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FUNCTIONAL BOUNDARY VALUE PROBLEMS WITHOUT
GROWTH RESTRICTIONS

SVATOSLAV STANEK
Palacky University, Czech Republic

AssTracT. Let J = [0,T} and F : C°(J) x CO(J) x R = Li(J)
be an operator. Existence theorems for the functional differential equa-
tion (g(z'(1))) = (F(z,z',2'(t)))(t) with functional boundary conditions
generalizing the non-homogeneous Dirichlet boundary conditions and non-
homogeneous mixed boundary conditions are given. Existence results are
proved by the Leray—Schauder degree theory under some sign conditions
imposed upon F'.

1. INTRODUCTION

Let J = [0,7] be a compact interval. Consider the functional differential
equation

1 (9(z'()) = (F(=z, 2", 2'(£)))(1)-

Here g : R — R is an increasing homeomorphism with inverse g7! : R — R,
g(0) =0and F:CJ) x COJ) x R = Li(J), (z,y.a) — (F(z,y,a))(t) is
an operator having the following properties:

(a) (F(z,y,2z(t)))(t) € Li(J) for z, y, z € C°(J),

(B) My 00 (Tn, Y, 20) = (,¥, 2) in COLJ) x CO(J) x C°(J) =

im0 (F(Tns Yn, 20 (0)))(E) = (F(z,y, 2())(t) in L1 (J),
(c) for each d € (0,00) there exists kq € L1(J), such that z, y € C°(J),
a€ Rzl + |l + |al <d = |[(Flz,y,a)(t) < ky(t) forae ted,

where ||z|| = max{|z(t)|; t € J} for z € C°(J) is the norm in C°(J).
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A prototype of the operator F in (1) is the operator
(F(z,y,0))(t) = f(t,z(t),y(t), a)

where f : J x R® — R satisfies the Carathéodory conditions on J x R3
(f € Car(J x R?) for short) or more generally

(F(z,y,a))(t) = (Pi(z,y))(1)1(a) + (Pa(z, y))(¢)
and

T—t
(F(z,y,0)(t) = / fi(s,az(s),y(s), @) ds + Falt, 2(2), y(2), a)

where Py, Py : C°(J) x C°(J) - L;(J), h: R — R are continuous and, for
each d € (0,00), there exists I; € L;(J) such that z, y € C°(J), [|z]|+jyl] < d
= (P, ) B)] < Lal®), [(Po(z,0)(B) < La(t) for ae. ¢ € J and fi, f €
Car(J x R®).

Together with (1) consider the functional boundary conditions

(2) z(o(z,2')) = pi(z,2'),  2(a2(z,2)) = pa(z,2'),
or
(3) z(Bi(z,2") = ri(z,z'), 2'(B2(z,z’)) = ro(z, ).

Here a;, a2, Bi, B2 : CO(J)x C°(J) — J and py, pa, 11, 72 : CO(J)x CO(J) =
R are continuous functionals. We see that (2) (with a;(z,2') =0, as(z,2') =
T, pi(z,z') = A, pa(z,2') = B for £ € C'(J)) gives the nonhomogeneous
Dirichlet boundary conditions and (3) (with r;(z,2’) = 4, r2(z,2') = B and
Bi(z,z') = O, Ba(z,z') =T resp. B1(z,2') =T, Ba(z,7') = 0 for z € C'(J))
gives the nonhomogeneous mixed boundary conditions.

We say that z € C1(J) is a solution of the boundary value problem (BVP
for short) (1), () ( = 2, 3) if g(a'(¢)) is absolutely continuous on J, z satisfies
boundary conditions (j) and (1) is satisfied for a.e. t € J.

We observe that Brykalov [B] considered among others the differential
equation

" +a1(t)z' + ao(t)z = f(t,z,2")

together with boundary conditions (2) (actually with more general boundary
conditions, in which oy, p; can depend also on z'). For this BVP he proved
an existence result under the assumptions that ag,a; € Li(J), ao(t) < 0,
f € Car(J x R?) satisfies the growth condition | f(¢,,y)| < v(t)+ Ao|z|t %0 +
Ay|y|* ¢ for ae. t € J and each 7,y € R where v € Li(J), ¥(t) > 0, 4; €
(0,00),€; € (0,1) 1 =0,1) and |py (z,2') = pa(z, 2")| < Maa(z,2') —a2(z, '),
lpj{z,z')] < N (j = 1,2) for all 2 having the absolutely continuous derivative
on J with positive constants A and N.

In this paper we prove existence results for BVPs (1),(2) and (1), (3)
providing that F satisfies only sign conditions. Our results are proved by the
topological degree method (see e.g. [D] and [M]). We generalize the results of
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IK]| for the Dirichlet conditions where the differential equation " = h(t,z,z'),
h € C%(J x R?) was studied. We note that our results are close those of [RT]
for the Dirichlet conditions where another type of the functional differential
equation was considered. This functional differential equation without growth
restrictions and with nonlinear functional boundary conditions was considered
in [S]. Some existence results for the equation z" = h{t, z, z') with continuous
h without growth restrictions was given by Rodriguez and Tineo [RT] for
the Dirichlet problem and by Ruyun Ma [R] for an m-point boundary value
problem.
The following assumptions will be needed throughout the paper:

(Hi) oa(z,2') < aa(z,2'), z€CH(J);
(H2) There exists a positive constant u such that
p1(z,2') = pa(z,2")] < wlae(z,2') - ca(z,2")), =€ CHJI);
(H3) There exist positive constants A;, A such that
lpi(z,z')| < A, z€C'(J), i=1,2

(H3) Thereexist Ly, Lo, L3, Ly € Rsuchthat Ly, Ly € (—o0,—pul, L2, L3 €
[[I.,OO), L1 ?é L4, Lz # L3 and

(F(z,y, L1))(t) <0 < (F(z,y, L2))(B),

for a.e. t € J and each z,y € C°(J), ||z|| < U, D < y(t) < H for
t € J, where

U = min{A4;, 4>} + Tmax{—D,H}, D =min{Ly, Ly},
H = max{L, L3}.
(Hs) There exist positive constants M, IV such that
Ir1(2,2)| < M, [ra(2.2) <N, @ €CJ);

(Hg) There exist K, Ka, K3, K4 € R such that K, K4 € (—o0, =N}, Ky,
K3 e [N, OO), I # K, K, # K3 and

(F(z,y, K1))(t) <0 < (F(z,y, K2))(1),

(F(z,y, K3))(t) <0 < (F(z,y, K1))(t)

for a.e. t € J and each z, y € C°(J), ||z|| < U., D, < y(t) < H.
for t € J, where

U.=M + Tmax{-D.,H.}, D,=min{l;, K4},
H, = max{K>,, K3}.
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2. BVP (1), (2)

2
ng :

Assume that assumptions (H;)-(H4) are satisfied. Let [Ls—L;| >
!Ls — Lgl > nlo- for an ng € N. Set
E =1L+ M“{M(Ll ~ L), E»=Ly+ sign(La—Lo)=1 (7, — L3).
Es=Ls— M#E(LQ —L3), Eq=Ly— Si_sisz;LlLL(Ll — Ly).
Then F1 < Ey < —p, u < Ey; < Ezyand D=FE,, H = E3.
For each n > ng, z.y € C°(J) and a € R, define 7, § € C°(J) and
[a], € R by
U for z(t) > U

z(t) =< z(t) for |z(t)| < U
U for z(t) < =T,
E; for y(t) > Es
§(t) =< y(t) for By <y(t) < Es
E; for y(t) < Ey,

( E3 for a > E3
a forEg+%<a<E3
—E2+2a—% fOl'E2+%<(LSE2+%
E, fOI'E2<ClSE2+%

(4) la]n :ﬁ a for By <a< Es

E, for By — L <a<ky
—Ey+2+2 forEy—2<a<E;j—%
a for By <a< Ey—2

L E, fora < E;.

Clearly lim,,_,o0[a], = a for a € [E}, E3] and for any z € C°(J), E; <
2(t) < E3, we have lim, 0 [2(t)]n = z(t) uniformly on J.
Let p: R = R be a continuous function with the property:

Ip(v)] <1 forveR,
(5) p(v) =1 forv€[Ly— L, Ly U[Ly, La + =],

ng’ no

p(v)y=-1 forvel[l — ;%,Ll] U[Ls, L3+ =]

no

Set.

(Puale,y,a) (1) = (F(z.9,[a)) 1) + 22
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fon (x,y.a) € CO(LT) x C°(J) x R and n € N, n > ng.
Consider the two—parameter family of the functional differential equations

(9(z'®)) = AEulz, 2" '),  Ae[0,1], n>no. (6n)x

LemMA 2.1. (A priori estimates). Let assumptions (Hy) — (Hy) be satis-
fied with Ly < Ly and Ly < L3 and let BVP (6,),, (2) has a solution u for
some X € [0,1] and n > ng. Then the estimates

T 1 1
lu| <KU+—=—, Li—=—<u'{t)<Ls+—
n n n

for t € J are fulfilled.

PRrROOF. Set t; = ai(u,u'), t2 = as(u,u’'). Then (H,), (H2) and (H3)
imply t1 < B2, |u(tz) — u(t1)| = [p2(u,v') = p1(u,vw')| < p(t2 — t1), and so
lu(te)—u(t1)

- 1 < p. Hence
(7) W' (O < n
where £ lies between t; and ¢o. If A = 0 then g(u'(t)) = const., and so (cf.
(M)

'@ =)l <n,  teld

Let A € (0,1]. Let u'(T1) = max{u/(f);t € J} > Lz + L witha T} € J.
Assume T € (£,T]. Then there exist t. € (§,71) and . > 0 such that
u'(t) = L3, v'(ts +2.) = L3+ L and L3 < u'(t) < L3+ L for t € [ta, ta +eu).
Integrating the equality
(8) (g (1)) = AM(Fn(u,u', u'(£)))(t)

for a.e. t € J from t, to t. + £, we obtain

tetes
o' (. +e.)) — g(u' () = A / (F (' (6)))(8) dit

= /HE* (P, La)) @) + p—(“—@) dt

n

2%

[

< i/ (8 dt = — 252 < g,
n J, n

which contradicts g(u'(tx +&4)) — g(u'(t«)) = g(Ls + L) — g(L3) > 0. Assume
€ [0,£). Then there exist to € (71,€] and g > 0 ‘such that u "(to — €0) =

Ly + ,%, u'(to) = Lz and Ly < u'(t) < La + 1 for t € [to — co, to]- Integrating

(8) from #g — &g to tg we have

to

9(u(t0)) — gt (fo — 20)) = A / (F (s o () (0) i

0—%0
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" ((F(a,&,Lg))(t)JrM)dt
to—&g n

A [
—/ p(u'(t)) dt = Ao >0,
t n

T Jta—so

v

which contradicts g(u'(te)) — g(u'(to — €0)) = g(L2) — g(L2 + £) < 0. Hence
uw'(t)<Ls+iforted.

Let u/'(T3) = min{u'(t); ¢ € J} < Ly — L for some T, € J. Assume
Ty € (£,T). Then there exist t4 € [£,T3) and g4 > 0 such that u'(t) = Ly,
w(ty+er) =Ly—Land Ly— L <u/(t) < Lyfort € [ty,t4 +e4]. Integrating
(8) from t to t4 + €4 we obtain

titet
gu'(t+ +e4)) —9(u'(t4)) = A t (Fa(u, v, u'(8)))(t) dt
ty+ey - u!
= A/t+ ((F(ﬂ,u’,L4))(t) 4 P n(t))) dt

ty+te
>2 [T e =2 0
n Jy, n

which contradicts g(u'(t4 + £4)) — g(u'(t+)) = g(La — L) — g(L4) < 0. If
T € [0,€) then there exist t_ € (T5,£) and e_ > 0 such that v/(t_ —e_)) =
Li -1 u/(t_) =L, Ly — L <v/(t) <L fort € [t_ —e_,t_]. Integrating
(8) from t_ — e_ to t_ we have

1

g(w'(t-)) —g(u'(t- —€-)) = A (Fn(u, v,/ ($))(2) dt

t_—e_

- /\/t_ (e, L)e) + ’ﬁn-@) dt

——E.

t_
<2 [ sweya=-2= <o,
n b —e_ n

which contradicts g(u'(¢-)) — g(u'(t- —€.)) = g(L1) —g(L1 — 1) > 0. Hence

min{u'(t);t€ J} > L; — L.
Let Ai = min{Al, Az} Then
¢ 1 1

[u®)| = ,u(ti) +/ u'(s) ds' < min{A4;, A2} + Trnax{ —Li+—,L3+ —}

" n n

1 T

=min{A;, A —-L, L —\T = —

min{4y, 2}+(max{ 1 3}+n) U+n

for t € J. Hence the lemma is proved. a
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COROLLARY 2.2. (A priori estimates). Let assumptions (Hy) — (Hy) be
satisfied. Letu be a solution of BVP (6,)x, (2) for somen > ng and A € [0, 1].
Then T

1 1
lu|<U+=, D-=<d'({t)<H+=, tel
n n n
Proor. If Ly < Ly, Ly < L3, the assertion follows from Lemma 2.1. Let

L: > L4, Ly < L. Then by the same procedure as in the proof of Lemma 2.1
we prove

T 1 1
lul KU+=, Li—=<u'{t)<Ls+-, te.J
7 n T

Similarly for Ly > La. O

LEMMA 2.3. Let assumptions (H;) — (Hy) be satisfied with L, < Ly and
L, < Ls. Then for sufficiently large n € N BVP (6,)1, (2) has a solution u
satisfying the inegualities

T 1 1
lull SU+=, Li—-=<u{t)<Ls+=, teJ
n i3 n

ProoF. Fixn € N, n > ng. Set K = max{—D, H},
G(v) = max{g(v), —g(—v)} for v € [0, 00),
Q = {(m,y,z,b,c); (z,y,7,b,¢) € COJ) x C°(J) x CO(J) x R?,
lall < U+ (1 +p)T, Iyl <K +1, |zl < K + 1,

b < U + (1+ wT, o < GK + 1)}

and define the operators
Z:Q - C%J) x CO(J) x C°(J) x R?,
W:[0,1] x Q= C°(J) x C%(J) x C°(J) x R?
by
2z, 2,5,¢) = (b+g72 ()t 971 (c), 97H(0),b—z(au (,m)), e~ 3(a(2,1))),
W\ z,9,2,b,¢c) = A\Z(z,y,2,b,¢).
We first prove that
9) D(I -2,0Q,0) £0,
where "D" is the Leray-Schauder degree and I is the identical operator on the
Banach space C°(J) x C°(J) x C°(J) x R%. It is easy to check that W is a
compact operator. Assume
W (Ao, Zo, Yo, 2o, bo, co) = (s, Yo, 20, bo, Co)

for some (Ao, Zo, Yo, 20, bo, co) € [0, 1] x Q. Then

(10) zo(t) = Xo(bo + g7 (co)t), wo(t) = Xog ™ (co), zo(t) = Aog™*(co),
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(11) bo = Ao(bo — zo(1 (20, 0))),

(12) co = Ao(co — To(az(Zo,%0))).
From (10)-(12) we deduce that yy = =y,

by = Ao (bo = Xobo — dog ™ (co)ar (xo,zb)),

(13)
co = Ao (Co — Agbo — )\og_l(co)az(ro,%)),
and so
Mg (co)au (2o, 7p)
(14) bo =~ 1- X+
(15) (1= Xo)(bo — co) = A3g~ (o) (a2 (zo, z0) — a1(zo, Tp)).-

If Ao = 0 then {zo, ¥, 20, bo, ) = (0,0,0,0,0). Assume Ay = 1. Then (cf.
(13)) b0 = —g~(co)a1(zo,2p), bo = —g ' (co)az(wo,zp), and consequently
0 = g7 Yeo)(a1(zo,Tf) — az(mo,zp)). Since az{zo,zy) — a1(zo,z) > 0 by
(H1), co = 0 and (10) and (14) show that (zo, Yo, 20, b0,c0) = (0,0,0,0,0).
Let Ag € (0,1). Assume ¢g # 0. Then from (14) and (15) we obtain that

_ Co )‘gal (.’L‘o,l‘b) 32 ! . !
(1=20) (oiey + T, oz ) = Mol0als0,2b) - aa(50,20))
2 - 4 b
Since —(1—Ag) (g_f‘zm + *‘;‘il(fif‘é’f)) < 0 and A2(a (2o, ) — a1 (2o, 7)) > 0,
we obtain a contradiction. Hence ¢o = 0, and so (zg, %o, 20, by, co) = (0,0, 0,

0,0).
We have proved (zo, yo, 20,00, ¢0) = (0,0,0,0,0) ¢ 99, a contradiction.
By the theory of homotopy (see e.g. [D] and {M]})

which proves (9).
Let the operators

Z1:Q = C%J) x C°(J) x C°(J) x R?,
W1 :[0,1] x @ = C°(J) x C°(J) x C°(J) x R?
be given by
Zi(z,y,2,b,¢) = Z(z,y,2,b,¢) + (0,0,0,p1(, ), p2(z, ),
Wi\ z,y,2,b,¢) = Z(z,y,2,b,¢) + A(0,0,0, py (z, ), p2(z, ¥)).
Then W1 is a compact operator and Wi (1,-,-,-,-,-) = Z1(-,+,-, -, ). Assume

Wi(A1,z1,91, 21,01, ¢1) = (21, Y1, 21, b1, 1)
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for a (A1, 21,91, 21,b1,¢1) € 0,1} x 02 Then
(t) = b+ g Ha)t, n(t) =g (a), =2(t)=g""(a),

zi{ay(z1, 1)) = Mpi(z, 21),  zi(ax(ay, 21)) = Mpa(zy, 21),

and so
bit+g M e)ai(z1,21) = Mpi(21,21),  bitg H(e)aa(zr,21) = Mpa(z1, 2).
Thus (cf. (H1), (Ha) and (Hy))
g7 (ev)l(ea (21, 21) = en (21, 21)) = Milpi(er, 21) — pa(z1,27))
< ploz(zr, o) — aa(z1,31)),
which yields |g7%(c1)] < . Whence
|b1] < pT + min{d;, 4,} <U.
Consequently,
Izl U+ T, fll <, Nzl <o, (|l €U, el < Gu),
which contradicts (z1,y1, 21,b1,¢1) € Q. Thus (cf. (9))
(16)
Finally define
S:Q— C°J) x COLJ) x C°(J) x R?,
V:[0,1] x Q = C°J) x C°(J) x C°(J) x R?

by

S(z,y,2,b,c) = <b+/Otg—l(c-}-/Os(Fn(a:,y,z(u)))(z/)du) ds,
7 e+ [ Py, 260 d5),
o7 e+ | (Pula, 2D ds).

b- x(al (Ty)) + D ((E,y), ¢ z(ag(m,y)) +p2(z)y)>a
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V(\z3,2,b¢) = <b+/ -1 c+A/ (Fal, v, 20)(v) dv) ds,

—1(c+)\/0t(Fn(x,y,z(s)))(s) ds),
9-1(c+ )\/Ot(Fn(z,y,z(s)))(s) ds),

b~ z(ai(z,y)) + p1(2,9), ¢ — z(a2(z,y)) + pa(z, y)) :

Obviously, if (z,y, z, b, ¢) is a fixed point of the operator S, then z is a solution
of BVP (6,)1, (2) and 2’ = y = z, b = z(0), ¢ = ¢g{z'(0)). Conversely,
if z is a solution of BVP (6,)1, (2) and (z,z’,2',z(0), g(z'(0))) € §, then
(z,z',2',2(0), g(z' (0))) is a fixed point of S.

To prove that V is a compact operator, let {();, z;,y;, 2j,b;,¢;)} C [0,1]x
Q. Set

(u]',vj,wj,Bj,C'j) :V(/\j,zj,yj,zj,bj,cj), jeN
and
P(’U) ma‘x{g U) -9 1("”)}: vE [O:OO)

Then

u;(t) :bj+Atg (CJ + A /Os( (5,5, 2 (v )))(V)d’/) ds

) = ws(0) = 07 (e + &y [ (Fuley s 5(6))5) ds) (= i),

B; = b — z5(cn(z5,2)) + pr(35,25),  Cs = ¢ — 53(a(,7)) + pa(a, ),
and from the property (c) of F and (5), it follows that there exists k € L;(J)
such that

(17) [(Fa(zj,yj,z; (&) < k(t) for ae. t € Jandeach j € N.

Consequently,

T
;0 S U+ (1 +wT + TP(G(K +1) +/ k(o) at),
0

[ (0] = o3 8)] = s (0] < P(G(K +1) /k )dt),

90 (0)) ~ g5 62)| = oo 62) ~ sCustea)| < | [ k0 ],
1Bj| S2U+ (1+uT)+ A1, |GISGE+D+U+ 1+ u)T + 4,
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for t,t;,t2 € J and j € N. Going if necessary to a subseguence, we can
assume, by the Arzeld—Ascoli theorem and the Bolzano-Weierstrass theorem,
that {(u;,vj,w;, Bj,C;)} is convergent in C%(J) x C°(J) x C°(J) x R%. Since
V is continuous (see the property (b) of F and the definition of F,), the
compactness of V' is proved.
Assume

V (Ao, Zo, Yo, 20, bo, co) = (Zo, Yo, 20, bo, Co)
for some (Ao, Zo, Yo, 20, b0, Co) € [0,1] x Q. Then zq is a solution of BVP
(6n)xo, (2) and 75 = yo = 20, bo = 20(0), co = g(z5(0)). By Lemma 2.1,
lzoll <U+L, Ly — L <zf(t) <Ly + L fort € J, and so

T
lyoll = llzoll < K +1, ool SU+—, eol < G(K +1),

which contradicts (zg, yo, 20, bo, co) € 3.
By the theory of homotopy (cf. (16))

Consequently, there exists a fixed point (u,v, z,b,c) € 0 of the operator S.
Then u is a solution of BVP (6,,)1, {2) and Lemma 2.1 shows that {ju|| < U+%,
Li—i<u/(t)<Lg+ % fortel. a

COROLLARY 2.4. Let assumptions (Hy)— (Hy) be satisfied. Then for suf-
ficiently large n € N BVP (6,)1, (2) has a solution u satisfying

T 1 1
lu| <U+=, D-=<u'({t)<H+-, tel
n n n

ProoF. If L1 < L4, Ly < Ls, the assertion follows from Lemma 2.3. Let
Ly > L4, Ly < L. By the same arguments as in the proof of Lemma 2.3 we
prove that for sufficiently large n € N BVP (6,)1, (2) has a solution u such
that T . )
flul| KU+ =, Li—=<u(t)<Lz+ -, telJ
n n n
Similarly for Lo > Lg. 0
THEOREM 2.5. Let assumptions (Hy,) — (H,) be satisfied. Then BVP
(1), (2) has a solution u and the estimates

(18) lull U, D<u/'(t)<H
for t € J are fulfilled.

Proor. By Corollary 2.4, BVP (6,,)1, (2) has a solution u,, for sufficiently
large n € N and

T 1
lual SU+ L, Dolcuy<H+L, ted
T n n



234 SVATOSLAV STANEK

Moreover, the property (c) of F' implies that there is & € L;(J) such that
[(Fr(tn, uh, ul (8)(8)] < k1(t) for a.e. t € J, and so

9t (0)) = o) <| [ " hute)

for t1, t2 € J and sufficiently large n € N. Thus {u,}, {v}} are bounded in
CO(J), {ul,(t)} is equicontinuous on J since g is a continuous and increasing
function. By the Arzela-Ascoli theorem, we can choose a subsequence {uy, }
converging (in C*(J)) to u. One can see that u fulfils (2) and (18), and (see
the property (b) of F)

limy, o o0 (Fi, (e, w5 ug, (£)))(2)
= 1 so0 ((F (@b, Wiy [t (8] ))(8) + 2%
= (F(u,v',v' (1))
in Ly{J). Thus, u is a solution of BVP (1), (2) satisfying inequalities (18). O

EXAMPLE 2.1. Let J = [0,3] and h : R = R, Fy : C°(J) x C°(J) —
Li(J) be continuous and hA(L;) = 0 (i = 1, 2, 3, 4) where L; < Ly £ ~2,
2 < L, < L3. Consider BVP

(19) (9(='(1))) = h(="())(F1(z,z"))(2),
(20) z(i—";%) = sin(f03 Vi) + (2'(t)? dt),

z(3 —|sinz’'(e)]) = cosz(v),
where £,¢,v € J. Applying Theorem 2.5 (with F(z,y,a) = h(a)Fi(z,y),

p=2 4 =4 =1 a(zy) = ﬂi(f()g), a(z,y) = 3 — |siny(e)],

pi(z,9) =sin(Jg VIe@ + WOV dt), po(a,) = cosa(v), ),

BVP (19), (20) has a solution u satisfying the inequalities
”'U,“ <1+ 3ma.x{—L1,L3}, L < Ul(t) < L;

forte J.

3. BVP (1), (3)

In [RS] problems for second order functional differential equations
with boundary conditions a(z) = 0, z'(1) = 0 or a(z) = 0, z'(0) = 0 were
also considered. Here a : C°([0,1]) — R is a linear bounded and increasing
(te. z,y € C°([0,1)]), z(t) < y(t) for t € [0,1] = a(z) < a(y)) functional. We
observe that a(z) = 0 for an z € C°([0,1]) implies z(¢) = 0 with a £ € [0, 1].
The authors proved existence results for the above BVPs under assumptions
which are of the type of our assumption (Hg) but only with two constants
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K, K> or K3, K;. We observe that these assumptions are not sufficient for
existence results of BVP (1), (3) as follows from Example 3.1.

EXAMPLE 3.1. Consider the differential equation z” = ez’> on J = [0, 2]

with the boundary conditions z(2) = 0, z/(1) = 1. Here ¢ = +1. This

BVP is the special case of BVP (1),(3) (with F(z,y,a) = ea®, Bi(z,y) = 2,
Ba(z,y) = 1, rifz,y) = 0, raz,y) = 1). Clearly, (F(z,y,-2))(t) = -8,
(F(z,y,2))(t) = 8 for t € J and z,y € C°(J). But our BVPs have no
solution since for £ = —1 (resp. € = 1) the unique solution is defined only on
the interval (3,2] (resp. [0, 2)).

The proofs of existence results for BVP (1}, (3) are very similar to those for
BVP (1), (2). Let assumptions (H5) and (Hs) be satisfied and let | K, — K7| >
2, |K3 — K2| > 2 foran no € N. Set

70 n
E; = Ky + S KO (10 ), By = K, + SEnUS KT, K,
By = Kg — S0 IOl (10, [y, By = K, — S8Ea i)l )y,
Then Ef < B} £ —N, N < Ef < E} and D, = E}, H, = Ej. For each
n>mng, T,y € C°(J) and a € R, define 2., § € C°(J) and {a},, € R by
U, for z(t) > U,
z.(t) = ¢ z(t) forlz(t)| < U.
~U, for z(t) < -U,,
H, for y(t) > H.
G(t) = { y(t) for D, <y(t) < H,
D, for y(t) < D.,

(3 fora > E3
a for B3 + 2 <a < Ej
—-E3+2-2%2 forEj+Ll<a<Ej+2
E3 for B} <a<E3+1

{a}n =< a for Bf <a < E3

E} forEZ—%§a<E;
—E;+2+2 forEj-2<a<Ej-1
a for B} <a< Ej -2

\ B for a < EY.
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Let I : R — R be a continuous function with the property:
)| <1 forveR,

(21) lv)=1 forve[Ky- %,Kd UK, Ky + %],
l(v) =~-1 forve[K— %,KI] U [Ks, K3 + ;_o]
Set
(Fi(e,,0)(0) = (Flaa g, {a})() + 2

for (z,y,a) € CO(J) x C°(J) x R and n € N, n > no.
Consider the two—parameter family of the functional differential equations

(9=’ () = MF(z,2", ' (1)),  A€0,1], n>no. (22,)x

LeEMMA 3.1. (A priori estimates). Let assumptions (Hs) and (Hg) be
satisfied with K; < K4 and K2 < K3 and let BVP (22,)4, (3) has a solution
u for some A € [0,1] and n > ng. Then

T 1 1

Hul| U+ =, Ki—=-<u'(t)<Ks+ =

n n n

forteJ.
PRrOOF. Set T7 = ﬂl(u,u'), T = ﬂg(u,u'). By (Hs),

(23) [W/(T2)] < N.
If A =0, g(u'(¢)) = const.; hence (cf. (23)) |u'(t)] < N fort € J. Let
u'(€) = max{u'(t);t € J} > K3+ L witha £ € J. If £ € (13,T), then there
exist tg € (12,€) and g > 0 such that ’U,'(to) = Kj, v (to +60) = K3+ % and
K; <u'(t) < K3+ ;11- for t € [to,to + €0]- Integrating the equality

(g(u' (1)) = A(F; (u, o, w'(8)))(2)
for a.e. t € J from 1y to tg + &g we obtain

to+eo
mwm+@»—mwm»=xl (Ft (o () (1) dt

_a [ ((F(u*,&,l(g))(t) + l—(l‘;@) dt

to

to+eo

< é‘/ [(u'(t))dt = 2% <0,
n Jy n

which contradicts g(u'(to + €0)) — g(u'(t0)) = g(Ks + =) — g(K3) > 0. The

next part of the proof of the inequalities K1 — = < u'(t) < K3+ ,t € J, is

similar to that of Lemma 2.1 (with L; = K; ( = 1,2,3,4) and ¢ = N) and

therefore it is omitted.
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Since Ju(t)] = lu(Tl) + fr () ds( < | (u, )| + { I, lu'(s)|ds[ <M+
Tmax{—K; + L,Ks+ 1} = M + (max{—K1,Ks} + £)T for t € J, we have
lull <UL + L. o

From Lemma 3.1 and applying the same procedure as in the proof of
Corollary 2.2 we obtain the following corollary.

COROLLARY 3.2. (A priori estimates). Let assumptions (Hs) and (Hs)
be satisfied. Let u be a solution of BVP (22,), (3) for some n > ng and
A€[0,1]. Then

il <U.+ L, D-fcv@ <+l
n n n
forte J.

LEMMA 3.3. Let assumptions (Hs) and (Hg) be satisfied with K; < Ky
and Ko < Ks. Then for sufficiently large n € N BVP (22,)1, (3) has a
solution u satisfying

T 1 1
lull U+ =, K;—=<u'(t)<Kz+ —, ted
n T i3

ProOF. Fixn € N, n > ng. Set K, = max{—D,, H.},
G(v) = max{g(v), —g(—v)}, P(v) = max{g™'(v), —g~'(-v)}, v €[0,00),
0 = {(2.9,25,0; (2,y,2,b,0) € C°J) x C°(J) x C°(J) x R?,
flzll <2U. + 1, [lyll < Ki + 1, ||z < Ku + 1,
lb] < 2U. + 1, |c| < G(K, + 1)}
and define the operators
Z,: Q- C°(J) x C°(J) x C°(J) x R?,
W, :[0,1] x @ — C°(J) x C°(J) x C°(J) x R?
by
Z.(,9,2,b,0) = (b+g7 (), 97(0), 97(0), b=3(81 (3, 1)), e~ (Ba(.w)),
Wo(\ z,y,2,b,¢) = AZ.(z,y,2,b,¢).

It can be shown without difficulties that W, is a compact operator. As-
sume

W*()‘O,moayoazo';bO;CO) = (:EO:yO:ZO:bOaCO)
for some (g, Zo, Yo, 20, bo, co) € [0, 1] x 8% Then
zo(t) = Xo(bo + g7 Hco)t), () = yo(t) = 20(t) = Aog™*(co),
bo = Xo(bo — zo(B1(z0,20))),  co = Malco — 2o (Ba(zo, p))),
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and so
(24) bo = /\0 (bg - /\ol)o — /\og_l(Co)ﬂl(Eo,$6)>,
co = Ao{co — Aog ™' (co))-
Thus
(1~ Xo)eo = — A3~ (co)-
If \p € {0, 1} then ¢g = 0. Assume Ag € (0,1). If ¢g # 0 then STy =
——1{\—%, which contradicts ”~—1ch_ > 0, I‘:\% < 0. Hence ¢g = 0, and

consequently (cf. (24)) bo(1—Xo+A3) = 0 which gives by = 0 since 1—Xg+A3 >
0. We have proved: (o, Yo, 20,b0,¢0) = (0,0,0,0,0), a contradiction. By the
theory of homotopy

D(I-2.,9,00=DI-W,(1,---),Q,0)
=D - W. (0, ,9,9,0) = D(1,Q,0) = 1.
Let the operators
Za 1= C%J) x C°(J) x C°(J) x R?,
Wi 1 [0,1] x 2 = C°(J) x C°(J) x C°(J) x R?

(25)

be given by
Za(z,y,2,b,¢) = Zu(T,y,2,b,¢) + (0,0,0,71(z,y), r2{z,¥)),
Wa (A z,y,2,b,¢) = Z.(z,y,2,b,¢) + X0,0,0,r1(z,y), r2(z,¥))-
Then W.,; is a compact operator. Assume _
WA, 21,01, 21,01, 01) = (21,91, 21, b1, 1)
for some (A1,z1,91,21,b1,¢1) € [0,1] x 9. Then
(26) zi(t) =bi+ g7 (c)t, (1) =0(t) =z(t) =g (o),

z1(Br(z1,7))) = Mri(z1,2)), 73 (Ba(ze, 1)) = Mira(zr, 77),
and so

(27) b + g He)Bi(zr, z1) = My (21, 7)),

(28) g er) = Aira(z1, 2).

From (28) and (Hs) we obtain (see the definition of the function G)
lea] < G(N)

and then (cf. (27), (28) and (Hs))
1b1] < 197 (€0)|T + M < [rafe1,a})|T + M < NT + M,
and consequently (cf. (26), (28) and (H3))
lzall <2NT + M, [lzyll =llnll = llz2f < N.
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We see that (z1,y1,21,b1,¢1) € 99, a contradiction. Thus (cf. (25))

) D(I ~ 2,1,Q,0) = D(I — Wiy (L,-,-,-,,),Q,0)

Finally define
Se: 0= C°J) x CO(J) x C°(J) x R,
Vi [0,1] x = C%(J) x C°(J) x C°(J) x R®

by the formulas

Se(z,y,2,b,¢) = <b+/otg“1< /S(F*(z y, z(v )))(1/)du> ds,
o e+ | (R0, 500 ds),
c+/( (2,7, 2(s)) )(s)ds),

b—z(Bi(z.y)) + iz, y), ¢ — y(Ba(z,y)) + ra(z, y))

Vil\,z,y,2,b,c) = <b+/Oltg"l<c+/\/OS(F,’:(z,y,z(z/)))(V)dl/) ds
c+/\/( (z,y,2 s)))(s)ds)
77 (o2 [ (Frlaas o)) )

b—z(Bi(z.v)) + (7, y), ¢ —y(Ba(z.y)) + 12 (%:u)) :

If (z.y,2,b,¢) is a fixed point of the operator S. we can easy verify that
z is a solution of BVP (22,);, 3) and 2’ =y = 2z, b = ’L‘(O) ¢ = g(z'(0)).
Conversely, if z is a solution of BVP (22,,);, (3) and (1 ',z 2(0), g(2' (0))) €
Q, then (z,2',z',2(0), g(z'(0))) is a fixed point of S,.

Thus to prove our lemma it is sufficient to show that there exists a
fixed point of S.. We now verify that V, is a compact operator. Let
{2, 905 25, b, ¢) } € [0, 1] x Q be a sequence and set

(uiavia’wi)Bi)Ci) = I/;(/\hzivyiazi)bhci)) 1 € N.
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Then

ui(t) = b; + / cl + A / (i, yi, 2 (V) (V) dI/) ds,

wi(t) = vi(t) = ()‘9lcz+>\/ 2 (0,6 7)) ds)

B; = b; — zi(B1(zi, y:) + (i, v3),  Ci = i — 4i(Ba(Ti, y4)) + ralzi, yi),
and from the properties of F it follows the existence of a ¢ € L;(J) such that
[(Fr(zi,y5,2i(t))(8)| < g(t) for a.e.t € J and each i € N.

Hence

T
lui(2)] 52U,+1+TP(G(K*+1)+/O q(t)dt),
T
0] = )] = )] < PG+ 1)+ [ att)at),

o(ui(6)) - o) < | [ o),

for t, t1, tz € J. By the Arzela-Ascoli theorem and the Bolzano-Weierstrass
theorem, we can select a subsequence {(ui,,vi,,wi,,Bi,,Ci,)} converging in
C%J) x C°(J) x C°(J) x R2. From this and from the continuity of V. we
deduce that V. is a compact operator.

Assume

Va(Ad, T4, Y4, 24, b4y €4) = (T4, Y4, 24, by c4)

for some (A+,Z4,Y+,2+,b4,c4) € [0,1] x Q. Then z, is a solution of
BVP (22,),,(3) and z', =y = zy, by = 2,.(0), ¢y = g~1(2/.(0)). By
Lemma 3.1, [lz4+|| < U+ L, K; - L <2 (t) < K3+ L for t € J, which yields

T
lysll = llz4ll < Ko +1, [os] U+ —, o] < G +1),

contrary to (T4,yy, 2+, by, cq) € 00
Hence (cf. (29))

D(I—S*,Q,O): (I V( a')'a')')')‘QO)
= D(I = Vu(0,",,),0,0) = DI — Zs1,,0) #0,

and so there exists a fixed point (u,v,w,b,c) € Q of S.. Then u is a solution
of BVP (22,)1, (3) and Lemma 3.1 shows that |jul] < U. + L, K - 1 <

n

uw'(t) < Ks+ L fortel. 0
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COROLLARY 3.4. Let assumptions (Hs) and {Hg) be satisfied. Then for
sufficiently large n € N BVP (22,,)1, (3) has ¢ solution u satisfying

T 1 1
lul| KU+ =, D.—-=<u(t)< H,+ —, teJ
n n n

PRrOOF. If K < K4, K5 < K3, the assertion follows from Lemma 3.3. If
K, > K4, K9 < K3 then replacing K; and K4 and using the same procedure
as in the proof of Lemma 3.3 we prove that for n € N sufficiently large BVP
(22,,)1, (3) has a solution u satisfying

T 1 1
lul KU, +=, Ks——<u'(t)< K3+ ~—, teJ
n I n

Similarly for Ky > Kj. O

THEOREM 3.5. Let assumptions (Hs) and (Hg) be satisfied. Then BVP
(1), (3) has a solution u satisfying the inequalities

(30) lul <U., D.<u(t)<H.
forte J.

Proor. By Corollary 3.4, BVP (22,)1,(3) has a solution u, for suffi-
ciently large n € N and

luall U+ =, Du=><up() SHo4~, L€
n n n

Moreover (cf. the property (c) of F'), there exists ¢; € L;(J) such that
|(Fy (i, i, un (8))) (8] < 92 (2)

for a.e. t € J, and so

ot - ) €| [ w0

for t;, to € J and sufficiently large n € N. Thus {u,}, {u,,} are bounded
in C°(J), {u!,(t)} is equicontinuous on J. By the Arzela-Ascoli theorem, we
can assume without loss of generality that {un} is a convergent sequence in
C(J) and let lim, 00 un = u. Then u fulfils (3) and (30). Since

Hun(t)) )

tim (7 (i, (O))(8) = T (P (ttma, i, {0 (0} ))(E) + =2

n—00 n—oQ

= (F(u,u',u'(t)))(2)
in L1{J), we see that u is a solution of BVP (1), (3). 0
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ExXaMPLE 3.2. Let J = [0,1] and h : R = R, Fy : C%J) x C°(J) —»
L;(J) be continuous and A(K;) = 0 (z = 1, 2, 3, 4) where K; < K4 < -2,
2 < K5 < K3. Consider equation (19) and the boundary conditions
z(lsin(z(§)z’'(w))l) = min{S, [lz]l, [l’[l},

z'(] cos(

(31)

lzll + DD = ey

where S € R and & pu,v € J. By Theorem 3.5 (with F(z,y,a)

Wa)Fi(2,9), B1(.y) = | sin(@(€)y(u)], Ba(z,y) = | cos(llz+yl)], 71 (. 9)
min{S, ||z]|,
HyH}a 7".2(1:71/) = iﬁ(y) M = |Sla N = 1, D* = 1{17 H* = I\’S and

U. =|8| + max{-K;, K3}>, BVP (19),(31) has a solution u and

l

HUH S |S] + IﬂaX{—K'l,](g}, ]\,1 S u'(t) S I\,_’;, te J
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