FUNCTIONAL BOUNDARY VALUE PROBLEMS WITHOUT GROWTH RESTRICTIONS

SVATOSLAV STANÉK Palacký University, Czech Republic

ABSTRACT. Let J=[0,T] and $F:C^0(J)\times C^0(J)\times \mathbb{R}\to L_1(J)$ be an operator. Existence theorems for the functional differential equation (g(x'(t)))'=(F(x,x',x'(t)))(t) with functional boundary conditions generalizing the non-homogeneous Dirichlet boundary conditions and non-homogeneous mixed boundary conditions are given. Existence results are proved by the Leray-Schauder degree theory under some sign conditions imposed upon F.

1. Introduction

Let J = [0, T] be a compact interval. Consider the functional differential equation

(1)
$$(g(x'(t)))' = (F(x, x', x'(t)))(t).$$

Here $g: \mathbb{R} \to \mathbb{R}$ is an increasing homeomorphism with inverse $g^{-1}: \mathbb{R} \to \mathbb{R}$, g(0) = 0 and $F: C^0(J) \times C^0(J) \times \mathbb{R} \to L_1(J)$, $(x, y, a) \longmapsto (F(x, y, a))(t)$ is an operator having the following properties:

- (a) $(F(x,y,z(t)))(t) \in L_1(J)$ for $x, y, z \in C^0(J)$,
- (b) $\lim_{n\to\infty} (x_n, y_n, z_n) = (x, y, z) \text{ in } C^0(J) \times C^0(J) \times C^0(J) \Rightarrow \lim_{n\to\infty} (F(x_n, y_n, z_n(t)))(t) = (F(x, y, z(t)))(t) \text{ in } L_1(J),$
- (c) for each $d \in (0, \infty)$ there exists $k_d \in L_1(J)$, such that $x, y \in C^0(J)$, $a \in \mathbb{R}, ||x|| + ||y|| + |a| \le d \Rightarrow |(F(x, y, a))(t)| \le k_d(t)$ for a.e. $t \in J$, where $||x|| = \max\{|x(t)|; t \in J\}$ for $x \in C^0(J)$ is the norm in $C^0(J)$.

¹⁹⁹¹ Mathematics Subject Classification. 34K10.

Key words and phrases. Existence, sign conditions, Carathéodory conditions, Leray-Schauder degree.

Supported by grant no. 201/98/0318 of the Grant Agency of Czech Republic.

A prototype of the operator F in (1) is the operator

$$(F(x,y,a))(t) = f(t,x(t),y(t),a)$$

where $f: J \times \mathbb{R}^3 \to \mathbb{R}$ satisfies the Carathéodory conditions on $J \times \mathbb{R}^3$ $(f \in Car(J \times \mathbb{R}^3))$ for short) or more generally

$$(F(x,y,a))(t) = (P_1(x,y))(t)h(a) + (P_2(x,y))(t)$$

and

$$(F(x,y,a))(t) = \int_{t}^{T-t} f_1(s,ax(s),y(s),a) ds + f_2(t,x(t),y(t),a)$$

where $P_1, P_2: C^0(J) \times C^0(J) \to L_1(J)$, $h: \mathbb{R} \to \mathbb{R}$ are continuous and, for each $d \in (0, \infty)$, there exists $l_d \in L_1(J)$ such that $x, y \in C^0(J)$, $||x|| + ||y|| \le d$ $\Rightarrow |(P_1(x,y))(t)| \le l_d(t)$, $|(P_2(x,y))(t)| \le l_d(t)$ for a.e. $t \in J$ and $f_1, f_2 \in Car(J \times \mathbb{R}^3)$.

Together with (1) consider the functional boundary conditions

(2)
$$x(\alpha_1(x,x')) = p_1(x,x'), \quad x(\alpha_2(x,x')) = p_2(x,x'),$$

or

(3)
$$x(\beta_1(x,x')) = r_1(x,x'), \quad x'(\beta_2(x,x')) = r_2(x,x').$$

Here α_1 , α_2 , β_1 , $\beta_2 : C^0(J) \times C^0(J) \to J$ and p_1 , p_2 , r_1 , $r_2 : C^0(J) \times C^0(J) \to \mathbb{R}$ are continuous functionals. We see that (2) (with $\alpha_1(x,x') = 0$, $\alpha_2(x,x') = T$, $p_1(x,x') = A$, $p_2(x,x') = B$ for $x \in C^1(J)$) gives the nonhomogeneous Dirichlet boundary conditions and (3) (with $r_1(x,x') = A$, $r_2(x,x') = B$ and $\beta_1(x,x') = 0$, $\beta_2(x,x') = T$ resp. $\beta_1(x,x') = T$, $\beta_2(x,x') = 0$ for $x \in C^1(J)$) gives the nonhomogeneous mixed boundary conditions.

We say that $x \in C^1(J)$ is a solution of the boundary value problem (BVP for short) (1), (j) (j = 2, 3) if g(x'(t)) is absolutely continuous on J, x satisfies boundary conditions (j) and (1) is satisfied for a.e. $t \in J$.

We observe that Brykalov [B] considered among others the differential equation

$$x'' + a_1(t)x' + a_0(t)x = f(t, x, x')$$

together with boundary conditions (2) (actually with more general boundary conditions, in which α_i , p_i can depend also on x''). For this BVP he proved an existence result under the assumptions that $a_0, a_1 \in L_1(J)$, $a_0(t) \leq 0$, $f \in Car(J \times \mathbb{R}^2)$ satisfies the growth condition $|f(t, x, y)| \leq \gamma(t) + A_0|x|^{1-\varepsilon_0} + A_1|y|^{1-\varepsilon_1}$ for a.e. $t \in J$ and each $x, y \in \mathbb{R}$ where $\gamma \in L_1(J)$, $\gamma(t) \geq 0$, $A_i \in (0, \infty)$, $\varepsilon_i \in (0, 1)$ (i = 0, 1) and $|p_1(x, x') - p_2(x, x')| \leq \lambda |\alpha_1(x, x') - \alpha_2(x, x')|$, $|p_j(x, x')| \leq N$ (j = 1, 2) for all x having the absolutely continuous derivative on J with positive constants λ and N.

In this paper we prove existence results for BVPs (1), (2) and (1), (3) providing that F satisfies only sign conditions. Our results are proved by the topological degree method (see e.g. [D] and [M]). We generalize the results of

[K] for the Dirichlet conditions where the differential equation x'' = h(t, x, x'), $h \in C^0(J \times \mathbb{R}^2)$ was studied. We note that our results are close those of [RT] for the Dirichlet conditions where another type of the functional differential equation was considered. This functional differential equation without growth restrictions and with nonlinear functional boundary conditions was considered in [S]. Some existence results for the equation x'' = h(t, x, x') with continuous h without growth restrictions was given by Rodriguez and Tineo [RT] for the Dirichlet problem and by Ruyun Ma [R] for an m-point boundary value problem.

The following assumptions will be needed throughout the paper:

- $(H_1) \ \alpha_1(x,x') < \alpha_2(x,x'), \ x \in C^1(J);$
- (H_2) There exists a positive constant μ such that

$$|p_1(x,x')-p_2(x,x')| \le \mu(\alpha_2(x,x')-\alpha_1(x,x')), \quad x \in C^1(J);$$

 (H_3) There exist positive constants A_1 , A_2 such that

$$|p_i(x, x')| \le A_i, x \in C^1(J), i = 1, 2;$$

(H_4) There exist $L_1, L_2, L_3, L_4 \in \mathbb{R}$ such that $L_1, L_4 \in (-\infty, -\mu], L_2, L_3 \in [\mu, \infty), L_1 \neq L_4, L_2 \neq L_3$ and

$$(F(x, y, L_1))(t) \le 0 \le (F(x, y, L_2))(t),$$

$$(F(x, y, L_3))(t) \le 0 \le (F(x, y, L_4))(t)$$

for a.e. $t \in J$ and each $x, y \in C^0(J)$, $||x|| \leq U$, $D \leq y(t) \leq H$ for $t \in J$, where

$$U = \min\{A_1, A_2\} + T \max\{-D, H\}, \quad D = \min\{L_1, L_4\},$$

$$H=\max\{L_2,\,L_3\}.$$

 (H_5) There exist positive constants M, N such that

$$|r_1(x,x')| \le M$$
, $|r_2(x,x')| \le N$, $x \in C^1(J)$;

(H₆) There exist K_1 , K_2 , K_3 , $K_4 \in \mathbb{R}$ such that K_1 , $K_4 \in (-\infty, -N]$, K_2 , $K_3 \in [N, \infty)$, $K_1 \neq K_4$, $K_2 \neq K_3$ and

$$(F(x, y, K_1))(t) \le 0 \le (F(x, y, K_2))(t),$$

$$(F(x, y, K_3))(t) \le 0 \le (F(x, y, K_4))(t)$$

for a.e. $t \in J$ and each $x, y \in C^0(J)$, $||x|| \le U_*$, $D_* \le y(t) \le H_*$ for $t \in J$, where

$$U_* = M + T \max\{-D_*, H_*\}, \quad D_* = \min\{K_1, K_4\},$$

$$H_* = \max\{K_2, K_3\}.$$

Assume that assumptions (H_1) - (H_4) are satisfied. Let $|L_4-L_1|>\frac{2}{n_0}$, $|L_3-L_2|>\frac{2}{n_0}$ for an $n_0\in\mathbb{N}$. Set

$$E_{1} = L_{1} + \frac{\operatorname{sign}(L_{4} - L_{1}) - 1}{2} (L_{1} - L_{4}), \quad E_{2} = L_{2} + \frac{\operatorname{sign}(L_{3} - L_{2}) - 1}{2} (L_{2} - L_{3}),$$

$$E_{3} = L_{3} - \frac{\operatorname{sign}(L_{3} - L_{2}) - 1}{2} (L_{2} - L_{3}), \quad E_{4} = L_{4} - \frac{\operatorname{sign}(L_{4} - L_{1}) - 1}{2} (L_{1} - L_{4}).$$
Then $E_{1} < E_{4} \le -\mu, \ \mu \le E_{2} < E_{3} \text{ and } D = E_{1}, \ H = E_{3}.$
For each $n \ge n_{0}, \ x, \ y \in C^{0}(J)$ and $a \in \mathbb{R}$, define $\bar{x}, \ \bar{y} \in C^{0}(J)$ and

 $[a]_n \in \mathbb{R}$ by

$$\bar{x}(t) = \begin{cases} U & \text{for } x(t) > U \\ x(t) & \text{for } |x(t)| \le U \\ -U & \text{for } x(t) < -U, \end{cases}$$

$$\tilde{y}(t) = \begin{cases} E_3 & \text{for } y(t) > E_3 \\ y(t) & \text{for } E_1 \le y(t) \le E_3 \\ E_1 & \text{for } y(t) < E_1, \end{cases}$$

$$[a]_{n} = \begin{cases} E_{3} & \text{for } a \geq E_{3} \\ a & \text{for } E_{2} + \frac{2}{n} < a < E_{3} \\ -E_{2} + 2a - \frac{2}{n} & \text{for } E_{2} + \frac{1}{n} < a \leq E_{2} + \frac{2}{n} \\ E_{2} & \text{for } E_{2} < a \leq E_{2} + \frac{1}{n} \\ a & \text{for } E_{4} \leq a \leq E_{2} \\ E_{4} & \text{for } E_{4} - \frac{1}{n} \leq a < E_{4} \\ -E_{4} + 2a + \frac{2}{n} & \text{for } E_{4} - \frac{2}{n} \leq a < E_{4} - \frac{1}{n} \\ a & \text{for } E_{1} \leq a < E_{4} - \frac{2}{n} \\ E_{1} & \text{for } a < E_{1}. \end{cases}$$

Clearly $\lim_{n\to\infty} [a]_n = a$ for $a\in [E_1,E_3]$ and for any $z\in C^0(J), E_1\leq$ $z(t) \leq E_3$, we have $\lim_{n\to\infty} [z(t)]_n = z(t)$ uniformly on J.

Let $p: \mathbb{R} \to \mathbb{R}$ be a continuous function with the property:

$$|p(v)| \le 1 \quad \text{for } v \in \mathbb{R},$$

$$(5) \qquad p(v) = 1 \quad \text{for } v \in [L_4 - \frac{1}{n_0}, L_4] \cup [L_2, L_2 + \frac{1}{n_0}],$$

$$p(v) = -1 \quad \text{for } v \in [L_1 - \frac{1}{n_0}, L_1] \cup [L_3, L_3 + \frac{1}{n_0}].$$

Set

$$(F_n(x,y,a))(t) = (F(\bar{x},\tilde{y},[a]_n))(t) + \frac{p(a)}{n}$$

for $(x, y, a) \in C^0(J) \times C^0(J) \times \mathbb{R}$ and $n \in \mathbb{N}$, $n \ge n_0$.

Consider the two-parameter family of the functional differential equations

$$(g(x'(t)))' = \lambda(F_n(x, x', x'(t)))(t), \qquad \lambda \in [0, 1], \ n \ge n_0.$$
 (6_n)_{\lambda}

LEMMA 2.1. (A priori estimates). Let assumptions $(H_1) - (H_4)$ be satisfied with $L_1 < L_4$ and $L_2 < L_3$ and let BVP $(6_n)_{\lambda}$, (2) has a solution u for some $\lambda \in [0,1]$ and $n \ge n_0$. Then the estimates

$$||u|| \le U + \frac{T}{n}, \quad L_1 - \frac{1}{n} < u'(t) < L_3 + \frac{1}{n}$$

for $t \in J$ are fulfilled.

PROOF. Set $t_1=\alpha_1(u,u')$, $t_2=\alpha_2(u,u')$. Then (H_1) , (H_2) and (H_3) imply $t_1< t_2$, $|u(t_2)-u(t_1)|=|p_2(u,u')-p_1(u,u')|\leq \mu(t_2-t_1)$, and so $\frac{|u(t_2)-u(t_1)|}{t_2-t_1}\leq \mu$. Hence

$$|u'(\xi)| \le \mu$$

where ξ lies between t_1 and t_2 . If $\lambda = 0$ then $g(u'(t)) \equiv const.$, and so (cf. (7))

$$|u'(t)| = |u'(\xi)| \le \mu, \qquad t \in J.$$

Let $\lambda \in (0,1]$. Let $u'(T_1) = \max\{u'(t); t \in J\} \ge L_3 + \frac{1}{n}$ with a $T_1 \in J$. Assume $T_1 \in (\xi,T]$. Then there exist $t_* \in (\xi,T_1)$ and $\varepsilon_* > 0$ such that $u'(t_*) = L_3$, $u'(t_* + \varepsilon_*) = L_3 + \frac{1}{n}$ and $L_3 \le u'(t) \le L_3 + \frac{1}{n}$ for $t \in [t_*, t_* + \varepsilon_*]$. Integrating the equality

(8)
$$(g(u'(t)))' = \lambda(F_n(u, u', u'(t)))(t)$$

for a.e. $t \in J$ from t_* to $t_* + \varepsilon_*$ we obtain

$$g(u'(t_* + \varepsilon_*)) - g(u'(t_*)) = \lambda \int_{t_*}^{t_* + \varepsilon_*} (F_n(u, u', u'(t)))(t) dt$$

$$= \lambda \int_{t_*}^{t_* + \varepsilon_*} \left((F(\bar{u}, \tilde{u'}, L_3))(t) + \frac{p(u'(t))}{n} \right) dt$$

$$\leq \frac{\lambda}{n} \int_{t_*}^{t_* + \varepsilon_*} p(u'(t)) dt = -\frac{\lambda \varepsilon_*}{n} < 0,$$

which contradicts $g(u'(t_* + \varepsilon_*)) - g(u'(t_*)) = g(L_3 + \frac{1}{n}) - g(L_3) > 0$. Assume $T_1 \in [0, \xi)$. Then there exist $t_0 \in (T_1, \xi]$ and $\varepsilon_0 > 0$ such that $u'(t_0 - \varepsilon_0) = L_2 + \frac{1}{n}$, $u'(t_0) = L_2$ and $L_2 \leq u'(t) \leq L_2 + \frac{1}{n}$ for $t \in [t_0 - \varepsilon_0, t_0]$. Integrating (8) from $t_0 - \varepsilon_0$ to t_0 we have

$$g(u'(t_0)) - g(u'(t_0 - \varepsilon_0)) = \lambda \int_{t_0 - \varepsilon_0}^{t_0} (F_n(u, u', u'(t)))(t) dt$$

$$\begin{split} &=\lambda\int_{t_0-\varepsilon_0}^{t_0}\left((F(\bar{u},\widetilde{u'},L_2))(t)+\frac{p(u'(t))}{n}\right)dt\\ &\geq\frac{\lambda}{n}\int_{t_0-\varepsilon_0}^{t_0}p(u'(t))\,dt=\frac{\lambda\varepsilon_0}{n}>0, \end{split}$$

which contradicts $g(u'(t_0)) - g(u'(t_0 - \varepsilon_0)) = g(L_2) - g(L_2 + \frac{1}{n}) < 0$. Hence $u'(t) < L_3 + \frac{1}{n}$ for $t \in J$.

Let $u'(T_2) = \min\{u'(t); t \in J\} \le L_1 - \frac{1}{n}$ for some $T_2 \in J$. Assume $T_2 \in (\xi, T]$. Then there exist $t_+ \in [\xi, T_2)$ and $\varepsilon_+ > 0$ such that $u'(t_+) = L_4$, $u'(t_++\varepsilon_+)=L_4-\frac{1}{n}$ and $L_4-\frac{1}{n}\leq u'(t)\leq L_4$ for $t\in[t_+,t_++\varepsilon_+]$. Integrating (8) from t_+ to $t_+ + \varepsilon_+$ we obtain

$$g(u'(t_{+} + \varepsilon_{+})) - g(u'(t_{+})) = \lambda \int_{t_{+}}^{t_{+} + \varepsilon_{+}} (F_{n}(u, u', u'(t)))(t) dt$$

$$= \lambda \int_{t_{+}}^{t_{+} + \varepsilon_{+}} \left((F(\bar{u}, \tilde{u'}, L_{4}))(t) + \frac{p(u'(t))}{n} \right) dt$$

$$\geq \frac{\lambda}{n} \int_{t_{+}}^{t_{+} + \varepsilon_{+}} p(u'(t)) dt = \frac{\lambda \varepsilon_{+}}{n} > 0$$

which contradicts $g(u'(t_{+}+\varepsilon_{+}))-g(u'(t_{+}))=g(L_{4}-\frac{1}{n})-g(L_{4})<0$. If $T_2 \in [0,\xi)$ then there exist $t_- \in (T_2,\xi)$ and $\varepsilon_- > 0$ such that $u'(t_- - \varepsilon_-)) =$ $L_1 - \frac{1}{n}, u'(t_-) = L_1, L_1 - \frac{1}{n} \le u'(t) \le L_1 \text{ for } t \in [t_- - \varepsilon_-, t_-].$ Integrating (8) from $t_- - \varepsilon_-$ to t_- we have

$$g(u'(t_{-})) - g(u'(t_{-} - \varepsilon_{-})) = \lambda \int_{t_{-} - \varepsilon_{-}}^{t_{-}} (F_{n}(u, u', u'(t)))(t) dt$$

$$= \lambda \int_{t_{-} - \varepsilon_{-}}^{t_{-}} \left((F(\bar{u}, \widetilde{u'}, L_{1}))(t) + \frac{p(u'(t))}{n} \right) dt$$

$$\leq \frac{\lambda}{n} \int_{t_{-} - \varepsilon_{-}}^{t_{-}} p(u'(t)) dt = -\frac{\lambda \varepsilon_{-}}{n} < 0,$$

which contradicts $g(u'(t_-)) - g(u'(t_- - \varepsilon_-)) = g(L_1) - g(L_1 - \frac{1}{\varepsilon}) > 0$. Hence $\min\{u'(t); t \in J\} > L_1 - \frac{1}{n}.$ Let $A_i = \min\{A_1, A_2\}.$ Then

$$|u(t)| = \left| u(t_i) + \int_{t_i}^t u'(s) \, ds \right| \le \min\{A_1, A_2\} + T \max\left\{ -L_1 + \frac{1}{n}, L_3 + \frac{1}{n} \right\}$$

$$= \min\{A_1, A_2\} + \left(\max\{-L_1, L_3\} + \frac{1}{n} \right) T = U + \frac{T}{n}$$
For $t \in J$. Hence the lemma is proved.

for $t \in J$. Hence the lemma is proved.

П

COROLLARY 2.2. (A priori estimates). Let assumptions $(H_1) - (H_4)$ be satisfied. Let u be a solution of BVP $(6_n)_{\lambda}$, (2) for some $n \geq n_0$ and $\lambda \in [0,1]$. Then

$$||u|| \le U + \frac{T}{n}, \quad D - \frac{1}{n} < u'(t) < H + \frac{1}{n}, \quad t \in J.$$

PROOF. If $L_1 < L_4$, $L_2 < L_3$, the assertion follows from Lemma 2.1. Let $L_1 > L_4$, $L_2 < L_3$. Then by the same procedure as in the proof of Lemma 2.1 we prove

$$||u|| \le U + \frac{T}{n}, \quad L_4 - \frac{1}{n} < u'(t) < L_3 + \frac{1}{n}, \qquad t \in J.$$

Similarly for $L_2 > L_3$.

LEMMA 2.3. Let assumptions $(H_1) - (H_4)$ be satisfied with $L_1 < L_4$ and $L_2 < L_3$. Then for sufficiently large $n \in \mathbb{N}$ BVP $(6_n)_1$, (2) has a solution u satisfying the inequalities

$$||u|| \le U + \frac{T}{n}, \quad L_1 - \frac{1}{n} < u'(t) < L_3 + \frac{1}{n}, \qquad t \in J.$$

PROOF. Fix $n \in \mathbb{N}$, $n \ge n_0$. Set $K = \max\{-D, H\}$,

$$G(v) = \max\{g(v), -g(-v)\} \quad \text{for } v \in [0, \infty),$$

$$\begin{split} \Omega &=& \Big\{ (x,y,z,b,c); \, (x,y,z,b,c) \in C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2, \\ & ||x|| < U + (1+\mu)T, \, ||y|| < K+1, \, ||z|| < K+1, \\ & |b| < U + (1+\mu)T, \, |c| < G(K+1) \Big\} \end{split}$$

and define the operators

$$Z: \bar{\Omega} \to C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2,$$

$$W: [0, 1] \times \bar{\Omega} \to C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2$$

by

$$Z(x,y,z,b,c) = \left(b + g^{-1}(c)t, g^{-1}(c), g^{-1}(c), b - x(\alpha_1(x,y)), c - x(\alpha_2(x,y))\right),$$

$$W(\lambda, x, y, z, b, c) = \lambda Z(x, y, z, b, c).$$

We first prove that

$$(9) D(I-Z,\Omega,0) \neq 0,$$

where "D" is the Leray-Schauder degree and I is the identical operator on the Banach space $C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2$. It is easy to check that W is a compact operator. Assume

$$W(\lambda_0, x_0, y_0, z_0, b_0, c_0) = (x_0, y_0, z_0, b_0, c_0)$$

for some $(\lambda_0, x_0, y_0, z_0, b_0, c_0) \in [0, 1] \times \partial \Omega$. Then

(10)
$$x_0(t) = \lambda_0(b_0 + g^{-1}(c_0)t), \quad y_0(t) = \lambda_0 g^{-1}(c_0), \quad z_0(t) = \lambda_0 g^{-1}(c_0),$$

(11)
$$b_0 = \lambda_0(b_0 - x_0(\alpha_1(x_0, y_0))),$$

(12)
$$c_0 = \lambda_0(c_0 - x_0(\alpha_2(x_0, y_0))).$$

From (10)–(12) we deduce that $y_0 = x'_0$,

(13)
$$b_0 = \lambda_0 \left(b_0 - \lambda_0 b_0 - \lambda_0 g^{-1}(c_0) \alpha_1(x_0, x_0') \right), \\ c_0 = \lambda_0 \left(c_0 - \lambda_0 b_0 - \lambda_0 g^{-1}(c_0) \alpha_2(x_0, x_0') \right),$$

and so

(14)
$$b_0 = -\frac{\lambda_0^2 g^{-1}(c_0) \alpha_1(x_0, x_0')}{1 - \lambda_0 + \lambda_0^2},$$

(15)
$$(1-\lambda_0)(b_0-c_0)=\lambda_0^2g^{-1}(c_0)(\alpha_2(x_0,x_0')-\alpha_1(x_0,x_0')).$$

If $\lambda_0 = 0$ then $(x_0, y_0, z_0, b_0, c_0) = (0, 0, 0, 0, 0)$. Assume $\lambda_0 = 1$. Then (cf. (13)) $b_0 = -g^{-1}(c_0)\alpha_1(x_0, x_0')$, $b_0 = -g^{-1}(c_0)\alpha_2(x_0, x_0')$, and consequently $0 = g^{-1}(c_0)(\alpha_1(x_0, x_0') - \alpha_2(x_0, x_0'))$. Since $\alpha_2(x_0, x_0') - \alpha_1(x_0, x_0') > 0$ by (H_1) , $c_0 = 0$ and (10) and (14) show that $(x_0, y_0, z_0, b_0, c_0) = (0, 0, 0, 0, 0)$. Let $\lambda_0 \in (0, 1)$. Assume $c_0 \neq 0$. Then from (14) and (15) we obtain that

$$-(1-\lambda_0)\Big(rac{c_0}{g^{-1}(c_0)}+rac{\lambda_0^2lpha_1(x_0,x_0')}{1-\lambda_0+\lambda_0^2}\Big)=\lambda_0^2(lpha_2(x_0,x_0')-lpha_1(x_0,x_0')).$$

Since $-(1-\lambda_0)\left(\frac{c_0}{g^{-1}(c_0)} + \frac{\lambda_0^2\alpha_1(x_0,x_0')}{1-\lambda_0+\lambda_0^2}\right) < 0$ and $\lambda_0^2(\alpha_2(x_0,x_0') - \alpha_1(x_0,x_0')) > 0$, we obtain a contradiction. Hence $c_0 = 0$, and so $(x_0,y_0,z_0,b_0,c_0) = (0,0,0,0,0)$.

We have proved $(x_0, y_0, z_0, b_0, c_0) = (0, 0, 0, 0, 0, 0) \notin \partial\Omega$, a contradiction. By the theory of homotopy (see e.g. [D] and [M])

$$D(I - Z, \Omega, 0) = D(I - W(1, \cdot, \cdot, \cdot, \cdot), \Omega, 0)$$

= $D(I - W(0, \cdot, \cdot, \cdot, \cdot), \Omega, 0) = D(I, \Omega, 0) = 1,$

which proves (9).

Let the operators

$$Z_1: \bar{\Omega} \to C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2,$$

$$W_1: [0,1] \times \bar{\Omega} \to C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2$$

be given by

$$Z_1(x,y,z,b,c) = Z(x,y,z,b,c) + (0,0,0,p_1(x,y),p_2(x,y)),$$

$$W_1(\lambda, x, y, z, b, c) = Z(x, y, z, b, c) + \lambda(0, 0, 0, p_1(x, y), p_2(x, y)).$$

Then W_1 is a compact operator and $W_1(1,\cdot,\cdot,\cdot,\cdot,\cdot)=Z_1(\cdot,\cdot,\cdot,\cdot,\cdot)$. Assume

$$W_1(\lambda_1, x_1, y_1, z_1, b_1, c_1) = (x_1, y_1, z_1, b_1, c_1)$$

for a $(\lambda_1, x_1, y_1, z_1, b_1, c_1) \in [0, 1] \times \partial \Omega$. Then

$$x_1(t) = b_1 + g^{-1}(c_1)t$$
, $y_1(t) = g^{-1}(c_1)$, $z_1(t) = g^{-1}(c_1)$,

$$x_1(\alpha_1(x_1, x_1')) = \lambda_1 p_1(x_1, x_1'), \quad x_1(\alpha_2(x_1, x_1')) = \lambda_1 p_2(x_1, x_1'),$$

and so

$$b_1+g^{-1}(c_1)\alpha_1(x_1,x_1')=\lambda_1p_1(x_1,x_1'), \quad b_1+g^{-1}(c_1)\alpha_2(x_1,x_1')=\lambda_1p_2(x_1,x_1').$$

Thus (cf. (H_1) , (H_2) and (H_4))

$$|g^{-1}(c_1)|(\alpha_2(x_1,x_1')-\alpha_1(x_1,x_1'))=\lambda_1|p_1(x_1,x_1')-p_2(x_1,x_1')|$$

$$\leq \mu(\alpha_2(x_1, x_1') - \alpha_1(x_1, x_1')),$$

which yields $|g^{-1}(c_1)| \leq \mu$. Whence

$$|b_1| < \mu T + \min\{A_1, A_2\} < U.$$

Consequently,

$$||x_1|| \le U + \mu T$$
, $||y_1|| \le \mu$, $||z_1|| \le \mu$, $|b_1| \le U$, $|c_1| \le G(\mu)$,

which contradicts $(x_1, y_1, z_1, b_1, c_1) \in \partial \Omega$. Thus (cf. (9))

(16)
$$D(I - Z_1, \Omega, 0) = D(I - W_1(1, \cdot, \cdot, \cdot, \cdot), \Omega, 0)$$
$$= D(I - W_1(0, \cdot, \cdot, \cdot, \cdot, \cdot), \Omega, 0) = D(I - Z, \Omega, 0) \neq 0.$$

Finally define

$$S: \bar{\Omega} \to C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2,$$

$$V: [0,1] \times \bar{\Omega} \to C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2$$

by

$$S(x,y,z,b,c) = \left(b + \int_0^t g^{-1} \left(c + \int_0^s (F_n(x,y,z(\nu)))(\nu) d\nu\right) ds,$$

$$g^{-1} \left(c + \int_0^t (F_n(x,y,z(s)))(s) ds\right),$$

$$g^{-1} \left(c + \int_0^t (F_n(x,y,z(s)))(s) ds\right),$$

$$b - x(\alpha_1(x,y)) + p_1(x,y), c - x(\alpha_2(x,y)) + p_2(x,y)\right),$$

$$V(\lambda, x, y, z, b, c) = \left(b + \int_0^t g^{-1} \left(c + \lambda \int_0^s (F_n(x, y, z(\nu)))(\nu) d\nu\right) ds,$$

$$g^{-1} \left(c + \lambda \int_0^t (F_n(x, y, z(s)))(s) ds\right),$$

$$g^{-1} \left(c + \lambda \int_0^t (F_n(x, y, z(s)))(s) ds\right),$$

$$b - x(\alpha_1(x, y)) + p_1(x, y), c - x(\alpha_2(x, y)) + p_2(x, y)\right).$$

Obviously, if (x, y, z, b, c) is a fixed point of the operator S, then x is a solution of BVP $(6_n)_1$, (2) and x' = y = z, b = x(0), c = g(x'(0)). Conversely, if x is a solution of BVP $(6_n)_1$, (2) and $(x, x', x', x(0), g(x'(0))) \in \bar{\Omega}$, then (x, x', x', x(0), g(x'(0))) is a fixed point of S.

To prove that V is a compact operator, let $\{(\lambda_j, x_j, y_j, z_j, b_j, c_j)\} \subset [0, 1] \times \bar{\Omega}$. Set

$$(u_j, v_j, w_j, B_j, C_j) = V(\lambda_j, x_j, y_j, z_j, b_j, c_j), \qquad j \in \mathbb{N}$$

and

$$P(v) = \max\{g^{-1}(v), -g^{-1}(-v)\}, \quad v \in [0, \infty).$$

Then

$$u_{j}(t) = b_{j} + \int_{0}^{t} g^{-1} \left(c_{j} + \lambda_{j} \int_{0}^{s} (F_{n}(x_{j}, y_{j}, z_{j}(\nu)))(\nu) d\nu \right) ds,$$

$$v_{j}(t) = w_{j}(t) = g^{-1} \left(c_{j} + \lambda_{j} \int_{0}^{t} (F_{n}(x_{j}, y_{j}, z_{j}(s)))(s) ds \right) (= u'_{j}(t)),$$

$$B_{j} = b_{j} - x_{j}(\alpha_{1}(x_{j}, x'_{j})) + p_{1}(x_{j}, x'_{j}), \quad C_{j} = c_{j} - x_{j}(\alpha_{2}(x_{j}, x'_{j})) + p_{2}(x_{j}, x'_{j}),$$
 and from the property (c) of F and (5), it follows that there exists $k \in L_{1}(J)$ such that

(17) $|(F_n(x_j, y_j, z_j(t)))(t)| \le k(t)$ for a.e. $t \in J$ and each $j \in \mathbb{N}$. Consequently,

$$|u_j(t)| \le U + (1+\mu)T + TP\Big(G(K+1) + \int_0^T k(t) dt\Big),$$

$$|u'_j(t)| = |v_j(t)| = |w_j(t)| \le P\Big(G(K+1) + \int_0^T k(t) dt\Big),$$

$$|g(u'_j(t_1)) - g(u'_j(t_2))| = |g(v_j(t_1)) - g(v_j(t_2))| \le \Big|\int_{t_1}^{t_2} k(t) dt\Big|,$$

$$|B_j| \le 2(U + (1+\mu)T) + A_1, \quad |C_j| \le G(K+1) + U + (1+\mu)T + A_2$$

for $t, t_1, t_2 \in J$ and $j \in \mathbb{N}$. Going if necessary to a subsequence, we can assume, by the Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem, that $\{(u_j, v_j, w_j, B_j, C_j)\}$ is convergent in $C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2$. Since V is continuous (see the property (b) of F and the definition of F_n), the compactness of V is proved.

Assume

$$V(\lambda_0, x_0, y_0, z_0, b_0, c_0) = (x_0, y_0, z_0, b_0, c_0)$$

for some $(\lambda_0, x_0, y_0, z_0, b_0, c_0) \in [0, 1] \times \partial \Omega$. Then x_0 is a solution of BVP $(6_n)_{\lambda_0}$, (2) and $x'_0 = y_0 = z_0$, $b_0 = x_0(0)$, $c_0 = g(x'_0(0))$. By Lemma 2.1, $||x_0|| \leq U + \frac{T}{n}$, $L_1 - \frac{1}{n} < x'_0(t) < L_3 + \frac{1}{n}$ for $t \in J$, and so

$$||y_0|| = ||z_0|| < K+1, \quad |b_0| \le U + \frac{T}{n}, \quad |c_0| < G(K+1),$$

which contradicts $(x_0, y_0, z_0, b_0, c_0) \in \partial \Omega$.

By the theory of homotopy (cf. (16))

$$D(I - S, \Omega, 0) = D(I - V(1, \cdot, \cdot, \cdot, \cdot), \Omega, 0)$$

= $D(I - V(0, \cdot, \cdot, \cdot, \cdot, \cdot), \Omega, 0) = D(I - Z_1, \Omega, 0) \neq 0.$

Consequently, there exists a fixed point $(u, v, z, b, c) \in \Omega$ of the operator S. Then u is a solution of BVP $(6_n)_1$, (2) and Lemma 2.1 shows that $||u|| \leq U + \frac{T}{n}$, $L_1 - \frac{1}{n} < u'(t) < L_3 + \frac{1}{n}$ for $t \in J$.

COROLLARY 2.4. Let assumptions $(H_1) - (H_4)$ be satisfied. Then for sufficiently large $n \in \mathbb{N}$ BVP $(6_n)_1$, (2) has a solution u satisfying

$$||u|| \le U + \frac{T}{n}, \quad D - \frac{1}{n} < u'(t) < H + \frac{1}{n}, \qquad t \in J.$$

PROOF. If $L_1 < L_4$, $L_2 < L_3$, the assertion follows from Lemma 2.3. Let $L_1 > L_4$, $L_2 < L_3$. By the same arguments as in the proof of Lemma 2.3 we prove that for sufficiently large $n \in \mathbb{N}$ BVP $(6_n)_1$, (2) has a solution u such that

$$||u|| \le U + \frac{T}{n}, \quad L_4 - \frac{1}{n} < u'(t) < L_3 + \frac{1}{n}, \qquad t \in J.$$

Similarly for $L_2 > L_3$.

THEOREM 2.5. Let assumptions $(H_1) - (H_4)$ be satisfied. Then BVF (1), (2) has a solution u and the estimates

(18)
$$||u|| \le U, \quad D \le u'(t) \le H$$

for $t \in J$ are fulfilled.

PROOF. By Corollary 2.4, BVP $(6_n)_1$, (2) has a solution u_n for sufficiently large $n \in \mathbb{N}$ and

$$||u_n|| \le U + \frac{T}{n}, \quad D - \frac{1}{n} \le u'_n(t) \le H + \frac{1}{n}, \quad t \in J.$$

Moreover, the property (c) of F implies that there is $k_1 \in L_1(J)$ such that $|(F_n(u_n, u'_n, u'_n(t))(t)| \le k_1(t)$ for a.e. $t \in J$, and so

$$|g(u'_n(t_1)) - g(u'_n(t_2))| \le \Big| \int_{t_1}^{t_2} k_1(t) dt \Big|$$

for $t_1, t_2 \in J$ and sufficiently large $n \in \mathbb{N}$. Thus $\{u_n\}$, $\{u'_n\}$ are bounded in $C^0(J)$, $\{u'_n(t)\}$ is equicontinuous on J since g is a continuous and increasing function. By the Arzelà-Ascoli theorem, we can choose a subsequence $\{u_{k_n}\}$ converging (in $C^1(J)$) to u. One can see that u fulfils (2) and (18), and (see the property (b) of F)

$$\begin{split} &\lim_{n\to\infty}(F_{k_n}(u_{k_n},u'_{k_n},u'_{k_n},u'_{k_n}(t)))(t)\\ &=\lim_{n\to\infty}\left((F(\bar{u}_{k_n},\tilde{u'}_{k_n},[u'_{k_n}(t)]_{k_n}))(t)+\frac{p(u'_{k_n}(t))}{k_n}\right)\\ &=(F(u,u',u'(t)))(t) \end{split}$$

in $L_1(J)$. Thus, u is a solution of BVP (1),(2) satisfying inequalities (18). \square

EXAMPLE 2.1. Let J=[0,3] and $h:\mathbb{R}\to\mathbb{R}, F_1:C^0(J)\times C^0(J)\to L_1(J)$ be continuous and $h(L_i)=0$ (i=1,2,3,4) where $L_1< L_4\le -2,$ $2\le L_2< L_3$. Consider BVP

(19)
$$(g(x'(t)))' = h(x'(t))(F_1(x,x'))(t),$$

(20)
$$x\left(\frac{2|x(\xi)|}{1+x^2(\xi)}\right) = \sin\left(\int_0^3 \sqrt{|x(t)| + (x'(t))^2} dt\right),$$
$$x(3-|\sin x'(\varepsilon)|) = \cos x(\nu),$$

where $\xi, \varepsilon, \nu \in J$. Applying Theorem 2.5 (with $F(x, y, a) = h(a)F_1(x, y)$, $\mu = 2$, $A_1 = A_2 = 1$, $\alpha_1(x, y) = \frac{2|x(\xi)|}{1+x^2(\xi)}$, $\alpha_2(x, y) = 3 - |\sin y(\varepsilon)|$, $p_1(x, y) = \sin\left(\int_0^3 \sqrt{|x(t)| + (y(t))^2} dt\right)$, $p_2(x, y) = \cos x(\nu)$,), BVP (19), (20) has a solution u satisfying the inequalities

$$||u|| \le 1 + 3 \max\{-L_1, L_3\}, \quad L_1 \le u'(t) \le L_3$$

for $t \in J$.

In [RS] problems for second order functional differential equations with boundary conditions $\alpha(x)=0, x'(1)=0$ or $\alpha(x)=0, x'(0)=0$ were also considered. Here $\alpha:C^0([0,1])\to\mathbb{R}$ is a linear bounded and increasing (i.e. $x,y\in C^0([0,1]), x(t)< y(t)$ for $t\in [0,1]\Rightarrow \alpha(x)<\alpha(y)$) functional. We observe that $\alpha(x)=0$ for an $x\in C^0([0,1])$ implies $x(\xi)=0$ with a $\xi\in [0,1]$. The authors proved existence results for the above BVPs under assumptions which are of the type of our assumption (H_6) but only with two constants

 K_1, K_2 or K_3, K_4 . We observe that these assumptions are not sufficient for existence results of BVP (1), (3) as follows from Example 3.1.

EXAMPLE 3.1. Consider the differential equation $x'' = \varepsilon x'^3$ on J = [0,2] with the boundary conditions $x(\frac{3}{4}) = 0$, x'(1) = 1. Here $\varepsilon = \pm 1$. This BVP is the special case of BVP (1), (3) (with $F(x,y,a) = \varepsilon a^3$, $\beta_1(x,y) = \frac{3}{4}$, $\beta_2(x,y) = 1$, $r_1(x,y) = 0$, $r_2(x,y) = 1$). Clearly, $(F(x,y,-2))(t) = -8\varepsilon$, $(F(x,y,2))(t) = 8\varepsilon$ for $t \in J$ and $x,y \in C^0(J)$. But our BVPs have no solution since for $\varepsilon = -1$ (resp. $\varepsilon = 1$) the unique solution is defined only on the interval $(\frac{1}{2},2]$ (resp. $[0,\frac{3}{2})$).

The proofs of existence results for BVP (1), (3) are very similar to those for BVP (1), (2). Let assumptions (H_5) and (H_6) be satisfied and let $|K_4 - K_1| > \frac{2}{n_0}$, $|K_3 - K_2| > \frac{2}{n_0}$ for an $n_0 \in \mathbb{N}$. Set

$$E_1^* = K_1 + \frac{\operatorname{sign}(K_4 - K_1) - 1}{2} (K_1 - K_4), \ E_2^* = K_2 + \frac{\operatorname{sign}(K_3 - K_2) - 1}{2} (K_2 - K_3),$$

$$E_3^* = K_3 - \frac{\operatorname{sign}(K_3 - K_2) - 1}{2} (K_2 - K_3), \ E_4^* = K_4 - \frac{\operatorname{sign}(K_4 - K_1) - 1}{2} (K_1 - K_4).$$

Then $E_1^* < E_4^* \le -N$, $N \le E_2^* < E_3^*$ and $D_* = E_1^*$, $H_* = E_3^*$. For each $n \ge n_0$, $x, y \in C^0(J)$ and $a \in \mathbb{R}$, define x_* , $\hat{y} \in C^0(J)$ and $\{a\}_n \in \mathbb{R}$ by

$$x_{*}(t) = \begin{cases} U_{*} & \text{for } x(t) > U_{*} \\ x(t) & \text{for } |x(t)| \leq U_{*} \\ -U_{*} & \text{for } x(t) < -U_{*}, \end{cases}$$

$$\hat{y}(t) = \begin{cases} H_{*} & \text{for } y(t) > H_{*} \\ y(t) & \text{for } D_{*} \leq y(t) \leq H_{*} \\ D_{*} & \text{for } y(t) < D_{*}, \end{cases}$$

$$\begin{cases} E_{3}^{*} & \text{for } a \geq E_{3}^{*} \\ a & \text{for } E_{2}^{*} + \frac{2}{n} < a < E_{3}^{*} \\ -E_{2}^{*} + 2a - \frac{2}{n} & \text{for } E_{2}^{*} + \frac{1}{n} < a \leq E_{2}^{*} + \frac{2}{n} \\ E_{2}^{*} & \text{for } E_{2}^{*} < a \leq E_{2}^{*} + \frac{1}{n} \\ a & \text{for } E_{4}^{*} \leq a \leq E_{2}^{*} \\ E_{4}^{*} & \text{for } E_{4}^{*} - \frac{1}{n} \leq a < E_{4}^{*} - \frac{1}{n} \\ a & \text{for } E_{1}^{*} \leq a < E_{4}^{*} - \frac{1}{n} \\ a & \text{for } E_{1}^{*} \leq a < E_{4}^{*} - \frac{1}{n} \\ E_{1}^{*} & \text{for } a < E_{1}^{*}. \end{cases}$$

Let $l: \mathbb{R} \to \mathbb{R}$ be a continuous function with the property:

$$|l(v)| \le 1$$
 for $v \in \mathbb{R}$,

(21)
$$l(v) = 1 \quad \text{for } v \in [K_4 - \frac{1}{n_0}, K_4] \cup [K_2, K_2 + \frac{1}{n_0}],$$
$$l(v) = -1 \quad \text{for } v \in [K_1 - \frac{1}{n_0}, K_1] \cup [K_3, K_3 + \frac{1}{n_0}].$$

Set

$$(F_n^*(x,y,a))(t) = (F(x_*,\hat{y},\{a\}_n))(t) + \frac{l(a)}{n}$$

for $(x, y, a) \in C^0(J) \times C^0(J) \times \mathbb{R}$ and $n \in \mathbb{N}$, $n > n_0$.

Consider the two-parameter family of the functional differential equations

$$(g(x'(t)))' = \lambda(F_n^*(x, x', x'(t)))(t), \qquad \lambda \in [0, 1], \ n \ge n_0. \tag{22}_n)_{\lambda}$$

LEMMA 3.1. (A priori estimates). Let assumptions (H_5) and (H_6) be satisfied with $K_1 < K_4$ and $K_2 < K_3$ and let BVP $(22_n)_{\lambda}$, (3) has a solution u for some $\lambda \in [0,1]$ and $n \geq n_0$. Then

$$||u|| \le U_* + \frac{T}{n}, \quad K_1 - \frac{1}{n} < u'(t) < K_3 + \frac{1}{n}$$

for $t \in J$.

PROOF. Set
$$T_1 = \beta_1(u, u')$$
, $T_2 = \beta_2(u, u')$. By (H_5) , (23) $|u'(T_2)| \leq N$.

If $\lambda=0$, $g(u'(t))\equiv const.$; hence (cf. (23)) $|u'(t)|\leq N$ for $t\in J$. Let $u'(\xi)=\max\{u'(t);\,t\in J\}\geq K_3+\frac{1}{n}$ with a $\xi\in J$. If $\xi\in (T_2,T]$, then there exist $t_0\in (T_2,\xi)$ and $\varepsilon_0>0$ such that $u'(t_0)=K_3$, $u'(t_0+\varepsilon_0)=K_3+\frac{1}{n}$ and $K_3\leq u'(t)\leq K_3+\frac{1}{n}$ for $t\in [t_0,t_0+\varepsilon_0]$. Integrating the equality

$$(q(u'(t))' = \lambda(F_n^*(u, u', u'(t)))(t)$$

for a.e. $t \in J$ from t_0 to $t_0 + \varepsilon_0$ we obtain

$$g(u'(t_0 + \varepsilon_0)) - g(u'(t_0)) = \lambda \int_{t_0}^{t_0 + \varepsilon_0} (F_n^*(u, u', u'(t)))(t) dt$$

$$= \lambda \int_{t_0}^{t_0 + \varepsilon_0} \left((F(u_*, \widehat{u'}, K_3))(t) + \frac{l(u'(t))}{n} \right) dt$$

$$\leq \frac{\lambda}{n} \int_{t_0}^{t_0 + \varepsilon_0} l(u'(t)) dt = -\frac{\lambda \varepsilon_0}{n} < 0,$$

which contradicts $g(u'(t_0 + \varepsilon_0)) - g(u'(t_0)) = g(K_3 + \frac{1}{n}) - g(K_3) > 0$. The next part of the proof of the inequalities $K_1 - \frac{1}{n} < u'(t) < K_3 + \frac{1}{n}$, $t \in J$, is similar to that of Lemma 2.1 (with $L_i = K_i$ (i = 1, 2, 3, 4) and $\mu = N$) and therefore it is omitted.

Since $|u(t)| = \left|u(T_1) + \int_{T_1}^t u'(s) \, ds\right| \le |r_1(u, u')| + \left|\int_{T_1}^t |u'(s)| \, ds\right| \le M + T \max\{-K_1 + \frac{1}{n}, K_3 + \frac{1}{n}\} = M + (\max\{-K_1, K_3\} + \frac{1}{n})T \text{ for } t \in J, \text{ we have } ||u|| \le U_* + \frac{T}{n}.$

From Lemma 3.1 and applying the same procedure as in the proof of Corollary 2.2 we obtain the following corollary.

COROLLARY 3.2. (A priori estimates). Let assumptions (H_5) and (H_6) be satisfied. Let u be a solution of BVP $(22_n)_{\lambda}$, (3) for some $n \geq n_0$ and $\lambda \in [0,1]$. Then

$$||u|| \le U_* + \frac{T}{n}, \quad D_* - \frac{1}{n} < u'(t) < H_* + \frac{1}{n}$$

for $t \in J$.

LEMMA 3.3. Let assumptions (H_5) and (H_6) be satisfied with $K_1 < K_4$ and $K_2 < K_3$. Then for sufficiently large $n \in \mathbb{N}$ BVP $(22_n)_1$, (3) has a solution u satisfying

$$||u|| \le U_* + \frac{T}{n}, \quad K_1 - \frac{1}{n} < u'(t) < K_3 + \frac{1}{n}, \qquad t \in J$$

PROOF. Fix $n \in \mathbb{N}$, $n \ge n_0$. Set $K_* = \max\{-D_*, H_*\}$,

$$G(v) = \max\{g(v), -g(-v)\}, P(v) = \max\{g^{-1}(v), -g^{-1}(-v)\}, v \in [0, \infty),$$

$$\Omega = \left\{ (x, y, z, b, c); (x, y, z, b, c) \in C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2, \\ ||x|| < 2U_* + 1, ||y|| < K_* + 1, ||z|| < K_* + 1, \\ ||x|| < 2U_* + 1, ||y|| < K_* + 1, ||z|| < K_* + 1, ||z||$$

$$|b| < 2U_* + 1, |c| < G(K_* + 1)$$

and define the operators

$$Z_*: \bar{\Omega} \to C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2,$$

$$W_*: [0,1] \times \bar{\Omega} \to C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2$$

by

$$Z_*(x,y,z,b,c) = \left(b+g^{-1}(c)t, g^{-1}(c), g^{-1}(c), b-x(\beta_1(x,y)), c-x'(\beta_2(x,y))\right),$$

$$W_*(\lambda,x,y,z,b,c) = \lambda Z_*(x,y,z,b,c).$$

It can be shown without difficulties that W_* is a compact operator. Assume

$$W_*(\lambda_0, x_0, y_0, z_0, b_0, c_0) = (x_0, y_0, z_0, b_0, c_0)$$

for some $(\lambda_0, x_0, y_0, z_0, b_0, c_0) \in [0, 1] \times \partial\Omega$. Then

$$x_0(t) = \lambda_0(b_0 + g^{-1}(c_0)t), \quad x_0'(t) = y_0(t) = z_0(t) = \lambda_0 g^{-1}(c_0),$$

 $b_0 = \lambda_0(b_0 - x_0(\beta_1(x_0, x_0'))), \quad c_0 = \lambda_0(c_0 - x_0'(\beta_2(x_0, x_0'))),$

and so

(24)
$$b_0 = \lambda_0 \Big(b_0 - \lambda_0 b_0 - \lambda_0 g^{-1}(c_0) \beta_1(x_0, x_0') \Big),$$
$$c_0 = \lambda_0 (c_0 - \lambda_0 g^{-1}(c_0)).$$

Thus

$$(1-\lambda_0)c_0 = -\lambda_0^2 g^{-1}(c_0).$$

If $\lambda_0 \in \{0, 1\}$ then $c_0 = 0$. Assume $\lambda_0 \in (0, 1)$. If $c_0 \neq 0$ then $\frac{c_0}{g^{-1}(c_0)} = -\frac{\lambda_0^2}{1-\lambda_0}$, which contradicts $\frac{c_0}{g^{-1}(c_0)} > 0$, $-\frac{\lambda_0^2}{1-\lambda_0} < 0$. Hence $c_0 = 0$, and consequently (cf. (24)) $b_0(1-\lambda_0+\lambda_0^2) = 0$ which gives $b_0 = 0$ since $1-\lambda_0+\lambda_0^2 > 0$. We have proved: $(x_0, y_0, z_0, b_0, c_0) = (0, 0, 0, 0, 0)$, a contradiction. By the theory of homotopy

(25)
$$D(I - Z_*, \Omega, 0) = D(I - W_*(1, \cdot, \cdot, \cdot, \cdot), \Omega, 0)$$
$$= D(I - W_*(0, \cdot, \cdot, \cdot, \cdot), \Omega, 0) = D(I, \Omega, 0) = 1.$$

Let the operators

$$Z_{*1}: \bar{\Omega} \to C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2,$$

$$W_{*1}: [0,1] \times \bar{\Omega} \to C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2$$

be given by

$$Z_{*1}(x,y,z,b,c) = Z_{*}(x,y,z,b,c) + (0,0,0,r_{1}(x,y),r_{2}(x,y)),$$

 $W_{*1}(\lambda,x,y,z,b,c) = Z_{*}(x,y,z,b,c) + \lambda(0,0,0,r_{1}(x,y),r_{2}(x,y)).$

Then W_{*1} is a compact operator. Assume

$$W_{*1}(\lambda_1, x_1, y_1, z_1, b_1, c_1) = (x_1, y_1, z_1, b_1, c_1)$$

for some $(\lambda_1, x_1, y_1, z_1, b_1, c_1) \in [0, 1] \times \partial \Omega$. Then

$$(26) x_1(t) = b_1 + g^{-1}(c_1)t, x_1'(t) = y_1(t) = z_1(t) = g^{-1}(c_1),$$

$$x_1(\beta_1(x_1, x_1')) = \lambda_1 r_1(x_1, x_1'), x_1'(\beta_2(x_1, x_1')) = \lambda_1 r_2(x_1, x_1'),$$

and so

(27)
$$b_1 + g^{-1}(c_1)\beta_1(x_1, x_1') = \lambda_1 r_1(x_1, x_1'),$$

$$(28) g^{-1}(c_1) = \lambda_1 r_2(x_1, x_1').$$

From (28) and (H_5) we obtain (see the definition of the function G)

$$|c_1| \leq G(N)$$

and then (cf. (27), (28) and (H_5))

$$|b_1| \le |g^{-1}(c_1)|T + M \le |r_2(x_1, x_1')|T + M \le NT + M,$$

and consequently (cf. (26), (28) and (H_5))

$$||x_1|| \le 2NT + M$$
, $||x_1'|| = ||y_1|| = ||z_1| \le N$.

We see that $(x_1, y_1, z_1, b_1, c_1) \notin \partial \Omega$, a contradiction. Thus (cf. (25))

(29)
$$D(I - Z_{*1}, \Omega, 0) = D(I - W_{*1}(1, \cdot, \cdot, \cdot, \cdot, \cdot), \Omega, 0)$$
$$= D(I - W_{*1}(0, \cdot, \cdot, \cdot, \cdot, \cdot), \Omega, 0) = D(I - Z_{*}, \Omega, 0) = 1.$$

Finally define

$$S_*: \bar{\Omega} \to C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2,$$

$$V_*: [0,1] \times \bar{\Omega} \to C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2$$

by the formulas

$$S_{\star}(x,y,z,b,c) = \left(b + \int_{0}^{t} g^{-1} \left(c + \int_{0}^{s} (F_{n}^{\star}(x,y,z(\nu)))(\nu) d\nu\right) ds,$$

$$g^{-1} \left(c + \int_{0}^{t} (F_{n}^{\star}(x,y,z(s)))(s) ds\right),$$

$$g^{-1} \left(c + \int_{0}^{t} (F_{n}^{\star}(x,y,z(s)))(s) ds\right),$$

$$b - x(\beta_{1}(x,y)) + r_{1}(x,y), c - y(\beta_{2}(x,y)) + r_{2}(x,y)\right),$$

$$V_{\star}(\lambda,x,y,z,b,c) = \left(b + \int_{0}^{t} g^{-1} \left(c + \lambda \int_{0}^{s} (F_{n}^{\star}(x,y,z(\nu)))(\nu) d\nu\right) ds,$$

$$g^{-1} \left(c + \lambda \int_{0}^{t} (F_{n}^{\star}(x,y,z(s)))(s) ds\right),$$

$$g^{-1} \left(c + \lambda \int_{0}^{t} (F_{n}^{\star}(x,y,z(s)))(s) ds\right),$$

$$b - x(\beta_{1}(x,y)) + r_{1}(x,y), c - y(\beta_{2}(x,y)) + r_{2}(x,y)\right).$$

If (x, y, z, b, c) is a fixed point of the operator S_* we can easy verify that x is a solution of BVP $(22_n)_1$, (3) and x' = y = z, b = x(0), c = g(x'(0)). Conversely, if x is a solution of BVP $(22_n)_1$, (3) and $(x, x', x', x(0), g(x'(0))) \in \bar{\Omega}$, then (x, x', x', x(0), g(x'(0))) is a fixed point of S_* .

Thus to prove our lemma it is sufficient to show that there exists a fixed point of S_* . We now verify that V_* is a compact operator. Let $\{(\lambda_i, x_i, y_i, z_i, b_i, c_i)\} \subset [0, 1] \times \bar{\Omega}$ be a sequence and set

$$(u_i, v_i, w_i, B_i, C_i) = V_*(\lambda_i, x_i, y_i, z_i, b_i, c_i), \quad i \in \mathbb{N}.$$

Then

$$u_i(t) = b_i + \int_0^t g^{-1} \Big(c_i + \lambda_i \int_0^s (F_n^*(x_i, y_i, z_i(\nu)))(\nu) \, d\nu \Big) \, ds,$$

$$u_i'(t) = v_i(t) = w_i(t) = g^{-1} \left(c_i + \lambda_i \int_0^t (F_n^*(x_i, y_i, z_i(s)))(s) \, ds \right)$$

$$B_i = b_i - x_i(\beta_1(x_i, y_i)) + r_1(x_i, y_i), \quad C_i = c_i - y_i(\beta_2(x_i, y_i)) + r_2(x_i, y_i),$$

and from the properties of F it follows the existence of a $q \in L_1(J)$ such that

$$|(F_n^*(x_i, y_i, z_i(t)))(t)| \le q(t)$$
 for a.e. $t \in J$ and each $i \in \mathbb{N}$.

Hence

$$|u_i(t)| \le 2U_* + 1 + TP\Big(G(K_* + 1) + \int_0^T q(t) dt\Big),$$

$$|u_i'(t)| = |v_i(t)| = |w_i(t)| \le P\Big(G(K_* + 1) + \int_0^T q(t) dt\Big),$$

$$|g(u_i'(t_1)) - g(u_i'(t_2))| \le \Big|\int_{t_1}^{t_2} q(t) dt\Big|,$$

$$|B_i| \le 4U_* + M + 2, \qquad |C_i| \le G(K_* + 1) + K_* + N + 1$$

for $t, t_1, t_2 \in J$. By the Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem, we can select a subsequence $\{(u_{i_n}, v_{i_n}, w_{i_n}, B_{i_n}, C_{i_n})\}$ converging in $C^0(J) \times C^0(J) \times C^0(J) \times \mathbb{R}^2$. From this and from the continuity of V_* we deduce that V_* is a compact operator.

Assume

$$V_*(\lambda_+, x_+, y_+, z_+, b_+, c_+) = (x_+, y_+, z_+, b_+, c_+)$$

for some $(\lambda_+, x_+, y_+, z_+, b_+, c_+) \in [0, 1] \times \partial \Omega$. Then x_+ is a solution of BVP $(22_n)_{\lambda_+}$, (3) and $x'_+ = y_+ = z_+$, $b_+ = x_+(0)$, $c_+ = g^{-1}(x'_+(0))$. By Lemma 3.1, $||x_+|| \le U_* + \frac{T}{n}$, $K_1 - \frac{1}{n} < x'_+(t) < K_3 + \frac{1}{n}$ for $t \in J$, which yields

$$||y_+|| = ||z_+|| < K_* + 1, \quad |b_+| \le U_* + \frac{T}{n}, \quad |c_+| < G(K_* + 1),$$

contrary to $(x_+, y_+, z_+, b_+, c_+) \in \partial \Omega$.

Hence (cf. (29))

$$D(I - S_*, \Omega, 0) = D(I - V_*(1, \cdot, \cdot, \cdot, \cdot), \Omega, 0)$$

= $D(I - V_*(0, \cdot, \cdot, \cdot, \cdot, \cdot), \Omega, 0) = D(I - Z_{*1}, \Omega, 0) \neq 0$,

and so there exists a fixed point $(u, v, w, b, c) \in \Omega$ of S_* . Then u is a solution of BVP $(22_n)_1$, (3) and Lemma 3.1 shows that $||u|| \leq U_* + \frac{T}{n}$, $K_1 - \frac{1}{n} < u'(t) < K_3 + \frac{1}{n}$ for $t \in J$.

О

COROLLARY 3.4. Let assumptions (H_5) and (H_6) be satisfied. Then for sufficiently large $n \in \mathbb{N}$ BVP $(22_n)_1$, (3) has a solution u satisfying

$$||u|| \le U_* + \frac{T}{n}, \quad D_* - \frac{1}{n} < u'(t) < H_* + \frac{1}{n}, \qquad t \in J.$$

PROOF. If $K_1 < K_4$, $K_2 < K_3$, the assertion follows from Lemma 3.3. If $K_1 > K_4$, $K_2 < K_3$ then replacing K_1 and K_4 and using the same procedure as in the proof of Lemma 3.3 we prove that for $n \in \mathbb{N}$ sufficiently large BVP $(22_n)_1$, (3) has a solution u satisfying

$$||u|| \le U_* + \frac{T}{n}, \quad K_4 - \frac{1}{n} < u'(t) < K_3 + \frac{1}{n}, \qquad t \in J.$$

Similarly for $K_2 > K_3$.

THEOREM 3.5. Let assumptions (H_5) and (H_6) be satisfied. Then BVP (1), (3) has a solution u satisfying the inequalities

(30)
$$||u|| \le U_*, \quad D_* \le u'(t) \le H_*$$

for $t \in J$.

PROOF. By Corollary 3.4, BVP $(22_n)_1$, (3) has a solution u_n for sufficiently large $n \in \mathbb{N}$ and

$$||u_n|| \le U_* + \frac{T}{n}, \quad D_* - \frac{1}{n} \le u'_n(t) \le H_* + \frac{1}{n}, \quad t \in J.$$

Moreover (cf. the property (c) of F), there exists $q_1 \in L_1(J)$ such that

$$|(F_n^*(u_n, u_n', u_n'(t)))(t)| \le g_1(t)$$

for a.e. $t \in J$, and so

$$|g(u'_n(t_1)) - g(u'_n(t_2))| \le \Big| \int_{t_1}^{t_2} q_1(t) dt \Big|$$

for $t_1, t_2 \in J$ and sufficiently large $n \in \mathbb{N}$. Thus $\{u_n\}$, $\{u'_n\}$ are bounded in $C^0(J)$, $\{u'_n(t)\}$ is equicontinuous on J. By the Arzelà-Ascoli theorem, we can assume without loss of generality that $\{u_n\}$ is a convergent sequence in $C^1(J)$ and let $\lim_{n\to\infty} u_n = u$. Then u fulfils (3) and (30). Since

$$\lim_{n \to \infty} (F_n^*(u_n, u_n', u_n'(t)))(t) = \lim_{n \to \infty} \left((F(u_{n*}, \widehat{u_n'}, \{u_n'(t)\}_n))(t) + \frac{l(u_n'(t))}{n} \right)$$

$$= (F(u, u', u'(t)))(t)$$

in $L_1(J)$, we see that u is a solution of BVP (1), (3).

EXAMPLE 3.2. Let J = [0,1] and $h : \mathbb{R} \to \mathbb{R}$, $F_1 : C^0(J) \times C^0(J) \to L_1(J)$ be continuous and $h(K_i) = 0$ (i = 1, 2, 3, 4) where $K_1 < K_4 \le -2$, $2 \le K_2 < K_3$. Consider equation (19) and the boundary conditions

(31)
$$x(|\sin(x(\xi)x'(\mu))|) = \min\{S, ||x||, ||x'||\},$$

$$x'(|\cos(||x|| + ||x'||)|) = \frac{1}{1+x^2(\nu)},$$

where $S \in \mathbb{R}$ and $\xi, \mu, \nu \in J$. By Theorem 3.5 (with $F(x, y, a) = h(a)F_1(x, y), \beta_1(x, y) = |\sin(x(\xi)y(\mu))|, \beta_2(x, y) = |\cos(||x|| + ||y||)|, r_1(x, y) = \min\{S, ||x||, s\}$

$$||y||$$
, $r_2(x,y) = \frac{1}{1+x^2(\nu)}$, $M = |S|$, $N = 1$, $D_* = K_1$, $H_* = K_3$ and $U_* = |S| + \max\{-K_1, K_3\}$, BVP (19), (31) has a solution u and

$$||u|| \le |S| + \max\{-K_1, K_3\}, \quad K_1 \le u'(t) \le K_3, \quad t \in J.$$

References

- Brykalov S. A., Problems for differential equations with monotone boundary conditions. Diff. Urav. 32(1996), 1322-1330 (in Russian).
- [D] Deimling K., Nonlinear Functional Analysis. Springer Berlin Heidelberg, 1985.
- [K] Kelevedjiev P., Existence of solutions for two-point boundary value problems. Nonlinear Analysis 22(1994), 217-244.
- [M] Mawhin J., Topological Degree Methods in Nonlinear Boundary Value Problems. AMS, Providence, R.I., 1979.
- [R] Ruyun Ma, Existence theorems for a second order m-point boundary value problem.
 J. Math. Anal. Appl. 211(1997), 545-555.
- [RS] Rachunková I. and Staněk S., Topological degree methods in functional boundary value problems. Nonlin. Anal. 27(1996), 153-166.
- [RT] Rodriguez A. and Tineo A., Existence theorems for the Dirichlet problem without growth restrictions. J. Math. Anal. Appl. 135(1988), 1-7.
- [S] Staněk S., Existence results for functional boundary value problems at resonance.
 Math. Slovaca 48(1998), 43-55.

Department of Mathematical Analysis, Faculty of Science, Palacký University, Tomkova 40, 779 00 Olomouc, Czech Republic

E-mail address: stanek@risc.upol.cz

Received: 30.10.98.