I-Z_{* 1}, \Omega, 0\right)=D\left(I-W_{* 1}(1, \cdot, \cdot, \cdot, \cdot, \cdot), \Omega, 0\right) \tag{29}\\
=D\left(I-W_{* 1}(0, \cdot, \cdot, \cdot, \cdot, \cdot), \Omega, 0\right)=D\left(I-Z_{*}, \Omega, 0\right)=1
\end{gather*}
$$

Finally define

$$
\begin{gathered}
S_{*}: \bar{\Omega} \rightarrow C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}, \\
V_{*}:[0,1] \times \bar{\Omega} \rightarrow C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}
\end{gathered}
$$

by the formulas

$$
\begin{aligned}
S_{*}(x, y, z, b, c)= & \left(b+\int_{0}^{t} g^{-1}\left(c+\int_{0}^{s}\left(F_{n}^{*}(x, y, z(\nu))\right)(\nu) d \nu\right) d s\right. \\
& g^{-1}\left(c+\int_{0}^{t}\left(F_{n}^{*}(x, y, z(s))\right)(s) d s\right) \\
& g^{-1}\left(c+\int_{0}^{t}\left(F_{n}^{*}(x, y, z(s))\right)(s) d s\right) \\
& \left.b-x\left(\beta_{1}(x, y)\right)+r_{1}(x, y), c-y\left(\beta_{2}(x, y)\right)+r_{2}(x, y)\right) \\
V_{*}(\lambda, x, y, z, b, c)= & \left(u+\int_{0}^{t} g^{-1}\left(c+\lambda \int_{0}^{s}\left(F_{n}^{*}(x, y, z(\nu))\right)(\nu) d \nu\right) d s\right. \\
& g^{-1}\left(c+\lambda \int_{0}^{t}\left(F_{n}^{*}(x, y, z(s))\right)(s) d s\right), \\
& g^{-1}\left(c+\lambda \int_{0}^{t}\left(F_{n}^{*}(x, y, z(s))\right)(s) d s\right) \\
& \left.b-x\left(\beta_{1}(x, y)\right)+r_{1}(x, y), c-y\left(\beta_{2}(x, y)\right)+r_{2}(x, y)\right)
\end{aligned}
$$

If (x, y, z, b, c) is a fixed point of the operator S_{*} we can easy verify that x is a solution of $\operatorname{BVP}\left(22_{n}\right)_{1},(3)$ and $x^{\prime}=y=z, b=x(0), c=g\left(x^{\prime}(0)\right)$. Conversely, if x is a solution of BVP $\left(22_{n}\right)_{1},(3)$ and $\left(x, x^{\prime}, x^{\prime}, x(0), g\left(x^{\prime}(0)\right)\right) \in$ $\bar{\Omega}$, then $\left(x, x^{\prime}, x^{\prime}, x(0), g\left(x^{\prime}(0)\right)\right)$ is a fixed point of S_{*}.

Thus to prove our lemma it is sufficient to show that there exists a fixed point of S_{*}. We now verify that V_{*} is a compact operator. Let $\left\{\left(\lambda_{i}, x_{i}, y_{i}, z_{i}, b_{i}, c_{i}\right)\right\} \subset[0,1] \times \bar{\Omega}$ be a sequence and set

$$
\left(u_{i}, v_{i}, w_{i}, B_{i}, C_{i}\right)=V_{*}\left(\lambda_{i}, x_{i}, y_{i}, z_{i}, b_{i}, c_{i}\right), \quad i \in \mathbb{N}
$$

Then

$$
\begin{gathered}
u_{i}(t)=b_{i}+\int_{0}^{t} g^{-1}\left(c_{i}+\lambda_{i} \int_{0}^{s}\left(F_{n}^{*}\left(x_{i}, y_{i}, z_{i}(\nu)\right)\right)(\nu) d \nu\right) d s \\
u_{i}^{\prime}(t)=v_{i}(t)=w_{i}(t)=g^{-1}\left(c_{i}+\lambda_{i} \int_{0}^{t}\left(F_{n}^{*}\left(x_{i}, y_{i}, z_{i}(s)\right)\right)(s) d s\right) \\
B_{i}=b_{i}-x_{i}\left(\beta_{1}\left(x_{i}, y_{i}\right)\right)+r_{1}\left(x_{i}, y_{i}\right), \quad C_{i}=c_{i}-y_{i}\left(\beta_{2}\left(x_{i}, y_{i}\right)\right)+r_{2}\left(x_{i}, y_{i}\right)
\end{gathered}
$$

and from the properties of F it follows the existence of a $q \in L_{1}(J)$ such that

$$
\left|\left(F_{n}^{*}\left(x_{i}, y_{i}, z_{i}(t)\right)\right)(t)\right| \leq q(t) \quad \text { for a.e. } t \in J \text { and each } i \in \mathbb{N}
$$

Hence

$$
\begin{gathered}
\left|u_{i}(t)\right| \leq 2 U_{*}+1+T P\left(G\left(K_{*}+1\right)+\int_{0}^{T} q(t) d t\right) \\
\left|u_{i}^{\prime}(t)\right|=\left|v_{i}(t)\right|=\left|w_{i}(t)\right| \leq P\left(G\left(K_{*}+1\right)+\int_{0}^{T} q(t) d t\right), \\
\left|g\left(u_{i}^{\prime}\left(t_{1}\right)\right)-g\left(u_{i}^{\prime}\left(t_{2}\right)\right)\right| \leq\left|\int_{t_{1}}^{t_{2}} q(t) d t\right| \\
\left|B_{i}\right| \leq 4 U_{*}+M+2, \quad\left|C_{i}\right| \leq G\left(K_{*}+1\right)+K_{*}+N+1
\end{gathered}
$$

for $t, t_{1}, t_{2} \in J$. By the Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem, we can select a subsequence $\left\{\left(u_{i_{n}}, v_{i_{n}}, w_{i_{n}}, B_{i_{n}}, C_{i_{n}}\right)\right\}$ converging in $C^{0}(J) \times C^{0}(J) \times C^{0}(J) \times \mathbb{R}^{2}$. From this and from the continuity of V_{*} we deduce that V_{*} is a compact operator.

Assume

$$
V_{*}\left(\lambda_{+}, x_{+}, y_{+}, z_{+}, b_{+}, c_{+}\right)=\left(x_{+}, y_{+}, z_{+}, b_{+}, c_{+}\right)
$$

for some $\left(\lambda_{+}, x_{+}, y_{+}, z_{+}, b_{+}, c_{+}\right) \in[0,1] \times \partial \Omega$. Then x_{+}is a solution of $\operatorname{BVP}\left(22_{n}\right)_{\lambda_{+}},(3)$ and $x_{+}^{\prime}=y_{+}=z_{+}, b_{+}=x_{+}(0), c_{+}=g^{-1}\left(x_{+}^{\prime}(0)\right)$. By Lemma 3.1, $\left\|x_{+}\right\| \leq U_{*}+\frac{T}{n}, K_{1}-\frac{1}{n}<x_{+}^{\prime}(t)<K_{3}+\frac{1}{n}$ for $t \in J$, which yields

$$
\left\|y_{+}\right\|=\left\|z_{+}\right\|<K_{*}+1, \quad\left|b_{+}\right| \leq U_{*}+\frac{T}{n}, \quad\left|c_{+}\right|<G\left(K_{*}+1\right)
$$

contrary to $\left(x_{+}, y_{+}, z_{+}, b_{+}, c_{+}\right) \in \partial \Omega$.
Hence (cf. (29))

$$
\begin{gathered}
\quad D\left(I-S_{*}, \Omega, 0\right)=D\left(I-V_{*}(1, \cdot \cdot \cdot \cdot, \cdot \cdot \cdot \cdot), \Omega, 0\right) \\
=D\left(I-V_{*}(0, \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot), \Omega, 0\right)=D\left(I-Z_{* 1}, \Omega, 0\right) \neq 0,
\end{gathered}
$$

and so there exists a fixed point $(u, v, w, b, c) \in \Omega$ of S_{*}. Then u is a solution of BVP $\left(22_{n}\right)_{1}$, (3) and Lemma 3.1 shows that $\|u\| \leq U_{*}+\frac{T}{n}, K_{1}-\frac{1}{n}<$ $u^{\prime}(t)<K_{3}+\frac{1}{n}$ for $t \in J$.

Corollary 3.4. Let assumptions $\left(H_{5}\right)$ and $\left(H_{6}\right)$ be satisfied. Then for sufficiently large $n \in \mathbb{N} B V P\left(22_{n}\right)_{1}$, (3) has a solution u satisfying

$$
\|u\| \leq U_{*}+\frac{T}{n}, \quad D_{*}-\frac{1}{n}<u^{\prime}(t)<H_{*}+\frac{1}{n}, \quad t \in J .
$$

Proof. If $K_{1}<K_{4}, K_{2}<K_{3}$, the assertion follows from Lemma 3.3. If $K_{1}>K_{4}, K_{2}<K_{3}$ then replacing K_{1} and K_{4} and using the same procedure as in the proof of Lemma 3.3 we prove that for $n \in \mathbb{N}$ sufficiently large BVP $\left(22_{n}\right)_{1}$, (3) has a solution u satisfying

$$
\|u\| \leq U_{*}+\frac{T}{n}, \quad K_{4}-\frac{1}{n}<u^{\prime}(t)<K_{3}+\frac{1}{n}, \quad t \in J .
$$

Similarly for $K_{2}>K_{3}$.
Theorem 3.5. Let assumptions $\left(H_{5}\right)$ and $\left(H_{6}\right)$ be satisfied. Then BVP (1), (3) has a solution u satisfying the inequalities

$$
\begin{equation*}
\|u\| \leq U_{*}, \quad D_{*} \leq u^{\prime}(t) \leq H_{*} \tag{30}
\end{equation*}
$$

for $t \in J$.
Proof. By Corollary 3.4, BVP $\left(22_{n}\right)_{1}$, (3) has a solution u_{n} for sufficiently large $n \in \mathbb{N}$ and

$$
\left\|u_{n}\right\| \leq U_{*}+\frac{T}{n}, \quad D_{*}-\frac{1}{n} \leq u_{n}^{\prime}(t) \leq H_{*}+\frac{1}{n}, \quad t \in J .
$$

Moreover (cf. the property (c) of F), there exists $q_{1} \in L_{1}(J)$ such that

$$
\left|\left(F_{n}^{*}\left(u_{n}, u_{n}^{\prime}, u_{n}^{\prime}(t)\right)\right)(t)\right| \leq g_{1}(t)
$$

for a.e. $t \in J$, and so

$$
\left|g\left(u_{n}^{\prime}\left(t_{1}\right)\right)-g\left(u_{n}^{\prime}\left(t_{2}\right)\right)\right| \leq\left|\int_{t_{1}}^{t_{2}} q_{1}(t) d t\right|
$$

for $t_{1}, t_{2} \in J$ and sufficiently large $n \in \mathbb{N}$. Thus $\left\{u_{n}\right\},\left\{u_{n}^{\prime}\right\}$ are bounded in $C^{0}(J),\left\{u_{n}^{\prime}(t)\right\}$ is equicontinuous on J. By the Arzelà-Ascoli theorem, we can assume without loss of generality that $\left\{u_{n}\right\}$ is a convergent sequence in $C^{1}(J)$ and let $\lim _{n \rightarrow \infty} u_{n}=u$. Then u fulfils (3) and (30). Since

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(F_{n}^{*}\left(u_{n}, u_{n}^{\prime}, u_{n}^{\prime}(t)\right)\right)(t) & =\lim _{n \rightarrow \infty}\left(\left(F\left(u_{n *}, \widehat{u_{n}^{\prime}},\left\{u_{n}^{\prime}(t)\right\}_{n}\right)\right)(t)+\frac{l\left(u_{n}^{\prime}(t)\right)}{n}\right) \\
& =\left(F\left(u, u^{\prime}, u^{\prime}(t)\right)\right)(t)
\end{aligned}
$$

in $L_{1}(J)$, we see that u is a solution of BVP (1), (3).

Example 3.2. Let. $J=[0,1]$ and $h: \mathbb{R} \rightarrow \mathbb{R}, F_{1}: C^{0}(J) \times C^{0}(J) \rightarrow$ $L_{1}(J)$ be continuous and $h\left(K_{i}\right)=0(i=1,2,3,4)$ where $K_{1}<K_{4} \leq-2$, $2 \leq K_{2}<K_{3}$. Consider equation (19) and the boundary conditions

$$
\begin{align*}
x\left(\mid \sin \left(x(\xi) x^{\prime}(\mu)\right) \|\right) & =\min \left\{S:\|x\|,\left\|x^{\prime}\right\|\right\} \tag{31}\\
x^{\prime}\left(\mid \cos \left(\|x\|+\left\|x^{\prime}\right\|\right) \|\right) & =\frac{1}{1+x^{2}(\nu)}
\end{align*}
$$

where $S \in \mathbb{R}$ and $\xi ; \mu, \nu \in J$. By Theorem 3.5 (with $F(x, y, a)=$ $h(a) F_{1}(x, y), \beta_{1}(x, y)=|\sin (x(\xi) y(\mu))|, \beta_{2}(x, y)=|\cos (\|x\|+\|y\|)|, r_{1}(x, y)=$ $\min \{S,\|x\|$,
$\|y\|\}, r_{2}(x, y)=\frac{1}{1+x^{2}(\nu)}, M=|S|, N=1, D_{*}=K_{1}, H_{*}=K_{3}$ and $\left.U_{*}=|S|+\max \left\{-K_{1}, K_{3}\right\}\right)$, BVP (19), (31) has a solution u and

$$
\|u\| \leq|S|+\max \left\{-K_{1}, K_{3}\right\} ; \quad K_{1} \leq u^{\prime}(t) \leq K_{3}, \quad t \in J
$$

References

[B] Brykalov S. A., Problems for differential equations with monotone boundary conditions. Diff. Urav. 32(1996), 1322-1330 (in Russian).
[D] Deimling K., Nonlinear Functional Analysis. Springer Berlin Heidelberg, 1985.
[K] Kelevedjiev P., Existence of solutions for two-point boundary value problems. Nonlinear Analysis 22(1994), 217-244.
[M] Mawhin J., Topological Degree Methods in Nonlinear Boundary Value Problems. AMS, Providence, R.I., 1979.
[R] Ruyun Ma, Existence theorems for a second order m-point boundary value problem. J. Math. Anal. Appl. 211(1997), 54j-555.
[RS] Rachunková I. and Staněk S., Topological degree methods in functional boundary value problems. Nonlin. Anal. 27(1996), 153-166.
$[\mathrm{R} \Gamma]$ Rodriguez A. and Tineo A., Existence theorems for the Dirichlet problem without growth restrictions. J. Math. Anal. Appl. 135(1988): 1-7.
[S] Stanĕk S., Existence results for functional boundary value problems at vesonance. Math. Slovaca 48(1998), 43-55.

Department of Mathematical Analysis, Faculty of Science; Palacky University', Tomkova 40, 77900 Olomouc, Czech Republic

E-mail address: stanek@risc.upol.cz
Received: 30.10.98.

[^0]: 1991 Mathematics Subject Classification. 34K10.
 Key words and phrases. Existence, sign conditions, Carathéodory conditions, LeraySchauder degree.

 Supported by grant no. 201/98/0318 of the Grant Agency of Czech Republic.

