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SHAPE THEORY OF TRIADS

TAKAHISA MIYATA
Shizuoka Inst. of Sci. and Tech., Fukuroi, Japan

ABSTRACT. In this paper we develop the shape theory for triads
of spaces in a systematic way, using polyhedral resolutions for triads of
spaces, and give applications, which include the Blakers-Massey homotopy
excision theorem whose proof is different from the approach taken by 5.
Ungar.

1. INTRODUCTION

Throughout the paper, spaces mean topological spaces, and maps mean
continuous maps. A triad of spaces (X; Xy, X;1) means a space X and two sub-
spaces Xp and X; of X such that X = XgUX;. A triad of spaces (X; Xo, X1)
is an ANR triad if X and X, are closed subsets of X and X, Xp, X1, XoN X3
are ANR’s, and a triad of spaces (X; Xo, X1) is a polyhedral triad (resp., CW
triad) if X is a polyhedron (resp., CW-complex) and Xy and X; are subpolyhe-
dra (resp., subcomplexes) of X. A map of triads f : (X; Xo, X1) = (Y'; Y0, Y1)
means amap f: X — Y such that f(Xo) C Y5 and f(X;) CYi. A homotopy
of triads means a map of triads h: (X x I; X x I, X; x I) = (V; Yo, Y1).

In this paper we develop the shape theory for triads of spaces in a sys-
tematic way, using polyhedral resolutions for triads of spaces, and give appli-
cations. The first application is the Blakers-Massey excision theorem in shape
theory. The Blakers-Massey theorem in shape theory was first proved by Un-
gar [7], but our approach is different and is based on the natural construction
of our shape theory of triads. Related results for the excision theorems for
strong homology and Cech homology were obtained by Ju. T. Lisica and S.
Mardesi¢ [4] and T. Watanabe [8]. As the second application, we obtain the

1991 Mathematics Subject Classification. 54C56, 54C5h5, 55P55, 55Q07.
Key words and phruses. Shape, triad, homotopy excision, polyhedral triad, homotopy
type.



268 TAKAHISA MIYATA

Mayer-Vietoris sequences in shape theory for triads of spaces with respect to
the Cech cohomology theory based on the normal open coverings.

This paper is organized as follows: After we prove some useful properties
of ANR. triads in the next section, in section 3 we discuss polyhedral resolu-
tions of triads, and in the following section we obtain results concerning the
homotopy types of ANR triads, polyhedral triads and CW triads. In section
5 we show that resolutions can be used to define the shape category for triads,
and in the final two sections we discuss invariants in this category and ob-
tain the Blakers-Massey homotopy excision theorem and the Mayer-Vietoris
sequences in shape theory.

Let f,g : X — Y be functions between sets. For any covering V of Y,
(f,g) < V means that f and g are V-near. For any covering f of aset .X,if 4 is
a subset of X, then U|A means the covering {UNA : U € U} of 4, and the star
of A in X with respect to U means the set st(A,U) =U{U e U : UN A # 0}.

The author would like to express his thanks to Professor Watanabe for
the valuable discussion at Yamaguchi University during the summer of 1998.

2. ANR TRIADS

We will prove some properties of ANR triads that will be needed in later
sections. Most of them are analogous to those of single ANR’s (see [6]).

LEMMA 2.1. Let (P; Py, P1) be an ANR triad. Then, for each open cov-
ering U of P, there exist an open neighborhood W of PoN Py, in P and a map
of triads k : (P; Py, P1) — (P; Py, Py) such that (1p, k) < U and K|V is a
retraction of W onto Py N P;.

PRrOOF. For ¢ = 0,1, [6, Lemma 4, p. 86] implies that there exist an
open neighborhood V; of P, N P in P; and a map k; : P, — P; so that
(1p,,k:) < U|P; and k;|V; is a retraction of V; onto PyNP;. Then V; = W;NF;
for some open subset W; of P and let W = Wy N W;. Then k; and &, define
a map of triads k : (P; Po, P1) — (P; Po, Py) so that (1p,k) < U and k|W is
a retraction of Wonto PoN P, O

LEMMA 2.2. Every ANR triad (P; Py, P1) admits an open covering V of
P such that any two V-near maps of triads into (P; Py, P;) are homotopic as
maps of triads.

PROOF. [6, Theorem 6, p. 39] implies that there exists an open cover-
ing U of P such that any U-near maps f,g : X — P are homotopic where
the homotopy is constant on = x I whenever f(z) = g(z). By Lemma 2.1,
there exist an open neighborhood V of Py N P; in P and a map of triads
k: (P;Py,P) = (P; Py, P;) such that (1p,k) < U and k|V is a retraction
of V onto P, N P;. Now let U’ be the open covering {P \ P,P\ P, V}
of P, and again by [6, Theorem 6, p. 39], take an open covering V of
P so that any two V-near maps into P are U’-homotopic. We claim that
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V is a desired open covering. Indeed, let f,g : (X;Xo,X1) = (P; P, P1)
be V-near maps of triads, and let G : X x I — P be the U{'-homotopy
such that Go = f and G; = ¢g. Then G(Xg xI) € P\ A UV and
G(X1xI) CP\PuUV,so H=kG: X xI— P defines a homotopy of triads
H:(XxI; XogxI,XxI)— (P;Py, Py)such that Hy = kf and Hy = kg. On
the other hand, by the choice of U, there exist homotopies K : XqxI — Py and
K': X1 xI — P; such that Ky = f“YQ, I<1 = kf‘)&ro, I(é = f )&’1, K{ = k'lel
and Ki(XQ ﬂXl) Xt = leom)(l = kf’Xoﬁ}{l = I('|(JX’0 ﬂXl) xtfortel.
So the map K : X x I — P defined by K|Xo x I = K and K|X, x I = K’
is a homotopy of triads K : (X x I; Xo x I, X; x I) — (P; Py, P1) such that
Ko = f and K, = kf, indicating f ~ kf. Similarly, g ~ kg, and hence we
have f ~ g as maps of triads. O

LemMA 2.3. Let (P; Py, Py) be an ANR triad, let (X; Xo,X:) be a triad
of metric spaces such that Xg, X1 are closed subsets of X and X = Int(Xo)U
Int(X,), and let A be a closed subset of X. Then every map of triads f :
(4, AN Xg, 4N X,) = (P; Py, P1) admits an extension f : (U;U N Xo,U N
X1) = (P; Py, P1) for some open neighborhood U of A in X.

ProoF. By [6, Theorem 10, p. 43}, the map of pairs fl[AN Xo : (AN
Xo, ANXoNX;) — (Yo, YoNY7) extends to a map of pairs fo : (Bg, BoNX1) —
(Yo, Yo NY1) for some closed neighborhood By of AN X in Xg. Consider the
map of pairs f1 : ((AU Bo) n 4\’1, (AU Bo) NnNxXiN ‘X’o) — (Yl, /0 N )/1) defined
by filANX; = flANX; and f1|BoN X1 = fo|BoNX1. Again by [6, Theorem
10, p. 43], f1 extends to a map of pairs f| : (By,Bi N Xo) = (Y1,Yo NY7)
for some closed neighborhood B; of (AU By) N X; in X;. Now let U' =
By U By, and define a map of triads f' : U U NXo, U'NnXy) = (Y3 Y5, Y1)
by f|Bo = fo and f'|By = f!. Then since X = Int(Xp) U Int(X;), U’ is a
closed neighborhood of 4 in X. Finally, if U is an open subset of X such that
ACUCU', then f = f'|{U is a desired map of triads. [

LEMMA 2.4. Let (P; Py, P1),(X; Xo, X1) and A be as in Lemma 2.3, and
let f,g : (X;X0,X1) = (P;P,P1) be maps of triads. If flA ~ glA as
maps of triads from (A; AN Xo, AN Xy) to (P; Py, P1), then there exists an
open neighborhood V of A in X such that f|V =~ g|V as maps of triads from
(V;VnXo, X1) to (P Py, Py).

PrOOF. Let H: (AxI;(ANX) x I,(ANXy) xI) = (P; Py, 1) bea
homotopy of triads such that Hg = f]A and H; = g|4, let B = (AxT)U(X x
0)U(X x 1), and define a map of triads F' : (B; BN(Xo xI),BN(X; x I)) =
(P; Po,PA) by FlAXI = H,F|X x0 = f and F|X x 1 = g. Applying Lemma
2.3, F extends to £ : (U;U N (Xg x 1), U N (X; x I)) = (Y; Y, Y1) for some
open neighborhood U of B. If V is an open set such that V' x I C U, then
H = F|V x I is a desired homotopy. O
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LEMMA 2.5. Let (X;Xo,X1) be a triad of spaces, let (P;P,,P) and
(P';P3, P{) be ANR triads, and let f : (X;Xo,X1) — (P;P,P]) and
91,92 : (P, B§,P]) = (P; P, P1) be maps of triads such that g1f ~ gof
as maps of triads. Then there ezist an ANR triad (P"; Py, P/') and maps of
triads f' : (X;Xo,X1) = (P"; PV, P") and g : (P"; P!, P") - (P'; P}, P!)
such that f = gf' and g19 ~ g29 as maps of triads.

PROOF. We can prove this by the argument similar to [6, Lemma 2, p.
52}, using Lemma 2.4 in an appropriate place. O

LEMMA 2.6. Let (X;Xo,X1) be a triad of spaces where X is normal, let
A be a closed subset of X, and let V be an open neighborhood of A in X.
Then there exists a map of triads

P (XX LEXoxL,LXy xI) =2 (VXxIUX x0;(VNXo) xIUXpxD0,
(VNX) xITuX; x0)

such that the restriction r|A x T U X x 0 is the inclusion.

LeMMA 2.7. (Homotopy extension lemma) Let (X; Xo,X;) and A C X
be as in Lemma 2.6, and let (Y;Y5,Y1) be an ANR triad. If f,g: (4;4N
X0, AN X)) —» (Y;Ys,Y1) are homotopic maps of triads, and if g extends
to a map of triads § : (X;Xo, X1) = (Y;Y5,Y71), then there is an extension
f:(X;X0,X1) = (Y;Y0,Y1) of f such that f ~ § as maps of triads.

PRrROOF. We can proceed as for [6, Theorem 9, p. 41|, using Lemma 2.6.
0

3. RESOLUTIONS OF TRIADS

Let Top be the category of spaces and maps, and let Top” be the cat-
egory of triads of spaces and maps of triads. Recall that a resolution of a
triad (X; Xo, X1) is a morphism p = (py) : (X; Xo, X1) = (X; X0, X,) =
((Xx; Xor, X12), Pan, A) in pro-Top? with the following two properties [5]:

(R1): Let (P; Py, ) be an ANR triad, and let V be an open covering
of P. Then every map of triads f : (X; Xo,X1) = (P; o, P1) admits
A € A and a map of triads g : (Xx; Xox, X12) = (P; Fo, P1) such that
(9pa, f) < V; and
(R2): Let (P; Py, P1) be an ANR triad. Then for each open covering V
of P there exists an open covering V' of P such that whenever A € A
and g,g" : (Xx; Xoxa, X1a) = (P; Py, P1) are maps of triads such that
(gpa, g'DA) < V', then (gpan,g'par’) < V for some X' > .
p is an ANR-resolution (resp., polyhedral resolution) if (Xy; Xoa, X1a) are
all ANR triads (resp., polyhedral triads). The pointed version of resolution is
also defined similarly.
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THEOREM 3.1. (Marde$ié¢ [5]) Every triad (X; Xo, X1) of spaces admits
an ANR-resolution

P = (pa) : (X; Xo, X1) = (X; Xo, X1) = ((Xx; Xox, X12), Parr, A)
such that A is cofinite and X = Int(Xo,) UInt(X1,) for each X € A.

In this section, we wish to show the following theorem, which we will need
in later sections.

THEOREM 3.2. Euvery triad (X; Xo, X1) of spaces admits a polyhedral res-
olution p = (px) : (X; X0, X1) = (X; X0, X1) = ((Xx; Xoa, X12), 200, A)
such that A is cofinite.

To prove the theorem, we need a couple of lemmas.
LEMMA 3.3. Let (X; Xy, X)) be a triad of spaces, and let
P = (pa) : (X;Xo, X1) = (X; X0, X 1) = ((Xa; Xox, X1a), 0arr, A)

be a morphism in pro-Top” such that the induced morphism p = (ps) : X —
X is a resolution, and the induced morphisms p|Xo = (palXo) : Xo = X
and p|X; = (palX1) : X1 = X1 in pro-Top satisfy property (B1):
(B1): Let A € A, and let U be an open subset of X, such that
Cl(pa(X)) CU. Then there exists X' > X such that pxx (X)) CU.

Then p : (X; Xo, X1) = (X; X0, X1) is a resolution.

Proor. Clearly, (R2) for p: X — X implies (R2) for p: (X; Xo, X;) —
(X; X, X1). So it suffices to verify (R1). Let (P; Py, P,) be an ANR triad,
let h: (X;Xo,X1) = (P; Py, Py) be a map of triads, and let V be an open
covering of P. Let V' be an open covering of P such that stV < V. Apply
Lemma 2.1 to V', we obtain an open neighborhood W of Py N P; in P and
a map of triads k : (P; Py, P1) = (P; P, Py) such that k|W : W - Pon Py
is a retraction and (1p,k) < V'. Take an open set W' such that P, N P, C
W' C C{W') C W, and let V" be an open covering of P such that V' <
V A{W' P\ Py,,P\P,}. By (Rl) for p: X - X, there exist A € A and a
map f : X) — P such that (h, fpx) < V". Then fpr(Xy) CW'UP\ P, and
Foa(X1) C W'UP\Py. So, £(Cl(pa(Xo))) C CIW')UCI(P\P,) C WUP,, and
so Cl(pa(Xo)) C f~H(W U B). Similarly, Cl{px(X1)) C f~}(W U P1). Since
WU P, and WU P; are open, (B1) for p|Xo : Xo = X and p|X; : X1 —» X
imply that there exists A’ > A such that pyx (Xox) € f7YH(W U P) and
v (Xin) € fFFYW U P). Now let f' : Xy — P be defined by f' =
kfpax. Then f'(Xoa) = kfpan(Xon) € Po, and similarly f'(Xyy) C P
So f' defines a map of triads f' : (X ; Xoa, X1a) — (P; P, P1) satisfies
(f'pa, h) < V. This verifies (R2) for p: (X; X, X;) = (X; X0, X1). O

LEMMA 3.4. Let {X; Xo,X1) be a triad of spaces, and let p = (py) :
X = X = (X»,pan,A) be o morphism in pro-Top. For each X €
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A, let My be the index set for all open coverings Vy, of X, and let
M={=Mu A€ Ape My}. For each v = (A\u) € M, let
(Zvs Zow, Z1v) = (Xn;st(pa(Xo)s Vau),st(pa(X1),Va)), and order M by
v=M\up <v = (N,u) provided A < X and pax(Zi) C Zip, i = 0,1.
Now let 7, = py : (X;X0,X1) = (Zv; Zow,Z1») for each v € M, and let
Tow = Dan : (ZuiZow, Z1v) = (2420w, Z1y) for v < V. Then if p is a
resolution, then so is the morphism

T = (’I',,) . (X;Xg,Xl) - (Z;Zo,Zl) = ((Z,,;ZQ,,,Z]_,,),T,,,/,A{)
in pro-Top? .
PROOF. It is easy to see that r{Xp = (r,|Xp) : Xo = Zp and 7|X; =
(r,|1X1) « X1 — Z; satisfy property (B1). If p is a resolution, then so is

r|X = (r,) : X - Z. Lemma 3.3 implies that r : (X; Xo,X1) = (Z; Zo, Z,1)
is a resolution. O

LEMMA 3.5. Let X be a polyhedron, and let A and B be closed subsets
of X such that X = AU B. Then for any open sets Uy and Uy in X with
A C Uy and B C Uy, there exists a polyhedral triad (X; Xo, X1) such that
A (_: Int(Xo) g Xo g Uo and B g Int(Xl) g Xl g Ul-

PROOF OF THEOREM 3.2. There exists a polyhedral resolution p =
(pa) : X = X = (X, par, A) with cofinite index set A (see [6, Theorem 7, p.
84]). For this p, we have a resolution r = (r,) : (X; Xo,X1) = (Z; 240, Z,) =
((Zv; Zow, Z14), Twr, M) as in Lemma 3.4. Let N be the subset of M so that
each v € N corresponds to a polyhedral triad (Z,; Zo,, Z1,) as in Lemma 3.5.
Here note that we can assume that each M) in Lemma 3.5 is cofinite, and
hence N is cofinite. Then the induced morphism 7 = (r,) : (X; X0, X1) —
(Z;20,Z1) = ((Zy; Zow, Z1v),Tur, N) is a desired resolution. O

We also have the pointed analog of Theorem 3.2.

THEOREM 3.6. Every triad (X; Xg, X1,z0) of spaces with a base point ad-
mits a polyhedral resolution p = (py) : (X;Xo,X1,20) = (X; Xg, X1,20) =
((Xx; Xox, X1x,Tor), Pan, A) with a cofinite index set A.

PrRoOF. The pointed versions of Lemmas 3.3 and 3.4 hold. Thus the
theorem follows from the following lemma. O

LeEMMA 3.7. Let p= (pa) : X = X = (X,pan,A) be a resolution, and
let o € X. Then the morphism

p= (o) : (X,z0) = (X, Z0) = ((Xx,Zor), Panr, A)
where zox = pa(zo) is a resolution.

Proor. (R2) for p: X — X implies (R2) for p: (X, z0) — (X, z0), s0
it suffices to verify (R1). Let (P, pg) be a pointed ANR, and let g : (X,zg) —
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(P, po) be a pointed map. Let V be any open covering of P, and take an open
covering V' of P such that st V' < V. [6, Lemma 4, p. 86] implies that there
exist an open neighborhood W of py in P and a map k : P — P such that
(1p,k) < V' and k|W : W — {po} is a retraction. Now let V" be an open
covering of P such that V"' < V' A {W, P\ CI(W')} where W' is an open set
such that pp € W' CCI(W') CW. By (R1) forp: X — X, thereexist A € A
and amap h : X, — P such that (g, hpy) < V". Let ' = kh: X — P. Then
h' defines a pointed map h' : (X, zor) = (P,po) and (g, h'py) < stV' < V.
This verifies (R1) for p : (X, z0) = (X, ). O

LEMMA 3.8. Let (X; Xo, X1) be ¢ triad of spaces such that X and X; are
closed subsets of X, and let U be a covering of X by path-connected subsets
of X. Then st(Xo,U) Nst(Xy,U) = st(Xo N X1,U).

Proor. Let z € st(Xo,U) Nst(X1,U). Without loss of generality, let
z € Xp. Since z € st(X;,U), thereis U € U such that z € U and UN X, # 0.
Then if U N Xy N X; = 0, this would contradict the connectedness of the
unit interval I. Indeed, let 2’ € UN X;. Then for any path ¢ : I —» U
with ¢(0) = z and (1) = z’, I would be the disjoint union of the nonempty
closed subsets =1 (U N Xg) and o1 (U N X;). So UNXoN X; # @. Thus
z € st(Xo N X1,U). The other inclusion is obvious. O

THEOREM 3.9. Every triad (X; Xo, X1) of spaces such that Xo and X,
are normally embedded closed subsets of X admils a polyhedral resolution
p = (p)\) : ()&’;Xo,Xl) - (X;Xo,Xl) = ((AY)\;X(],\,XL\),p)‘)\/,A) with A
being cofinite such that the induced morphisms p = (py) : X = X, p|X; =
(p,\|Xi) : Xi - Xi, 1= 0,1, and plXo nNx; = (pAlXO n Xl) : Xo N X1 —
Xo N X1 = (‘YQ)‘ N Xl,\,p)\)‘l l/\ro,\l n Xl,\/, A) are resolutions.

PRrROOF. Indeed, let
T (X;XOaXl) — (Za Zy, Zl) = ((ZV;ZOUaZhI)7TVV'7‘A/[)

be the polyhedral resolution obtained as in the proof of Theorem 3.2. Then
the restrictions r|X; : X; = Z;, i = 0,1, are resolutions as in |6, Theorem 11,
p. 89]. Note that for each v = (\, ) € M and 1 = 0,1, Z;;, = st(pa(Xi), Vau)
for some open covering V, , that is a star covering with respect to some
subdivision of X;). Then by Lemma 3.8 the induced morphism r|X, N X; =
(T.,|Xo N Xl) : Xo nNX; — VARR Zl = (Zo,, N Zl,,,Ty,,I‘ZQ,, ] Zh,, M) forms a
resolution as in [6, Theorem 11, p. 89]. O

4. THE HOMOTOPY TYPES OF ANR TRIADS
We first show

THEOREM 4.1. Buvery ANR triad is homotopy dominated by some poly-
hedral triad.
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Proor. Let (X; X, X1) be an ANR triad. Take an open covering V
of X so that any two V-near maps of triads to (X; Xo, X;) are homotopic
(Lemma 2.2), and also take a polyhedral resolution p = (py) : (X; X0, X1) —
(X;X0,X1) = ((Xx; Xoa, X12), 020, A) (Theorem 3.2). Then there exist
A € A and a map of triads g : (Xx;Xoa, X12) = (X; X0, X:1) such that
(1x,9p) <V, and hence 1x =~ gp, as maps of triads. O

The following is an analog of J. H. C. Whitehead’s classical theorem [9]:

THEOREM 4.2. Let (X;Xo,X1) be a triad of spaces such that X =
Int(Xo) U Int(X7). If (X; Xo,X1) is homotopy dominated by a polyhedral
triad, then (X; Xq, X1) has the homotopy type of a polyhedrul triad.

We can prove the theorem analogously to the proof of [6, Theorem 3, p.
315], using the two lemmas in the below.

We call the map of triads ¢ : (X; X0, X1) — (Y; Y5, Y1) a weak homotopy
equivalence if p: X = Y, | Xo: Xo = Yo, ¢[X1: X7 = Y7 and ¢|XgN Xy :
XoN X1 = Yyn Y] are all weak homotopy equivalences.

LEMMA 4.3. Let (X; Xo, X1) be a triad of spaces such that X = Int(Xo)U
Int(X;). Then there exist a polyhedral triad (P; Py, P1) and u weak homotopy
equivalence v : (P; Py, P) = (X; X0, X1).

PROOF. Asin [6, Theorem 10, p. 321}, we have polyhedral pairs (P, Po1)
and (P, Py1) and maps of triads wo : (Po, Po1) = (Xo,Xo N X1) and ¢ -
(Pl,Pm) — ()&’1, (o N ‘Yl) such that SOOIPOI = 991|P01 and (,90,(,91,(,90']301 are
all weak homotopy equivalences. Let P = Py U Py, and let ¢ : (P; Py, P} —
(X; Xo,X;) be the map of triads such that ¢|Py = ¢ and @|P; = ;. Then
by [2, 16.24], ¢ : P — X is a weak homotopy equivalence. O

LEMMA 44. Let ¢ : (X; X0, X1) = (Y0, Y1) be a weak homotopy
equivalence. Then for each polyhedral triad (P; P, Pi), the induced map
0u : [(P; Po, P1), (X; X0, X1)] = [(P; Py, P1), (X; Xo, X1)] is a bijection. Here
[, | denotes the set of homotopy classes.

PRrooOF. We can easily modify the proof of [2, 16.20], so the proof is
omitted. O

The following is an immediate consequence of Theorems 4.1 and 4.2.

THEOREM 4.5. Let (X;Xo,X1) be a triad of spaces such that X =
Int(Xo) UInt(Xy). Then the following statements are equivalent:

i) (X;Xo,X1) has the homotopy type of a polyhedral triad;
)

i) (X; Xo,Xl has the homotopy type of « CW triad;
ill) (X;Xo, X)) has the homotopy type of an ANR triad;
iv) (X,XO,Xl) s homotopy dominated by a polyhedral triad;
v) (X; Xo,X1) is homotopy dominated by a CW triad;
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vi) (X;Xo, X)) is homotopy dominated by an ANR triad.

REMARK. The pointed versions of Theorems 4.1, 4.2 and 4.5 also hold.

5. SHAPE OF TRIADS

Let HTop” be the category of triads of spaces and homotopy classes
of maps of triads, and let HPol” be the full subcategory of HTop” whose
objects are the triads of spaces which have the homotopy type of a polyhedral
triad.TThe corresponding pointed categories are denoted by HTop! and
HPol, .

THEOREM 5.1. Every polyhedral resolution
P =(px) : (X; Xo, X1) = (X; Xo, X1) = ((X»x; Xox, X14), 020, A)
induces an HPolT—empansion
Hp = (Hpy) : (X; Xo, X1) = H(X; X0, X1)
= ((HXx; HXox, HX12), Hpax, A)
Here H denotes the functor from the topological category to the homotopy
category.

ProOF. We must verify properties (E1) and (E2) of [6]. Property (E1)
follows from property (R1) if we take an open covering V as in Lemma 2.2.
For property (E2), we proceed as for [6, Theorem 2, p. 75|, taking V as in
Lemma 2.2 and using Lemma 2.5 in the place of [6, Lemma 1, p. 46]. O

By Theorems 3.2 and 5.1, the pair of categories (HTop? , HPol”) defines
a shape category, which we call the shape category of triads and denote by
Sh”. Lemmas 2.2 and 2.5 hold in the pointed case, and so the pointed analog
of Theorem 5.1 holds. This and Theorem 3.6 imply that the pair of categories
(HTop? ,HPol?) defines a shape category, which we call the pointed shape
category of triads and denote by Sh7.

6. EXCISION THEOREM IN SHAPE THEORY

Throughout this section, all triads are assumed to have base points, and
we do not write the base points. For each triad of spaces (X; Xo, X;) and
for k > 2, we define the k-th homotopy pro-set of triad pro-m(X; Xo, X1) as
the pro-set 7 (X; X0, X1) = (me(Xa; Xor, X12),Pans, A) where p = (py) :
(X; Xo, X1) — (X, Xg, Xl) = ((JX’,\; Xo,\, Xl)\),p,\,\l, A) is an HPOI?- ex-
pansion. For each morphism ¢ : (X; Xp, X1) = (Y;Y,Y1) in ShT, there is
an induced morphism pro-my(y) : pro-m(X; Xo,X1) — pro-m;(Y;Ys,Y1).
Then pro-w;, defines a functor from Shf to pro-Ab for k > 4, to pro-Gp
for £ = 3, and to pro-Set for k = 2, where Gp is the category of groups and
homomorphisms, Ab is the full subcategory of Gp whose objects are abelian
groups, and Set is the category of pointed sets and point preserving functions.
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THEOREM 6.1. Let (X; Xp, X1) be a triad of spaces such that X is normal
and Xg and X1 are normally embedded closed subspaces of X. Then there exist
ezact sequences of pro-sets

— Pro -7T1-+1(X;X0,X1) —a~) pro -7T7-(X0,Xo ﬂXl) 14
pro -m (X, X1) 23 pro -m.(X; Xo, X1) —

-+ — pro —wz(X;Xo,Xl) LA pro -m1 (X, Xo N X1) 3 pro -m (X, X1)
and
— pro -mr41(X; Xo,Xl) 2, pro -7 (X1, Xo N X1) 4
pro - (X, Xo) 4 pro -m.(X; Xo, X1) —

-+ = pro-me{X; Xo, X1) 21) pro-m (X1, X N X3) L% pro -m (X, Xo)
PROOF. Let
p=(pa): (X;Xo,X1) = (X; X0, X1) = ((Xx; Xoa, X1a), Pan, A)

be a polyhedral resolution (Theorem 3.6). Then [5, Section 5] implies that
the induced morphisms

p=(p): (X, X:) = (X, X:) = (Xa, Xir), pax, A)
plXi = (palXs) : (X, XoNXy) = (X, XoNX1) =
((Xixn, Xoa N X12), 020 | Xin, A)

are resolutions for ¢ = 0, 1, and hence [6, Theorem 8, p. 86] implies that those
resolutions induce expansions

Hp = (pr) : (X)Xl) — H(X;X‘l) = ((Xz\aXi/\)aHp/\/\’1A)
leXi = (Hp)\lXi) : (Xi,Xo ﬂXl) — H(Xi,Xo ﬂXl) =
((Xix, Xox N X1a), Hpax' | Xin, A)

for i = 0,1. So the homotopy sequences of the triad (Xx; Xox, X1a) (see [3,

p.160]) and their naturality give rise to the above exact sequences of pro-sets
by the pro-set version of [6, Theorem 10, p. 119]. 0

THEOREM 6.2. Let (X; Xo, X1) be a triad of spaces such that X is normal
and Xg and X are normally embedded closed subspaces of X, and let m > 2.
Then the inclusion induced morphism

1y 1 pro-m.(Xo, Xo N X1) = pro -m,.{X, X1)

is an isomorphism for 2 < r < m, an epimorphism for r = m and “monic”
forr =1 ie., Ker{i. : pro-m1(Xg, Xo N X1) — pro-m (X, X1)} = 0, if and
only if pro -7, (X; X, X1) =0 for 2<r <m.

Proor. This is an immediate consequence of Theorem 6.1. O
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THEOREM 6.3. (Blakers-Massey theorem in shape theory) Let (X; Xg, X;)
be a triad of spaces such that X is normal and Xy and X, are normally embed-
ded connected closed subspaces of X, and let m,n > 1. Then if (Xg, XoN X1)
is n-shape connected and (X1, XoN X1) is m-shape connected, then the inclu-
sion tnduced morphism

i« : pro-m.(Xg, Xo N X1) = pro-m(X, X3)
s an isomorphism for 1 <r < n+m —1 and an eptmorphism forr = n+m.
We prove the following two lemmas before we prove the theorem.

LEMMA 6.4. Let 1 < n < m, let (X;;4;,B;),1=0,1,...,m, be poly-
hedral triads such that Ay and By are connected, and let p; : (X;; Ai, B;) —
(Xiz1; Air1,Biv1), 1 = 0,1,...,m, be maps of triads such that the induced
maps (pi]-4i)* : W.i(Ai,Ai n B,) — 7Ti(Ai+1,Ai+1 N Bi+1) fori=20,1,... ,n
and (pi|Bi)* c i ( By, A; ﬁBi) — 71','(B,'+1,A,'+1 nBH_l) fori=0,1,... ,m are
trivial. Then there exist a polyhedral triad (P; P', P") such that (P', P'NP")
is n-connected and (P",P' N P") is m-connected, and maps of triads f :
(Xo; Ao, Bo) = (P;P',P") and g : (P;P',P") = (Xmm;Am,Bn) such that
Pn--Pipo = gf.

(K1, L) . i (Ag, Ao N Bo)
PRrROOF. Let { (Ka. L) be triangulations of (Bo, Ao N Bo) such

that L is a full subcomplex of K; and also of Ky. For each 7 = 0,1,...,m,
let

Qi = (Ao N Bo) x NU (K™ U |Kj|) x 1)

P =QiU (4 x0)

P{=QiU(Box0)

(PlaQi)

Then the polyhedral pairs { (P, Q)

of the polyhedral pairs

(K| UK L U [ET O™ oK)
(KT U R ) L u | K0 UK

} respectively have the homotopy types

So for ¢ = 0,1,...,m, (P;,Q;) is min{i,n}-connected, and (P}, Q;) is i-
connected.
We wish to obtain the following commutative diagram:

(Xo; Ao, Bo) —2—  (X1;41,B)) 2 ...

| d

(Xo; Ao, Bo) —S— (PyUPL; Py, PL) —S— ..
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- =P (Xnt13Ant1, Brg1) 5 0 P2y (Xt A1, Bt
.’]n] gm—lT
: S P P'P P' S Y ven G 3 P, Pl - P P/
e ( n ULy Iy, n) ? 2 ( m U s m,y -m)

We can proceed as in [6, Lemma 3, p. 140]. For go, let go|Xq x 0 = pg and
go(z x I) = po(z) for z € Ag N By, and using the hypothesis that Ag and By
are connected, for each vertex v of K1 \ LUK> \ L, let go(v x I) be a path in
A; or By from go(v,0) = po(v) to go(v,1) = the base point of (X;; A1, B1).
Assume we have defined g; ; for some i < m. Then for each i-simplex o of

K\ N\LUK,\L fori<n
K>\ L forn<i<m

the pair ((8o x I) U (¢ x 0),80 x 1) is an i-cell in

P yorP_, fori<n

{ P, forn<i<m }
with its boundary in @;_;. Then use the hypothesis that (p;]4;). = 0 :
Wi(Ai,A,; n B,‘) — Tri(Ai+1,_4,~+1 N Bit1) (7. =01,... ,n) and (p-ilBi)* =0:
mi(Bi, A; N B;) = 7i(Bit1, Aiy1 N Biy1) (8 =0,1,...,m) to extend the map
pigi—1](8oxNU(e x0) to amap gi|lo X : (6xI,o%x1) ~ (Air1, Ai+1MNBiy1) or
giloxI : (cxI,ox1) = (Bit1, Ai+1NBiy1). Thus we obtain a desired map of
triads g;. Then we are done if we let (P; P',P") = (Ph,UP.,; Pm, P,,), let f:
(Xo; Ao, Bo) = (P; P', P") be the inclusion and let ¢ = gpp—1 : (P; P, P") —
(Xm; Am, Bm). O

LEMMA 6.5. Let
(X;X0,X1) = ((Xx; Xox, X12),Pan,A) € obpro-HPolf.

Then if the inverse systems of pairs (Xo, XoNX1) and (X1, XoNX;) are n-
connected and m-connected, respectively, and if X¢ and X1 are O-connected,
then for each A € A, there exists X' > A so that the map of triads pyx factors
through a polyhedral triad (P; Py, P1) such that the pairs (P, Po N Py) and
(P1, Py N P;) are n-connected and m-connected, respectively.

Proor. Without loss of generality, we can assume n < m and that all
Xox and Xi, are connected. Then for each A € A we have A = Ag < A; <
e S /\m S A771—}-1 = X' so that (p/\;/\;+1lXO)\;+1)* =0: Trnl—i(XOI\i+1;‘Y0/\.‘+1 N
Xixip1) = Tm—i(Xoa;, Xoa, N X1a,) for i = mym — 1,...,m — n and
(p/\.‘)\,'+1lez\g+1)x =0: 7rm—i(X1/\;+1’X0/\(+1 N -Xl)\.'+1) — ﬂ'm—i(‘X'I/\HXO)\; N
Xix) for i =m,m —1,...,0. Then the lemma follows from Lemma 6.4. O

Proor orF THEOREM 6.3. Let (X; Xg, X)) be as in the hypothesis, and
let p = (pr) : (X;X0,X1) = (X;X0,X1) = ((Xa; Xoa, X12), P20, A) be
a polyhedral resolution of (X; Xy, X1). Without loss of generality, we can
assume n < m and that all (X; Xox, X1x) are polyhedral triads such that
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all Xgx and Xi, are connected. Fix A € A. Then by Lemma 6.5, there
exist A > A, a polyhedral triad (P; Py, P;) such that the pairs (Po, Po N
P)) and (P, By N P,) are n-connected and m-connected, respectively, and
maps of triads f : (Xy; Xoxn, Xix) = (P;Po, P1) and g : (P; Py, ) —
(Xx; Xox, X12) such that pxy = gf. Then the Blakers-Massey theorem in
homotopy theory implies that the inclusion 7 : (P, BN P) — (P, P) induces
the map j. : 7.(Fo, Po N P1) — 7,(P, P1) which is an isomorphism for 1 <
r < n+m — 1 and an epimorphism for r = n + m. Consider the induced
commutative diagram in homotopy sets:

7 (Xox, Xoa N X1x) =— 7.(Po, Py N Py) LI Tr(Xoxr, Xoa N X1ar)

e | io| o

P . 1.
m(Xx,X1n) e —  m(PR) = m(Xx, Xuv)
where the vertical maps are induced by the inclusions. For 1 <r <n+m—1,
let h = g.(i.)7 fl : 7o (X, Xon) = 7m-(Xox, Xox N X14). Then A fills the
diagonal of the following commutative diagram:

- (Baxt | Xoa ) ) .
7 (Xox, Xoa N X1y) 2200 1 (Xoar, Xox N Xin)

th, ix"l
- - (Parr 1 Xxr)w -
(X, X1a) e 7 ( Xy X1ar)

Morita’s lemma |6, Theorem 5, p.113] implies 7. = (ixs) : 7 (X0, XoNX1) =
(X, X 1) is an isomorphism for 1 <r <n+m—1. Alsoforr =n+m, i, :
7 (Po, PoNPy) — 7-(P, P1) is an epimorphism, so Im{(pax | X )«) C Im(ix.).
Then [6, Theorem 3, p. 109] implies that ¢4 = (ixs) : Tnim (X0, XoNX1) =
Tnam (X, X1) is an epimorphism. This completes the proof of Theorem 6.3.
a

7. MAYER-VIETORIS SEQUENCES

For each abelian group G, let H7( ; G) denote the r-th Cech cohomology
theory with coefficients in G which is based on the normal open coverings. G
will be omitted as long as no confusion occurs. Let (X; X, X1) be a triad of
spaces such that X4 and X; are normally embedded closed subspaces of X.
Then Theorem 3.9 implies the existence of an HPol” -expansion p = {pa) :
(X;)(o, ‘Yl) — (X; Xo, Xl) = ((X)\; Xon, Xl,\),px)\:, A) of (X; Xo, )(1) such
that the induced morphisms p = (pa) : X = X, p|Xi = (pA]Xy) + Xi —
Xi, 1 = 0,1, and pl)(o n ‘Yl = (p,\‘Xo N Xl) . Xvo N )&’1 — Xo N X1 =
(Xoa N X1x, Pan | Xoa N X1, A) are expansions. Then for each A € A, there
is a Mayer-Vietoris sequence of the polyhedral triad (Xy; Xox, X12), which
is exact and natural. Hence there is an induced Mayer-Vietoris sequence of
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Cech cohomology groups MV(X; Xo, X1):
- H Y XoNX1) D H(X) » H(Xo) @ H™(X1) —» H™(Xo N X1) —

Then [6, Lemma 1, p. 129] implies the following:

THEOREM 7.1. For each triad of spaces (X; Xo, X1) such that X, and X;
are normally embedded closed subsets of X, the Mayer-Vietoris sequence MV
(X; X0, X1) of Cech cohomology groups is ezact.

Let MYV denote the category whose objects are triads of spaces (X ; Xg, X1)
such that Xy and X; are normally embedded closed subsets of X and whose
morphisms & : (X;Xo,X1) = (V;Y,,Y1) are homomorphisms of Mayer-
Vietoris sequences (see [1, p. 8]) from MV (X; Xy, X;) to MV(Y; Y5, Y1). Also
let Sh%; denote the full subcategory of Sh whose objects are triads of spaces
(X; Xo,X1) such that Xy and X; are normally embedded closed subsets of
X. Then we have

THEOREM 7.2. There ezists a contravariant functor F from Sh,ic, to MV.

Proor. For each (X;Xg,X1) € ob Sh,TV, let F be the identity on the
objects, i.e., F(X;Xo,X1) = (X; X, X1) for each (X;Xp,X;) € obSh%.
Let ¢ € Sh%((X;Xo,X1),(Y;Yo,Y1)) be represented by the morphism
¢ = (pu) : (X;X0,X1) = (Y;Y0,Y:) where p = (pa) ¢ (X; X0, X1) =
(X;Xo,X,) and ¢ = (g,) : (V;Y0, Y1) = (Y;Y,,Y)) are the HPol”-
expansions of (X; Xo,X1) and (Y;Y,Y7), respectively, such that the induced
morphisms p = (pa) : X = X, p|X; = (o\|Xs) : Xi = X, for i = 0,1,
p]XoﬂXIZ(p,\|XoﬂX1): (o0 N X3 —)XoﬂXl,q:(q,_,)ZY-—)Y,
qlY; = (¢ulYi) : Yi = Y; fori = 0,1, and q|¥o NY1 = (gufYo N Y1) :
YonNYr - YoNY; are all expansions. Then the morphisms induced by
o, 0 =(pu) : X 2 Y, o|lXi = (pulXipq) + Xi » Y, fori =0,1,
(PI.XO NnNX, = (‘10#])(099(/1) n Xl:p(u)) : XgNX; =2YgnY, define the mor-
phisms ¢|X € Sh(X,Y), ¢|X; € Sh(X;,Y;), i = 0,1, and ¢|Xg N X; €
Sh(X,NX;,YyNY:) which make the following diagram commute for : = 0, 1:

XoﬂXl J > Xi y X

s?lxoﬁxll ‘Plxil l¢|x

YonY, XY, X~ v

where the horizontal maps are the inclusions. Here Sh denotes the shape
category in the sense of [6]. Thus we have the following commutative diagram:
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s Y (XN X)) —i HT(X) —— -

(leonxl)'T (le)'T

— s H Y (YonY;) —2 AT(Y) ——

- — A Xg)® H™(X;) —— A (XoN X)) —
((wsxo)‘,(wlxl)*ﬁ (wlxonxl)‘T
- —— H' (V)@ H'(Y1) —— H'(YonY;) ——

Let F(p) be the homomorphism from MV(Y;Y;, Y1) to MV(X; Xg, X3)
which is defined by this diagram. It is easy to show that F defines a functor.
0
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