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SHAPE THEORY OF TRIADS

TAKAHISA l'vIIYATA

Shizuoka Inst. of Sci. and Tech., Fukuroi. Japan

ABSTRACT. In this paper we develop the shape theory for triads
of spaces in a systematic way, using polyhedral resolutions for triads of
spaces, and give applications, which include the Blakers-Massey homotopy
excision theorem whose proof is different from the approach taken by S.
Ungar.

1. INTRODUCTION

Throughout the paper, spaces mean topological spaces, and maps mean
continuous maps. A triad of spaces (X; Xo, Xl) means a space X and two sub­
spaces Xo and Xl of X such that X = Xo UXI. A triad of spaces (Xj Xo, Xr)
is an ANR triad if Xo and Xl are closed subsets of X and X, Xo, Xl, Xo nXI
are ANR's, and a triad of spaces (X;XO,XI) is a polyhedml triad (resp., CW
triad:) if X is a polyhedron (resp., CW-complex) and Xo and Xl are subpolyhe­
dra (resp., sub complexes) of X. A map of triads f : (X; Xo, Xl) --t (Y; Yo, Yr)
means a map f : X --t Y such that f(Xo) ~ Yo and f(XI) ~ YI. A homotopy
of triads means a map of triads h: (X x I; Xo x I, Xl X I) --t (Yj Yo, Yr).

In this paper we develop the shape theory for triads of spaces in a sys­
tematic way, using polyhedral resolutions for triads of spaces, and give appli­
cations. The first application is the Blakers-Massey excision theorem in shape
theory. The Blakers-Massey theorem in shape theory was first proved by Un­
gar [7]' but our approach is different and is based on the natural construction
of our shape theory of triads. Related results for the excision theorems for
strong homology and Cech homology were obtained by Ju. T. Lisica and S.
Mardesie [4] and T. Watanabe [8]. As the second application, we obtain the
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Mayer- Vietoris sequences in shape theory for triads of spaces with respect to
the Cech cohomology theory based on the normal open coverings.

This paper is organized as follows: After we prove some useful properties
of ANR triads in the next section, in section 3 we discuss polyhedral resolu­
tions of triads, and in the following section we obtain results concerning the
homotopy types of ANR triads, polyhedral triads and CW triads. In section
5 we show that resolutions can be used to define the shape category for triads,
and in the final two sections we discuss invariants in this category and ob­
tain the Blakers-Massey homotopy excision theorem and the l\'Iayer-Vietor is
sequences in shape theory.

Let f,9 : X -+ Y be functions between sets. For any covering V of Y,

(/,9) < V means that f and 9 are V-near. For any covering U of a set X: if A is
a subset of X, then UtA means the covering {UnA: U E U} of A, and the star
of A in X with respect to U means the set st(A,U) = U{U E U: UnA -I- 0}.

The author would like to express his thanks to Professor Watanabe for
the valuable discussion at Yamaguchi University during the summer of 1998.

2. ANR TRIADS

We will prove some properties of ANR triads that will be needed in later
sections. Most of them are analogous to those of single ANR's (see [6]).

LEMMA 2.1. Let (P; Po, PI) be an ANR triad. Then, for each open cov­
ering U of P, there exist an open neighborhood W of PonPI in P and a map
of triads k : (Pi Po, Pr) -+ (Pi Po, PI) such that (IF, k) < U and kIT~' is a
retraction of HI onto Po nPI .

PROOF. For i = 0,1, [6, Lemma 4, p. 86] implies that there exist an
open neighborhood V; of Po n PI in Pi and a map ki : Pi --7 Pi so that
(IF" ki) < UIPi and kilV; is a retraction of vi onto POnPI. Then V; = WinPi
for some open subset Wi of P and let W = Wo n WI' Then kl and k2 define
a map of triads k : (P; Po, PI) -+ (P; Po, PI) so that (IF, k) < U and klW is
a retraction of Wonto Po n Pl' 0

LEMMA 2.2. Every ANR triad (P; Po: PI) admits an open covering V of
P such that any two V-near maps of triads into (Pi Po, PI) are homotopic as
maps of triads.

PROOF. [6, Theorem 6, p. 39] implies that there exists an open cover­
ing U of P such that any U-near maps f,9 : X -+ P are homotopic where
the homotopy is constant on x x I whenever f(x) = g(x). By Lemma 2.1,
there exist an open neighborhood V of Po n PI in P and a map of triads
k : (P; Po, PI) -+ (Pi Po, PI) such that (IF, k) < U and klV is a retraction
of V onto Po n Pl. Now let U' be the open covering {P \ PI, P \ Po, V}
of P, and again by [6, Theorem 6, p. 39]' take an open covering V of
P so that any two V-near maps into Pare U'-homotopic. We claim that
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V is a desired open covering. Indeed, let f,g : (XiXo,XI) -+ (PiPo,Pd
be V-near maps of triads, and let G : X x I -+ P be the U'-homotopy
such that Go = f and Gl = g. Then G(Xo x I) ~ P \ PI U F and
G(XI x I) ~ P \ Po U F, so H = kG ; X x I -+ P defines a homotopy of triads
H: (X x I; Xo x I, Xl X I) -+ (P; Po, PI) such that Ho = kf and HI = kg. On
the other hand, by the choice ofU, there exist homotopies K : Xo xl -+ Po and

K' : Xl xl -+ PI such that [(0 = flXo, Kl = kflXo, Kb = fIXI, Kf = kflXl
and KI(XonXd x t = flxonxl = kflxonxl = K11(XonXl) xt for tEl.

So the map K : X x I -+ P defined by KIXo x I = K and KIXI x 1= K'
is a homotopy of triads K : (X x Ii Xo x I, Xl X I) -+ (P; Po, PI) such that
Ko = f and J(l = kf, indicating f '::::kf. Similarly, g '::::kg, and hence we
have f '::::9 as maps of triads. D

LEMMA 2.3. Let (Pi Po, Pd be an ANR triad, let (X; Xo, Xd be a triad
of metric spaces such that Xo, Xl are closed subsets of X and X = Int(Xo) U
Int(Xl), and let A be a closed subset of X. Then every map of triads f :

(A; A. n Xo, A. n Xd -+ (P; Po, Pd admits an e:r;tension j : (U; un Xo, U n
Xl) -+ (P;Po,Pd for some open neighborhood U of A. in X.

PROOF. By [6, Theorem 10, p. 43]' the map of pairs flA n Xo : (A n
Xo, AnXonxd -+ (Yo, Yon1"I) extends to a map of pairs fo : (Bo, Bonxd -+
(Yo, Yo n Yd for some closed neighborhood Bo of A. n Xo in Xo. Consider the
map of pairs h : ((A U Bo) n Xl, (A U Bo) n Xl n Xo) -+ (Yl, Yo n 1"1) defined
by hlAnXl = flAnXl and hlBonXl = folBonXl. Again by [6, Theorem
10, p. 43]' h extends to a map of pairs f{ ; (Bl, BI n Xo) -+ (Yl, Yo n YI)
for some closed neighborhood Bl of (A U Bo) n Xl in Xl' Now let U1 =
Bo UBI, and define a map of triads P : (U1; U' n Xo, U' n Xd -+ (Yi Yo, YI)

by PIBo = fo and PIBI = f{. Then since X = Int(Xo) U Int(Xd, U' is a
closed neighborhood of A in X. Finally, if U is an open subset of X such that

A ~ U ~ U1, then j = PI U is a desired map of triads. D

LEf\IMA 2.4. Let (P; Po, Pd, (X; Xo, Xl) and A be as in Lemma 2.3, and
let f,g : (X;XO,XI) -+ (P;Po,Pd be maps of triads. If flA '::::gl.1 as
maps of triads from (A;AnXo,Anxd to (P;Po,Pd, then there exists an
open neighborhood F of A in X such that flV '::::glV as maps of triads from
(V;Fnxo,xd to (P;Po,Pd.

PROOF. Let H : (A x I; (A n Xo) x I, (A n Xl) x I) -+ (P; Po, PI) be a
homotopy of triads such that Ho = flA and HI = gIA., let B = (A x I) U (X x
0) U (X x 1), and define a map of triads F : (B; B n (Xo x I), B n (Xl x I)) -+
(P; Po, Pd by FIA x I = H, FIX x 0 = f and FIX xl = g. Applying Lemma

2.3, F extends to F : (U; U n (Xo x I), U n (Xl x I)) -+ (Yi Yo, YI) for some
open neighborhood U of B. If F is an open set such that F x I ~ U, then
fI = FIF x I is a desired homotopy. D
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LEMMA 2.5. Let (X; XO, Xr) be a triad of spaces, let (P; Po, PI) and
(P';P6,PI) be ANR triads, and let 1 : (X;Xo,Xr) --+ (P';P6,PI) and
91,92 : (P'; P6, PI) --+ (P; Po, PI) be maps of triads such that 911 ~ 921
as maps of triads. Then there exist an ANR triad (P';P6', PI') and maps of
triads l' : (X;XO,Xl) --+ (P";P6',P{') and 9: (P";P6',PI') --+ (P';P6,PI)

such that f = 91' and 919 ~ 929 as maps of triads.

PROOF. We can prove this by the argument similar to [6, Lemma 2, p.
52]' using Lemma 2.4 in an appropriate place. 0

LEMMA 2.6. Let (X; Xo, Xr) be a triad of spaces where X is normal, let
A be a closed subset of X, and let 11 be an open neighborhood of A in X.
Then there exists a map of triads

r: (X x I; Xo x I, Xl X 1) --+ (V x I u X x 0; (1/ n Xo) x I u Xo x 0,
(11 n Xr) x I U Xl X 0)

such that the restriction riA x I U X x 0 is the inclusion.

LEMMA 2.7. (Homotopy extension lemma) Let (X; Xo, Xl) and A ~ X

be as in Lemma 2.6, and let (Y; Yo, Y1) be an ANR triad. If f,9 : (A; A n
Xo, An Xr) --+ (Y; Yo, Yr) are homotopic maps of triads, and if 9 extends
to a map of triads g: (X;XO,X1) --+ (Y;Yo,Yr), then there is an extension

j: (X;Xo,Xr) --+ (Y;Yo,Yr) of f such that j ~ 9 as maps of triads.

PROOF. We can proceed as for [6, Theorem 9, p. 41]' using Lemma 2.6.
o

3. RESOLUTIONS OF TRIADS

Let Top be the category of spaces and maps, and let TopT be the cat­
egory of triads of spaces and maps of triads. Recall that a resolution of a
triad (X;Xo,Xr) is a morphism p = (p>•.) : (X;Xo,Xr) --+ (X;Xo,Xr) =
((X),; Xo)" Xu,),P)'A', A) in pro-TopT with the following two properties [5]:

(Rl): Let (P; Po, PI) be an ANR triad, and let V be an open covering
of P. Then every map of triads f: (X;Xo,Xr) --+ (P;PO,Pl) admits
A E A and a map of triads 9 : (X),; Xo)" Xl),) --+ (P; Po, Pr) such that
(gp)"1) < V; and

(R2): Let (P;Po,Pr) be an ANR triad. Then for each open covering V

of P there exists an open covering V' of P such that whenever A E A
and g, g' : (X),; Xo)" Xl>.) --+ (P; Po, Pr) are maps of triads such that
(gp)" g'p),) < V', then (gp),A', g'p),),,) < V for some A' ~ A.

p is an ANR-resolution (resp., polyhedral resolution) if (X),; Xo)" Xl>.) are
all ANR triads (resp., polyhedral triads). The pointed version ofresolution is
also defined similarly.



SHAPE THEORY OF TRIADS 271

THEOREM 3.1. (Mardesie [5]) Every triad (X; Xo, Xd of spaces admits
an ANR-resolution

p = (p>.) : (Xi Xo, Xl) -t (X; Xo, Xd = ((X>..; Xo>.., Xl>..),P>",X', A)

such that A is cofinite and X>..= Int(Xo>..) U Int(Xl)..) for each A E A.

In this section, we wish to show the following theorem, which we will need
in later sections.

THEOREM 3.2. Every triad (X; Xo, Xd of spaces admits a polyhedral res­

olution p = (p>..) : (X;Xo,Xd -t (X;Xo,Xd = ((X>..;Xo>..,Xl>..),p>">"',A)
such that A is cofinite.

To prove the theorem, we need a couple of lemmas.

LEMMA 3.3. Let (X; Xo, Xd be a triad of spaces, and let

p = (p>..) : (X; Xo, Xl) -t (X; XO, Xl) = ((X>..; Xo>.., Xl>..),p>..>..',A)

be a morphism in pro-TopT such that the induced morphism p = (p>..) ; X -t
X is a resolution, and the induced morphisms plXo = (p>..IXo) : Xo -t Xo
and plXl = (p>..!Xl) : Xl -t Xl in pro-Top satisfy properly (El):

(Bl): Let A E A, and let U be an open subset of X>.. such that

Cl(p>..(X)) ~ U. Then there exists At 2: A such that P>..>..'(X>..,) ~ U.

Then p ; (X; Xo, Xl) -t (X; Xo, Xd is a resolution.

PROOF. Clearly, (R2) for p : X -t X implies (R2) for p: (X; Xo, Xd -t
(X; X 0, Xl)' So it suffices to verify (R1). Let (P; Po, Pd be an ANR triad,
let h: (X;XO,Xl) -t (P;Po,Pd be a map of triads, and let V be an open
covering of P. Let V' be an open covering of P such that st V' < V. Apply
Lemma 2.1 to VI, we obtain an open neighborhood W of Po n Pl in P and
a map of triads k : (P; Po, Pd -t (P; Po, Pd such that klW : W -t Po n Pl
is a retraction and (Ip, k) < Vi. Take an open set W' such that Po n Pl ~
W' ~ Cl(WI) ~ W, and let V'I be an open covering of P such that V" <
Vi 1\ {WI,P \ Po,P \ Pd. By (RI) for p: X -t X, there exist A E A and a
map f : X>..-t P such that (h, fp>..) < V". Then fp>..(Xo) ~ W' U P \ Pl and
fp>..(Xd ~ W/UP\PO' So, f(Cl(p>..(Xo))) ~ Cl(WI)UCl(P\Pd ~ WUPo, and
so Cl(p>..(Xo)) ~ f-l('W U Po). Similarly, Cl(p>..(Xd) ~ f-l(W U Pd. Since
W U Po and W U Pl are open, (BI) for plXo : Xo -t Xo and plXl ; Xl -t Xl
imply that there exists At 2: A such that P>..>..'(Xo>..') ~ f-l (W U Po) and
p>..>..,(Xl>..,) ~ f-l(WUP1). Now let 1': X>..' -t P be defined by l' =
kfp>..>..'· Then 1'(Xo>..') = kfp>..>..,(Xo>..') ~ Po, and similarly f'(Xl)..') ~ Pl'
So l' defines a map of triads l' : (X>..'; X 0>'",Xl>..') -t (P;Po,Pd satisfies
(1'p>.., h) < V. This verifies (R2) for p: (X;XO,Xl) -t (X;Xo,Xd. 0

LEMMA 3.4. Let (X; Xo, Xd be a triad of spaces, and let p = (p>..) :

X -t X = (X>.., P>..>..', A) be a morphism in pro-Top. For each A E
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A, let M).. be the index set for all open coverings V)..,IL of X).., and let
M = {v = (A,f.l) : A E A,f.l EM)..}. For each v = ()..,f.l) E M, let
(Zvj ZOv, Zlv) = (X)..j st(p)..(Xo), V)..,IL)' st(p)..(Xr), V)..,IL))' and order M by
v = (A, f.l) -::; Vi = ()..',f.l') provided)" -::; )..' and p)..)..'(Ziv) ~ Ziv', i = 0,1.
Now let rv = p).. : (Xj Xo, Xr) -+ (Zv; Zov, ZI1/) for each v E Af, and let
r1/1/' = p)..)..' : (Zv'; Zov', Zlv') -+ (Zv; Zov, Zlv) for v -::;Vi. Then if p is a
resolution, then so is the morphism

r = (rv): (XjXO,XI) -+ (ZjZO,ZI) = ((Zv;Zov,Zlv),rvv',M)

in pro-TopT.

PROOF. It is easy to see that rlXo = (rvIXo) : Xo -+ Zo and rlXI =
(TvIXr) : Xl -+ Zl satisfy property (Bl). If p is a resolution, then so is
rlX = (Tv) : X -+ Z. Lemma 3.3 implies that r : (Xj Xo, Xr) -+ (Z; Zo, Zl)
is a resolution. 0

LEMMA 3.5. Let X be a polyhedron, and let A and B be closed subsets
of X such that X = A u B. Then for any open sets Uo and UI in X with
A ~ Uo and B ~ UI, there exists a polyhedral triad (XjXO,Xr) such that
A ~ Int(Xo) ~ Xo ~ Uo and B ~ Int(XI) ~ Xl ~ UI.

PROOF OF THEOREM 3.2. There exists a polyhedral resolution p =
(p)..) : X -+ X = (X)..,pu', A) with cofinite index set A (see [6, Theorem 7, p.
84]). For this p, we have a resolution r = (rv) : (X; Xo, Xr) -+ (Z; Zo, Z r) =
((Zv;Zov,Zlv),rvv',M) as in Lemma 3.4. Let N be the subset of M so that
each v E N corresponds to a polyhedral triad (Zv; Zov, Zlv) as in Lemma 3.5.
Here note that we can assume that each Af).. in Lemma 3.5 is cofinite, and

hence N is cofinite. Then the induced morphism r = (rv): (XjXO,Xr)-+
(Zj Zo, Zr) = ((Zv; Zov, Zlv), rvv', N) is a desired resolution. 0

We also have the pointed analog of Theorem 3.2.

THEOREM 3.6. Every triad (XjXO,XI,xo) of spaces with a basepoint ad­
mits a polyhedral resolutionp= (p)..): (X;XO,XI,xo) -+ (XjXO,XI,xo) =
((X)..jXo)",Xu,xo)..),Pu' ,A) with a cofinite index set A.

PROOF. The pointed versions of Lemmas 3.3 and 3.4 hold. Thus the
theorem follows from the following lemma. 0

LEMMA 3.7. Let p = (p)..) : X -+ X = (X)..,p)..)..',A) be a resolution, and
let Xo EX. Then the morphism

p= (p)..): (X,xo) -+ (X,xo) = ((X)..,xo)..),Pu',A)

where xo).. = p)..(xo) is a resolution.

PROOF. (R2) for p : X -+ X implies (R2) for p : (X, xo) -+ (X, xo), so
it suffices to verify (Rl). Let (P,po) be a pointed ANR, and let g: (X,xo) -+
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(P,po) be a pointed map. Let V be any open covering of P, and take an open
covering VI of P such that st VI < V. [6, Lemma 4, p. 86] implies that there
exist an open neighborhood W of Po in P and a map k : P -+ P such that
(lp, k) < VI and klW : W -+ {Po} is a retraction. Now let VII be an open
covering of P such that VII < VI 1\ {W, P \ Cl(WI)} where WI is an open set
such that Po E WI c;;: Cl(WI) c;;: W. By (Rl) for p: X -+ X, there exist A E A
and a map h : XA -+ P such that (g, hpA) < VII. Let hI = kh : XA -+ P. Then
hI defines a pointed map hI : (XA, XOA) -+ (P,po) and (g, hlpA) < st VI < V.

This verifies (Rl) for p: (X,xo) -+ (X,xo). 0

LEMMA 3.8. Let (Xj Xo, Xl) be a triad of spaces such that Xo and Xl are

closed subsets of X, and let U be a covering of X by path-connected subsets

of X. Then st(Xo,U) n st(Xl,U) = st(Xo n Xl,U).

PROOF. Let x E st(Xo,U) n st(Xl,U). Without loss of generality, let
x E Xo· Since x E st(Xl, U), there is U E U such that x E U and Un Xl =j:. 0.
Then if Un Xo n Xl = 0, this would contradict the connectedness of the
unit interval I. Indeed, let Xl E un Xl' Then for any path r.p : I -+ U
with r.p(0) = x and r.p(I) = Xl, I would be the disjoint union of the nonempty
closed subsets r.p-l(U n Xo) and r.p-l(U n Xl). So Un Xo n Xl =j:. 0. Thus
x E st(Xo n Xl,U). The other inclusion is obvious. 0

THEOREM 3.9. Every triad (X; Xo, Xl) of spaces such that Xo and Xl
are normally embedded closed subsets of X admits a polyhedral resolution

p = (PA) : (XjXo,Xd -+ (X;Xo,Xd = ((XA;XOA,X1A),PAA"A) with A
being cofinite such that the induced morphisms p = (PA) : X -+ X, plXi =
(PA!Xi) : Xi -+ Xi, i = 0,1, and plXo n Xl = (PAIXo n Xd : Xo n Xl -+
XOnxl = (XOAnXl)..,PAA'IXOA' nXl).."A) are resolutions.

PROOF. Indeed, let

r: (X;Xo,Xd -+ (Z;Zo,Zd = ((ZvjZOv,Zlv),rvv"M)

be the polyhedral resolution obtained as in the proof of Theorem 3.2. Then
the restrictions rlXi : Xi -+ Zi, i = 0,1, are resolutions as in [6, Theorem 11,
p. 89]. Note that for each l/ = (A,Il) E M and i = 0,1, Ziv = st(PA(Xi), VA,I-')

for some open covering VA,I-' that is a star covering with respect to some
subdivision of XiA. Then by Lemma 3.8 the induced morphism rlXo n Xl =
(rvlXo n Xd : Xo n Xl -+ Zo n Zl = (Zov n Zlv, rvv,lZov n Zlv, M) forms a
resolution as in [6, Theorem 11, p. 89]. 0

4. THE HOMOTOPY TYPES OF ANR TRIADS

We first show

THEOREM 4.1. Every ANR triad is homotopy dominated by some poly­
hedral triad.
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PROOF. Let (XjXo,Xd be an ANR triad. Take an open covering V
of X so that any two V-near maps of triads to (X;Xo,Xd are homotopic
(Lemma 2.2), and also take a polyhedral resolution p = (p>J : (X; Xo, Xd ---*

(X;XO,Xl) = ((X>.;Xo>.,XuJ,pu',A) (Theorem 3.2). Then there exist
A E A and a map of triads g : (X>.;Xo>.,Xp,) ---* (X;Xo,Xd such that
(lx,gp>.) < V, and hence Ix ::: gp>. as maps of triads. 0

The following is an analog of .J. H. C. \Vhitehead's classical theorem [9]:

THEOREM 4.2. Let (XjXo,Xd be a triad of spaces such that X =
Int(Xo) U Int(Xd. If (XjXo,Xd is homotopy dominated by a polyhedral
triad, then (X; Xo, Xd has the homotopy type of a polyhedral triad.

We can prove the theorem analogously to the proof of [6, Theorem 3, p.
315]' using the two lemmas in the below.

We call the map of triads 'P : (X; Xo, Xd ---* (Y; Yo, Yi) a weak homotopy
equivalence if 'P : X ---* Y, 'PIXo : Xo ---* Yo, 'PIXI : Xl ---* Yl and 'PIXo n Xl :
Xo n Xl ---* Yo n Yl are all weak homotopy equivalences.

LEMMA 4.3. Let (X;XO,Xl) be a triad of spaces such that X = Int(Xo)U
Int(Xd. Then there exist a polyhedral triad (P; Po, Pd and a weak homotopy
equivalence <P: (Pj Po, Pd ---* (Xj Xo, Xd·

PROOF. As in [6, Theorem 10, p. 321]' we have polyhedral pairs (Po, Pal)
and (H,Pod and maps of triads 'Po : (PO,POl) ---* (Xo,Xo n Xd and <PI :
(PI, Pod ---* (Xl,Xonxd such that 'POIPOI= <PlIPOl and 'PO,'PI,'POIPOI are
all weak homotopy equivalences. Let P = Po U PI, and let 'P : (P; Po, Pd ---*

(X;Xo,Xd be the map of triads such that <pIPo= 'Po and 'PIPI = 'Pl. Then
by [2, 16.24], <P : P ---* X is a weak homotopy equivalence. 0

LEMMA 4.4. Let 'P : (X;Xo,Xd ---* CY;Yo'yd be a weak homotopy
equivalence. Then for each polyhedral triad (Pj Po, Pd, the induced map
'P. : [(Pi Po, Pd, (X; Xo, Xl)] ---* [(Pi Po, Pd, (X; Xo, Xl)] is a bijection. Here
[ , ] denotes the set of homotopy classes.

PROOF. We can easily modify the proof of [2, 16.20], so the proof is
omitted. 0

The following is an immediate consequence of Theorems 4.1 and 4.2.

THEOREM 4.5. Let (X;XO,XI) be a triad of spaces such that X
Int(Xo) U Int(Xd. Then the following statements are equivalent:

i) (X; Xo, Xd has the homotopy type of a polyhedral triad;
ii) (X; Xo, Xd has the homotopy type of a CW triad;

iii) (X; Xo, Xd has the homotopy type of an ANR triad;
iv) (X;Xo,Xd is homotopy dominated by a polyhedral triad;
v) (X; Xo, Xd is homotopy dominated by a CW triad;
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vi) (X; Xo, Xd is homotopy dominated by an ANR triad.

REMARK. The pointed versions of Theorems 4.1, 4.2 and 4.5 also hold.
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5. SHAPE OF TRIADS

Let HTopT be the category of triads of spaces and homotopy classes
of maps of triads, and let HPolT be the full subcategory of HTopT whose
objects are the triads of spaces which have the homotopy type of a polyhedral
triad. The corresponding pointed categories are denoted by HTop; and
HPol;.

THEOREM 5.1. Every polyhedral resolution

p = (p),): (X;XO,X1) --+ (X;XO,X1) = ((X),;Xo)"Xu),p)'A',A)

induces an HPolT -expansion

Hp = (Hp),): (X;Xo,Xd --+ H(X;XO,X1)

= ((HX),;HXo)"HXu),Hp)'A',A)

Here H denotes the functor from the topological category to the homotopy
category.

PROOF. We must verify properties (El) and (E2) of [6J. Property (El)
follows from property (Rl) if we take an open covering V as in Lemma 2.2.
For property (E2), we proceed as for [6, Theorem 2, p. 75]' taking V as in
Lemma 2.2 and using Lemma 2.5 in the place of [6, Lemma 1, p. 46]. 0

By Theorems 3.2 and 5.1, the pair of categories (HTopT, HPolT) defines
a shape category, which we call the shape category of triads and denote by
ShT. Lemmas 2.2 and 2.5 hold in the pointed case, and so the pointed analog
of Theorem 5.1 holds. This and Theorem 3.6 imply that the pair of categories
(HTop;, HPol;) defines a shape category, which we call the pointed shape

category of triads and denote by Sh;.

6. EXCISION THEOREM IN SHAPE THEORY

Throughout this section, all triads are assumed to have base points, and
we do not write the base points. For each triad of spaces (X;Xo,Xd and
for k 2 2, we define the k-th homotopy pro-set of triad pro-7rk(X;Xo,Xd as
the pro-set 7rdX;Xo,Xd = (7rk(X)'; Xo)"Xu),p),),'*, A) where p = (p),) :
(X;XO,X1) --+ (X;Xo,Xd = ((X),;XO)"X1),),p),),',A) is an HPol;- ex­

pansion. For each morphism r.p : (X; Xo, Xd --+ (Y; Yo, Y1) in Sh;, there is
an induced morphism pro -7rdr.p) : Pro-7rk(X; Xo, Xd --+ prO-7rk (Y; Yo, Y1).

Then prO-7rk defines a functor from Sh; to pro-Ab for k 2 4, to pro-Gp
for k = 3, and to pro-Set for k = 2, where Gp is the category of groups and
homomorphisms, Ab is the full subcategory of Gp whose objects are abelian
groups, and Set is the category of pointed sets and point preserving functions.
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THEOREM 6.1. Let (Xj Xo, Xl) be a triad of spaces such that X is normal
and Xo and Xl are normally embedded closed subspaces of X. Then there exist
exact sequences of pro-sets

-+ pro -7rr+l(X;XO,Xl) ~ pro -7rr(XO, Xo n Xd ~

pro -7rr(X, Xl) 4 pro -7rr(X; Xo, Xd -+

... -+ pro -7r2(X;XO, Xd ~ pro -7rl(Xo,Xo n Xd ~ pro -7rl(X, Xd

and
8' i'

-+ pro -7rr+l(X; Xo, Xd -+ pro -7rr(Xl, Xo n Xd .:..">

prO-7rr(X,Xo) 4 prO-7rr(XjXO,Xl)-+

a' i'
'" -+ prO-7r2(XjXO,Xl) -+ prO-7rl(Xl,XO n Xd .:.."> Pro-7rl(X,XO)

PROOF. Let

p = (p,X): (X;XO,Xl) -+ (X;Xo,Xd = ((X,X;XO'x,Xl'x),P>.A',A)

be a polyhedral resolution (Theorem 3.6). Then [5, Section 5] implies that
the induced morphisms

{ p = (~,X) : (X,"':i) -+ (X, Xi] = ((X,X,Xi,X),p,X,X"A2

plXi - (p'xIXi). (Xi,XO n.~d -+ (Xi,XO nXd­
((Xi,X, XO'x n Xl'x),P'x'x' IX;>., A)

are resolutions for i = 0,1, and hence [6, Theorem 8, p. 86] implies that those
resolutions induce expansions

{ Hp = (Hp,X) : (X,"':i) -+ H(X,~i) = ((X,X, Xi,X), Hp,XA',--A)

HplXi = (Hp'xIXi) . (Xi,XO n Xd -+ H(Xi, Xo n Xd ­
((Xi,X, XO'x n Xl,X), HpA'x' IXi,X, A)

for i = 0,1. So the homotopy sequences of the triad (X,X; XO,X,Xl>.) (see [3,
p.160J) and their naturality give rise to the above exact sequences of pro-sets
by the pro-set version of [6, Theorem 10, p. 119]. 0

THEOREM 6.2. Let (X j Xo, Xd be a triad of spaces such that X is normal
and Xo and Xl are normally embedded closed subspaces of X, and let m ~ 2.
Then the inclusion induced morphism

i*: pro-7rr(Xo,Xo nXd -+ pro-7rr(X,Xl)

is an isomorphism for 2 ~ r < m, an epimorphism for r = m and "monic"

forr = 1 i.e., Ker{i*: Pro-7rl(XO,XOnXl) -+ pro-7rdX,Xd} ~ 0, if and
only if pro -7rr(X; Xo, Xd ~ 0 for 2 ~ r ~ m.

PROOF. This is an immediate consequence of Theorem 6.1. 0
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THEOREM 6.3. (Blakers-Massey theorem in shape theory) Let (Xi Xo, Xl)
be a triad of spaces such that X is normal and Xo and Xl are normally embed­

ded connected closed subspaces of X, and let m, n 2: 1. Then if (Xo, Xo n Xd
is n-shape connected and (Xl, X 0 nXl) is m -shape connected, then the inclu­
sion induced morphism

is an isomorphism for 1::;r ::; n +m - 1 and an epimorphism for r = n +m.

We prove the following two lemmas before we prove the theorem.

LEMMA 6.4. Let 1 ::; n ::; m, let (Xii Ai, Bi), i = 0,1, ... , m, be poly­
hedral triads such that Ao and Bo are connected, and let Pi : (Xii A, Bi) ~
(Xi+1; AH1, BH1), i = 0,1, ... ,m, be maps of triads such that the induced
maps (PiIAi)*: 1ri(Ai,AinBi) ~ 1ri(Ai+1,AH1 nBi+1) fori = O,I, ... ,n
and (Pi IBi)* : 1ri (Bi, Ai n Bi) ~ 1ri (BH1, Ai+1 n BHd for i = 0,1, ... ,mare
trivial. Then there exist a polyhedral triad (Pi pi, PIJ) such that (Pi, pi nPH)
is n-connected and (pI!, pi n PIJ) is m-connected, and maps of triads f :
(Xoi Ao, Bo) ~ (Pi P', PIJ) and 9 : (Pi P', pI!) ~ (Xmi Am, Bm) such that
Pn'" P1PO= gf·

P L {(K1, L) } b . l' f { (Ao, Ao n Bo)} hROOF. et (K2, L) e tnangu atlOns 0 (Bo, Ao n Bo) suc
that L is a full sub complex of K1 and also of K2. For each i = 0,1, ... ,m,
let

{ Qi = ((Ao n Bo) x I) U ((IK~nin{i,n}1 U IK~I) x I)

Pi = Qi u (Ao x 0)
PI = Qi U (Bo x 0)

Then the polyhedral pairs { ~;1:~:~} respectively have the homotopy types
of the polyhedral pairs

So for i = 0,1, ... , m, (Pi, Qi) is min{ i, n}-connected, and (PI, Qi) is i­
connected.

We wish to obtain the following commutative diagram:

(XoiAo,Bo) ~(X1iA1,Bd~

II

90i
(Xo; Ao,Bo)

c
(Po U P~i Po, P~)

c
-----=---t

-----=---t
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~ (X A B ) Pn+l Pm (X A B )-------, n+l; n+l, n+l -----'---t ... ~ m+l; m+l, m+l

9m-l r

~ (PnUP~;Pn,P~) ~ ~ (PmUP:"iPm,P:n)

We can proceed as in [6, Lemma 3, p. 14a]. For go, let golXo x a = Po and
go(x x 1) = Po(x) for x E Ao n Bo, and using the hypothesis that Ao and Bo

are connected, for each vertex v of K 1 \ L U K 2 \ L, let go (v x 1) be a path in
Al or Bl from go(v, a) = Po(v) to go(v, 1) = the base point of (Xl; AI, Br).
Assume we have defined gi-l for some i ::; m. Then for each i-simplex u of

{ Kl \ L U K2 \ L for i ::; n }K 2 \ L for n < i ::;m
the pair ((au x 1) u (u x a), au x 1) is an i-cell in

{ Pi-lor Pf-l for i < n }Pf-l for n < i ::; m

with its boundary in Qi-l. Then use the hypothesis that (PiIAi)* = a :
1ri(Ai,AinBi) --+ 1ri(Ai+l,Ai+l nBi+r) (i = a,l, ,n) and (pi!Bi)* = a:
1ri(Bi, Ai n Bi) --+ 1ri(Bi+l, Ai+l n Bi+r) (i = a, 1, ,m) to extend the map
Pigi-ll (au x 1)u(u x a) to a map gi lux I : (u x I, u x 1) --+ (Ai+l, Ai+l nBi+r) or
gilu x I : (u x I, u xl) --+ (Bi+l, Ai+! nBi+r). Thus we obtain a desired map of
triads gi. Then we are done if we let (Pi pt, P") = (Pm UP:ni Pm, p~J, let j :
(Xoi Ao, Bo) --+ (Pi P', P") be the inclusion and let 9 = gm-l : (P; P', P") --+

(Xm; Am, Bm). 0

LEMMA 6.5. Let

(XiXo,Xr) = ((XAiXOA,Xl>.),PAA' ,A) E obpro-HPol;.

Then ijthe inverse systems of pairs (Xo,xonxr) and (Xl,XOnXl) are n­
connected and m-connected, respectively, and if X 0 and X 1 are a-connected,
then for each A E A, there exists N :2: A so that the map of triads PU' factors

through a polyhedral triad (P; Po, Pr) such that the pairs (Po, Po n Pr) and
(PI, Po n PI) are n-connected and m-connected, respectively.

PROOF. Without loss of generality, we can assume n ::;m and that all
XOA and Xl>. are connected. Then for each A E A we have A = Ao ::; Al ::;

... ::; Am ::; Am+! = A' so that (PAiAi+lIXOAi+l)* = a : 7Tm-i(XOAi+l' XOAi+l n
Xl>.i+l) --+ 7Tm-i(XOAi>XOAi n XlA.) for i = m, m - 1, ... ,m - nand
(PAiAHIIXIAi+l)* = a: 7Tm-i(Xl>.i+llXOAi+l nXlAH1) --+ 7Tm-i(Xl>.i,XOAi n
Xl>.i) for i = m, m - 1, ... ,a. Then the lemma follows from Lemma 6.4. 0

PROOF OF THEOREM 6.3. Let (X;Xo,Xd be as in the hypothesis, and
let P = (PA) : (X;Xo,Xd --+ (X;Xo,Xd = ((XA;XOA,XlA),pu',A) be
a polyhedral resolution of (X;Xo,Xr). Without loss of generality, we can
assume n ::;m and that all (XA; XOA,XlA) are polyhedral triads such that
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all Xo>. and Xu are connected. Fix>' E A. Then by Lemma 6.5, there
exist >.' ~ >., a polyhedral triad (P; Po, PI) such that the pairs (Po, Po n
PI) and (PI, Po n Pr) are n-connected and m-connected, respectively, and
maps of triads f : (X>,,;XO>",XIA') -+ (P;Po,Pr) and 9 : (PiPo,PI) -+
(X>.iXo>.,XU) such that P>'>" = gf. Then the Blakers-Massey theorem in
homotopy theory implies that the inclusion J' : (Po, POnPI) Y (P, Pr) induces
the map j* : 1fr(PO, Po n Pr) -+ 1fr(P, Pr) which is an isomorphism for 1 ::::
r :::: 11. + m - 1 and an epimorphism for r = 11. + rn.. Consider the induced
commutative diagram in homotopy sets:

1fr(XO>.,xo>.nXu) ~ 1fr(PO,ponpr) ~ 1fr(XOA',XO>.,nXIA')

, f'
1fr(X>"Xl>.) ~ 1fr(P,Pr) ~ 1fr(X>,',XIA')

where the vertical maps are induced by the inclusions. For 1 ::::r ::::11. + m - 1,
let h = g*(i*)-l f~ : 1fr(XA', XlA') -+ 1fr(XO>', XO>' n Xu). Then h fills the
diagonal of the following commutative diagram:

( ) (PH' iXo>.')· ( )1fr Xo>.,Xo>. nxu ~(---- 1fr XOA',Xo>,'nXIA'

(PH,IX>.,),
1fr (X>. , Xl>.) ( 1fr(X>,', Xl>")

Morita's lemma [6, Theorem 5, p.113] implies i* = (i>.*): 1fr(XO, xonx 1) -+
1fr(X,XI) is an isomorphism for 1:::: r:::: 11. +m -1. Also for r = 11. +m, i* :
1fr(PO, Po npr) -+ 1fr(P, Pr) is an epimorphism, so Im((p>.A'IXA')*) ~ Im(i>.*).
Then [6, Theorem 3, p. 109] implies that i* = (i>.*): 1fn+m(XO,XOnXI)-+
1fn+m(X, X r) is an epimorphism. This completes the proof of Theorem 6.3.
o

7. MAYER- VIETORIS SEQUENCES

For each abelian group G, let ffT( i G) denote the r-th Cech cohomology
theory with coefficients in G which is based on the normal open coverings. G
will be omitted as long as no confusion occurs. Let (X; Xo, Xl) be a triad of
spaces such that Xo and Xl are normally embedded closed subspaces of X.
Then Theorem 3.9 implies the existence of an HPolT -expansion p = (PA) :

(XiXo,XI) -+ (XiXo,XI) = ((X>'iXo>.,Xu),pu',A) of (Xi Xo, Xl) such
that the induced morphisms p = (p>.) : X -+ X, p[Xi = (P>.\Xi) : Xi -+
Xi, i = 0,1, and plXo n Xl = (p>.IXon XI) : Xo n Xl -+ Xo n Xl =
(Xo>.n XU,P>'A' IXo>.'n Xl>", A) are expansions. Then for each>' E A, there
is a Mayer-Vietoris sequence of the polyhedral triad (X>.;Xo>.,Xu), which
is exact and natural. Hence there is an induced Mayer-Vietoris sequence of
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Cech cohomology groups MV(XiXo,Xl):

Then [6, Lemma 1, p. 129] implies the following:

THEOREM 7.1. For each triad of spaces (X; Xo, Xl) such that Xo and Xl

are normally embedded closed subsets of X, the Mayer- Vietoris sequence MV

(XjXO,Xl) of Cech cohomology groups is exact.

Let MV denote the category whose objects are triads of spaces (X j Xo, Xl)

such that Xo and Xl are normally embedded closed subsets of X and whose

morphisms q> : (X; X 0, X r) ~ (Y; Yo, Yi) are homomorphisms of Mayer­
Vietoris sequences (see [1, p. 8]) from MV(X; Xo, Xr) to MV(Y; Yo, Yl). Also

let Sh;';' denote the full subcategory of ShT whose objects are triads of spaces
(XjXO,Xr) such that Xo and Xl are normally embedded closed subsets of
X. Then we have

THEOREM 7.2. There exists a contravariant functor F from Sh;';' to j\..1V.

PROOF. For each (XjXO,XI) E obSh;';', let F be the identity on the

objects, i.e., F(X;Xo,Xr) = (X;XO,XI) for each (X;Xo,Xr) E obSh;';'.

Let <P E Sh;';'((X;Xo,Xr),(Y;Yo,Yr)) be represented by the morphism
<P = (<pJl) : (X;XO,XI) ~ (Y;YO,Yl) where p = (p>J : (X;Xo,Xr) ~

(X;Xo,Xr) and q = (qJl) : (Y;YO,YI) ~ (Y;Yo,Yr) are the HPolT­
expansions of (X j Xo, Xr) and (Yj Yo, YI),respectively, such that the induced
morphisms p = (P>.) : X ~ X, plXi = (p>.IXi) : Xi ~ Xi for i = 0,1,
plxOnxl = (p>.lxonxr): XOnxl ~ XOnxl, q = (qJl): Y ~ Y,

qlY; = (qJlIY;) : Y; ~ Yi for i = 0,1, and qlYo n YI = (qJllYo n Yr) :
Yo n YI ~ Yon Y I are all expansions. Then the morphisms induced by

<P, <P = (<pJl) : X ~ Y, <pIXi = (<PJlIXicp(Jl)) : Xi ~ Yi for i = 0,1,
<pIXo n Xl = (<PJlIXocp(Jl)n Xlcp(Jl)) : Xo n Xl ~ Yo n Yl define the mor­
phisms <pIX E Sh(X, Y), <pIXi E Sh(Xi, Y;), i = 0,1, and <pIXo n Xl E
Sh(Xo n Xl, Yo n Yr) which make the following diagram commute for i = 0,1:

Xo nXI~Xi k
X-----+

cplxonxll

cplX;11'PIX

YOnYI

~}';
k'

Y-----+

where the horizontal maps are the inclusions. Here Sh denotes the shape
category in the sense of [6]. Thus we have the following commutative diagram:
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-----+ fIr-1(Xo n Xl)

(<pIXenXIl" r
-----+ fIr-1(yo n Y1)

~ fIr(x)

(<pIXl' r

~ fIr(y)

-----+ ...

-----+ fIr(xo) EB fIr(x1) -----+ fIr(xo n Xr) -----+

((<pIXel' ,('PIX,)") r ('PIXenXl)" r
-----+ fIr (YO) EB fIr (YI) -----+ fIr (YOn Y1) -----+

Let :F(<p) be the homomorphism from MV(Y; Yo, Yr) to MV(X; Xo, Xl)
which is defined by this diagram. It is easy to show that :F defines a functor.
o
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