
Josip Knezović, Mario Kovač, Hrvoje Mlinarić

Integrating Streaming Computations for Efficient Execution on
Novel Multicore Architectures

UDK
IFAC

004.272.43.042
2.8.1 Original scientific paper

Streaming has emerged as an important model in present–day applications, ranging from multimedia to scientific
computing. Moreover, the emergence of new multicore architectures has resulted with new challenges in efficient
utilization of available computational resources. Streaming model offers the portability and scalability of perfor-
mance with the increasing number of cores. In this paper we propose a tool which enables the implementation of
the compute–intensive stream processing kernels as portable modules in general–purpose applications. Resulting
modules can be efficiently reused with high degree of scalability in regard to increasing number of processing cores.

Key words: Streaming model, Parallel programming, Signal processing, Multicore

Integracija tokovnog modela za učinkovito izvo�enje na višejezgrenim računalnim arhitekturama.
Tokovni računalni model predstavlja zanimljivo područje istraživanja s ciljem ubrzanja kako multimedijskih, tako
i znanstvenih aplikacija. Isto tako, pojava višejezgrenih računalnih arhitektura rezultirala je povećanjem zani-
manja za istraživanje metoda i modela koji bi omogućili učinkovito iskorištavanje postojećih paralelnih resursa.
Tokovni model omogućuje istovremeno visok stupanj apstrakcije, prenosivost i skalabinost aplikacija s obzirom
na povećanje računskih jezgri. U ovom je članku predložen pristup koji omogućuje implementaciju računski za-
htjevnih dijelova aplikacija u tokovnom modelu te njihovu integraciju u vidu prenosivih modula. Na taj način
ostvareno je ubrzanje cjelokupnih aplikacija pri izvo�enju na višejezgrenim procesorima.

Ključne riječi: tokovni računalni model, paralelni sustavi, obrada signala, višejezgrena računala

1 INTRODUCTION

Reaching the point of diminishing returns in increas-
ing the clock frequency of uniprocessors has led to the
emergence of novel multicore architectures. We have seen
the proliferation of homogeneous and heterogeneous mul-
tiprocessors in not only general–purpose computing, but in
embedded computing as well. Examples are Cell BE [1],
Tilera’s TILE64 [2], Sun’s Niagara and Rock [3], Intel
Core 2 Duo, Quad, Teraflops [4], AMD’s Barcelona [3]
etc. Therefore, multiprocessor technology is no longer
reserved for high–performance scientific and special pur-
pose applications only, but to the ubiquitous world of gen-
eral purpose and embedded computing as well. Avail-
able solutions range from symmetric multiprocessors with
shared memory to asymmetric multiprocessing systems
with or without shared memory demonstrating wide diver-
sity of possible computing platforms. In order to exploit
the abundance of the computing resources, the trend must
be accompanied with appropriate shift in computational
models, programming language and compiler technology
which should provide easy, efficient and portable imple-

mentation of parallel programs. Moreover, many exist-
ing and upcoming applications contain compute–intensive
data centric computations such as image, video and au-
dio coding, playback and processing, gaming, multimedia
content processing, retrieval and archival. They all have
streaming nature due to stream–like processing of large
amount of data. These applications can therefore substan-
tially benefit from upcoming multicore architectures by ex-
ploiting the available parallelism and executing compute–
intensive parts in parallel.

The main idea of the streaming processing model is that
the program is expressed as a set of independent and infre-
quently changing operations on the huge amount of data.
Data items are processed and transported among process-
ing elements connected with the communication channels.
Numerous past and recent research projects such as Imag-
ine [5], StreamIt [6], RAW [7], Merrimac [8], Brook [9]
have exploited the idea of streaming. Recently, emerging
multicore architectures have motivated a renew in the re-
search for parallelization of computations expressed in the
streaming model. The results show the promising results in

ISSN 0005-1144
ATKAFF 51(4), 387–396(2010)

AUTOMATIKA 51(2010) 4, 387–396 387

Integrating Streaming Computations for Efficient Execution on Novel Multicore Architectures J. Knezović, M. Kovač, H. Mlinarić

a3

a2

a1

a1a4

a5

a2

Fig. 1. An example of a stream program graph

terms of providing the platform for efficient and portable
implementation of data–intensive applications for parallel
processing.

In this paper we propose a methodology and a tool
which enables the implementation of compute–intensive
stream processing kernels of contemporary data processing
applications as streaming computations. We express these
kernels in the StreamIt, a high–level stream programming
language, and integrate and reuse them in a typical large–
scale data–intensive application. By expressing them in
such high–level, domain–specific model we obtain appli-
cation portability and scalability of performance with the
increase of cores in a multicore processor. We show the
benefits of our approach by evaluating the performance of
several popular stream processing kernels. We also demon-
strate the scalability of our approach with the increasing
number of cores.

The rest of the paper is organized as follows: Sec-
tion 2 gives a brief overview of the stream programm-
ing paradigm and introduces the StreamIt, a research–
based streaming language characterized with the platform–
independence and high abstraction level. In section 3
we present our ideas regarding the separation of stream-
ing kernels and their implementation and integration into
general–purpose applications. The kernels are expressed
in StreamIt which enables the portability and scalability
of performance with the increase of cores on a multicore
processor. Finally, in section 4 we demonstrate the experi-
mental results that we obtained with our proposal. Section
5 gives conclusions and summarizes our ideas with regard
to future challenges and plans.

2 BACKGROUND

2.1 Stream Programming
Stream programming paradigm offers a promising app-

roach in exposing the parallel resources of multicore archi-
tectures to data–intensive and computationally demanding

applications. Often, many parts of these applications can
be expressed as the set of independent transformations on
the data they process, thus exhibiting the streaming na-
ture. Recently, there has been an increase in the interest
in the model which resulted in several popular streaming
languages such as StreamIt [10], Brook [9], Spidle [11],
and CUDA [12]. This was motivated not only by trends
in multicore architectures, but also by trends in the appli-
cations with the emergence of image, video, network and
multimedia processing or, more generally, data–intensive
processing. One of the benefits of stream programming
paradigm is the clean separation between computations
and the communication carried on the data. A program is
expressed as a structured graph of actors, also referred to
as processing kernels or filters, and communication chan-
nels. Data items are presented as streams of tokens flowing
through the graph [13]. An illustrating example of a stream
graph is shown in Fig. 1.

The separation of processing elements and comm-
unication channels is an important aspect of the streaming
computational model. Each actor takes a fixed number of
input elements, i.e. tokens from its input stream, processes
them and outputs a fixed number of results to its output
stream. Since the actors can only access its input and out-
put tokens, they can be viewed as isolated computations
having their own program counter and private and indepen-
dent address space, thus making all the memory accesses
localized. These properties enable the streaming compiler
to efficiently analyze and parallelize the stream program
for the target parallel machine.

Actors have firing rules, ie. they execute and therefore
process input data when certain conditions are satisfied,
such as the number of input tokens on the input channel.
The firings of actors is scheduled in a periodic manner tak-
ing their input requirements into account. Since all actors
have their fixed memory space and well defined work func-
tions, all dependencies between actors are made explicit by
communication channels. This enables the explicit para-
llelism between actors to be easily expressed, thus lever-
aging the compiler to efficiently parallelize and optimize
the whole program [14]. Stream graph differs from tra-
ditional, sequential program flow graph in that all of the
actors of the graph are implicitly running in parallel and
their execution order is constrained only by the availability
of data on their input channels. The model asserts the inde-
pendence of the actors since they only communicate with
their immediate neighbors. This eliminates the existence
of any non–local dependencies of one actor to another and
enables the compiler to efficiently orchestrate the execu-
tion of the graph. However, due to the vast diversity in
emerging architectures, providing an efficient mapping of
stream graph to multicore platform presents a challenging
task. Nevertheless, stream programming concepts allow

388 AUTOMATIKA 51(2010) 4, 387–396

Integrating Streaming Computations for Efficient Execution on Novel Multicore Architectures J. Knezović, M. Kovač, H. Mlinarić

the programmer not to worry about hardware specifics, but
to concentrate on the problem and to express its parallelism
in abstract and portable manner. The task of the streaming
compiler is to efficiently map stream graph onto the target
multicore architecture.

In a streaming domain, programmer has the ability to
express different types of parallelism, ranging from the
fine grain data parallelism to coarse grain task parallelism.
Data parallelism, expressed easily as an actor that has no
interdependence on the input data between its any two ex-
ecutions, is implicitly stated. It offers unlimited amount of
parallelism that can be exploited by the streaming com-
piler since the data–parallel actors can be spread across
any number of computational units, depending on the ar-
chitecture of the platform and on the availability of input
data. Other types of parallelism such as task parallelism
and pipeline parallelism should be exploited as well if effi-
cient utilization of processing cores is required. Task pa-
rallelism in streaming domain is expressed as independent,
parallel branches in the stream graph such as actors a3 and
a4 in Fig. 1. Their execution is separated since the out-
put of the actor a3 never reaches the input of actor a4 and
vice versa. Task parallelism reflects the logical, algorith-
mic parallelism [14], and its amount in stream programs
depends of the application and on the programmer’s view.
Pipeline parallelism applies to chain of directly connected
actors in a stream graph. It is similar to hardware pipelin-
ing, but it is carried on the higher level between actors that
have producer–consumer relationship in the stream graph.
It offers the gains by running the stages of the pipelined
executions in parallel with the drawback of increasing the
latency and buffering between pipelined actors [7].

Despite the abundance of parallelism in streaming app-
lications, the synchronization overhead associated with the
communication in the stream graph presents a challenge
to the overall system performance. This is affected by
the granularity of actors or more specifically, their algo-
rithmic intensity. If the actor process time is low com-
pared to the time spent to prepare input and output data,
communication cost will overshadow the computation ben-
efits obtained through the parallelization. In contemporary
shared–memory multicores, memory bandwidth is sub-
stantially smaller than the processing bandwidth, which
greatly affects their scalability. These effects are efficiently
dealt with by the streaming compiler which performs a
number of stream graph transformations in order to pro-
duce efficient communication pattern and load balancing
of the graph, something which is not possible in traditional
programming models.

2.2 StreamIt Programming Language
StreamIt is a platform–independent and high–level pro-

gramming language aimed to modern stream process-

int->int filter Decimator(int n) {
work pop n push 1 {
for (int i = 0; i < (n-1); i++)
pop();

int x = pop();
push(x);

}
}

Fig. 2. An Example of a StreamIt filter

ing [15]. It is based on structured representation of stream
graph enabling the program organization as a hierarchical
graph of processing nodes. The language enables robust-
ness and expressiveness of the parallelism together with
the portability and scalability across various multicore ar-
chitectures. Additionally, it provides the compiler infra-
structure for stream specific optimizations on a stream pro-
gram mapping to underlying processor architecture.

In StreamIt, the basic programmable computational unit
is referred to as the filter. An example of a filter defi-
nition is shown in Fig. 2. All communication is carried
on the filter’s input and output tape, also known as chan-
nels. Occasionally, irregular data are communicated via
control messages also known as teleport messages, if ne-
cessary [16]. Filter specifies its input and output type, ie.
type of data it consumes and produces, which doesn’t have
to be primitive only, but user–defined type as well. Basic
unit of computation is the work function that repeatedly
reads data from the input channel, processes them and out-
puts the results on the output channel. The input and out-
put tapes are organized as FIFO channels from which fil-
ter pops, or pushes data. Additionally, filter can also peek
data on its input without removing it. The number of data
consumed, produced and peeked for one invocation of the
work function is specified by the filter pop, push and peek
rate. The rates are usually statically declared, which en-
ables the StreamIt compiler to apply various optimizations
and construct efficient execution schedules for target mul-
ticore architecture [17]. Filters can also declare its own
private variables or maintain the state between its execu-
tions. If the state is required, the filter is referred to as
stateful, otherwise the filter is stateless [16]. Aside to pro-
grammable filters, StreamIt defines several built–in filters
that perform specific operations such as file input, output
and data forwarding. They are shown in Table 1.

A complete stream program is described as a hier-
archical graph of filters, either programmable or built–
in. Hierarchical structures used to construct the graph
are: pipeline, splitjoin and feedback loop, as shown in
Fig. 3 [17]. Pipeline is a single input to single output
parameterized stream. It is composed as a sequence of

AUTOMATIKA 51(2010) 4, 387–396 389

Integrating Streaming Computations for Efficient Execution on Novel Multicore Architectures J. Knezović, M. Kovač, H. Mlinarić

Table 1. StreamIt built–in (native) filters
Filter Description
Identity<type> Forwarding filter. Takes an input element of specified type from

the input tape and pushes it on the output tape.
FileReader<type> Parameterized file input. Performs reading of the data of specified

type from the file and pushes them to its output tape. Generally
used at the beginning of the StreamIt program.

FileWriter<type> Parameterized file output. Performs writing of the data of specified
type to the file by taking it form its output tape. Generally used
as the last filter in the StreamIt program.

Fig. 3. StreamIt hierarchical streams

stream nodes, either filters or other hierarchical streams. In
a pipeline one filter sends its output to the input of the fil-
ter that follows in the pipeline. Splitjoin is a construct that
allows distribution of a data to the set of parallel streams.
Those streams are joined back in a roundrobin fashion.
Splitter scatters the data, and joiner gathers back. This
allows the programmer to express task parallelism in app-
lications. Feedback loop introduces cycles in the stream
graphs. Although possible, this construct is not very often
used as it can always be expressed as a stateful filter.

Although it leverages the synchronous dataflow SDF
model of computation [18], StreamIt extends it with the
support for dynamic rates of filters, peeking on the input
tapes, and timed control messages through the concept re-
ferred to as teleport messaging. These extensions are cru-
cial to the broader use of streaming model of computation,
ranging from general purpose applications to data centric
and scientific applications.

3 INTEGRATION OF STREAMING MODULES
FOR EFFICIENT EXECUTION

Past experience in implementing complex applications
which contain compute–intensive streaming parts such as
MPEG–2 decoder has shown the difficulties in implement-
ing them entirely in the streaming domain [19]. This is
rather true for any domain–specific computational model
due to the fact that in the real–life applications there

Function

 10

 20

 30

 40

 50

 60

co
nv

42
2t

o4
44

yu
v2

rg
b

co
nv

42
0t

o4
22

pu
tb

yt
e

pr
ed

ic
t

ad
d_

bl
oc

k

R
E

ST

co
nv

42
2t

o4
44

 +
co

nv
42

0t
o4

22
 +

yu
v2

rg
b

T
im

e
[%

]

 0

Fig. 4. Execution time profile of an MPEG decoder

exist parts of the code which pertain to the handling of
user inputs, options, irregular events, termination condi-
tions, fault handling etc. This type of program logic is
very hard to implement in streaming domain. Moreover,
stream–oriented parts of these applications such as DCT,
FFT, image segmentation, are usually the most processor–
hungry parts. This effect is clearly visible in Fig. 4 where
an execution profile of a MPEG–2 decoder is shown.
The benchmark we used was the reference decoder im-
plementation and a part of the MediaBench benchmark
suite [20]. First three bars in the figure represent the con-
tribution of pixel upsampling functions conv420to422
and conv422to444 and color conversion yuv2rgb in
the overall decoder execution. These parts together consti-
tute almost 60 percent of the execution time. Clearly, they
exhibit streaming nature and are naturally expressed in the
streaming model. Other parts of the decoder are devoted
to program logic which is moderately or very hard to im-
plement in the model. In addition, isolated functions are
natural target for eventual performance–oriented optimiza-
tions. By implementing them in the streaming domain, we
strive to achieve two important goals: high–level portabi-
lity among different architectures and the scalability of per-
formance with the increased number of processing cores.

As we observed that the design of real–world data–
intensive applications is hard to fit entirely in a domain–
specific model such as streaming, we propose to take an-

390 AUTOMATIKA 51(2010) 4, 387–396

Integrating Streaming Computations for Efficient Execution on Novel Multicore Architectures J. Knezović, M. Kovač, H. Mlinarić

other approach in which the streaming parts are designed
within the streaming domain, while other parts of the appli-
cation are left outside the domain and designed using tradi-
tional programming languages. In case of the existing ap-
plication targeted for efficient execution on the multicore,
we isolate the streaming kernels which are usually compu-
tationally the most demanding parts, usually by profiling
it. When identified, streaming parts will be implemented
in streaming model and integrated into the host application.

In order to explore the potential benefits of our proposal
we implemented the design flow and the toolchain illus-
trated in Fig. 5. We modified the StreamIt compiler chain
(dashed blocks were expunged) in order to produce stream-
ing computations as routines which can be integrated into
the host application code. The application is divided into
parts which are implemented in StreamIt and the general
parts which are implemented or left in the C/C++ pro-
gramming language. StreamIt compiler is a high–level
source–to–source compiler that takes a StreamIt source
file and generates C/C++ code linked against the under-
lying threading library such as PThreads. The compiler as-
sumes that the complete program is expressed in StreamIt.
Therefore, in order to implement our idea, we had to mod-
ify the compiler so that the code for FileReader and
FileWriter filters is removed. Additionally, resulting
C/C++ code is modified so that it could be linked against
the application source code, and the code that performs
the exchange of the data between streaming kernel and
the application code is inserted. The data exchange is
implemented through dynamically allocated buffers in the
memory, which is done in the application code. Addit-
ionally, StreamIt compiler generated the main routine for
the streaming part which is also replaced with the entry
routine for the application code to call streaming com-
putations. The rest of the compiled StreamIt program,
i.e. stream code which contains the filters that perform op-
erations were unchanged. Finally, the application program
code and streaming code are compiled by a native compiler
such as gcc resulting in an executable program.

The design flow showed here serves for the purpose of
proving the ideas of our proposal. Our current efforts are
the addition of built–in filters into StreamIt which will en-
able more flexible exchange of data and with the more au-
tomated toolchain. We also plan to provide more flexi-
ble, low–overhead streaming runtime which will enable the
invocation of compute-intensive streaming computations,
something similar to foreign language runtimes available
for other domain specific languages such as Sisal [21]. In
addition, we are currently investigating the possibilities to
modify the StreamIt language to add constructs and intrin-
sic filters for efficient multidimensional data exchange and
processing.

StreamIt
compiler

str

C++ Code
modification

C++ (mod) C++

gcc (C++)
compiler

StreamIt

program

Application
program

Streaming
computation

Application

executable

gcc (C++)
compiler

Fig. 5. The design flow of proposed methodology

4 EXPERIMENTS AND RESULTS

In order to validate our proposal we investigated it on a
set of benchmarks described in Table 2. These programs,
except for CBP, are extracted from the versatile StreamIt
benchmark suite available at [22]. In our experiments, we
modified each program so that it consists of the main ap-
plication part (the host) programmed in C/C++ and stream-
ing kernel programmed in StreamIt, as illustrated in Fig. 5.
The kernel was compiled with StreamIt compiler that we
have modified in order to implement our proposal. Gen-
erated C code for the kernel was finally interfaced and in-
tegrated into the host application. As already noted, the
host application code usually performs the general pro-
gram logic such as error handling and user options han-
dling. Additionally, it handles data input from files or
some other source. Data items are sent to the streaming
kernel which is invoked in order to perform its computa-
tions. After processed by the kernel, the results are gath-
ered and sent back to the host application. As previously
said, this approach enables the compute–intensive stream-
ing computations to be expressed in a domain–specific
model which will provide portability and scalability over
the wide range of multicore architectures, in terms of both,
architectural changes and increasing number of cores.

Figure 6 shows the execution time breakdown for se-
lected benchmarks. We show the contribution of the time
spent in the streaming kernel and in the rest of the bench-
mark (the host) as percentage of the total execution time.
As can be seen, streaming parts dominate the execution
time, which makes them the natural target for performance
optimization. Our benchmarks have only one streaming
kernel implemented in StreamIt, while the rest of the pro-
gram is implemented in C or C++ as the host. In future,
we plan to add support for integration of more streaming

AUTOMATIKA 51(2010) 4, 387–396 391

Integrating Streaming Computations for Efficient Execution on Novel Multicore Architectures J. Knezović, M. Kovač, H. Mlinarić

Table 2. Evaluated benchmarks
Benchmark Filters Description
Fmradio 65 Software FM radio with equalizer
Filterbank 51 Filter bank for multirate signal processing
FFT 97 Fast Fourier transform
DCT 38 2D DCT transform 8x8
CBP 44 Contextual pixel predictor for lossless coding
AudioBeam 21 Audio beamformer for recording with a large microphone array
RGB2YUV 7 Color space conversion

Streaming Kernel

 0%

 20%

 40%

 60%

 80%

 100%

Fm
ra

di
o

Fi
lte

rb
an

k

FF
T

D
C

T

C
B

P

A
ud

io
be

am

R
G

B
2Y

U
V

T
im

e
br

ea
kd

ow
n

(%
)

Benchmark

93% 89% 83% 90% 94% 91% 98%

7% 11% 17% 10% 6% 9% 2%

Host Application

Fig. 6. Execution time breakdown of selected benchmarks

kernels into the host and for efficient thread management
for the streaming runtime.

Illustrating examples for the case of audiobeam bench-
mark are shown in Figs. 7 and 8. Figure 7 shows the orig-
inal stream graph of the audiobeam streaming kernel, as
perceived by the programmer, while Fig. 8 shows the over-
all diagram of the final program as generated by our tool,
consisting of the host application code and compiled code
for the audiobeam streaming kernel. Our tool replaces
the StreamIt FileReader and FileWriter filters with
the data exchange code which is inserted in the generated
streaming code and the host code. Original stream graph
from the Fig. 7 is a fine grained, algorithmic representa-
tion of the kernel. Every branch processes the data col-
lected by one microphone, the figure shows the setup with
eight microphones, actual number of microphones used for
experimental evaluation was 15. The programmer does
not have to worry about the load balancing of streaming
nodes and other architecture–specific details of target ma-
chine. The role of the streaming compiler is to partition the
stream graph into a set of well balanced nodes with a set
of available transformations with the constraint of preserv-
ing functional equivalence of the original and final stream

graph. The effect of streaming transformations are shown
in Fig. 8 where the resulting stream graph is shown tar-
geted to the dual core Pentium D machine. The partitioned
streaming module resulted in two parallel threads repre-
sented by two nodes in the middle of the figure. The data
items for threads are scattered with the roundrobin splitter
and gathered again by roundrobin joiner before sent back
to the main application program. The resulting code gen-
erated by the streaming compiler and application code are
finally compiled and linked together into the resulting bi-
nary by the gcc compiler.

We ran our experiments on two machines resembling
the trend of increasing the number of cores: a 2.66 GHz
dual core Pentium D with 1 GB of memory (2 Cores) and
a 2.66 GHz quad core Core 2 Quad processor with 4 GB
of memory (4 Cores). Both systems ran a Linux oper-
ating system with kernel version 2.6.23. Resulting pro-
gram code in C/C++ consisting of the main application
code and the streaming code generated by the StreamIt
compiler, was compiled into executable by the gcc ver-
sion v3.4 with the –O3 optimization set. StreamIt com-
piler was instructed with no stream–specific optimizations,
the only option was the target number of threads. For

392 AUTOMATIKA 51(2010) 4, 387–396

Integrating Streaming Computations for Efficient Execution on Novel Multicore Architectures J. Knezović, M. Kovač, H. Mlinarić

Audiobeam_2

calculate_single_position_58

process_signal_59

AnonFilter_a0_53

do_beamforming_60

AnonFilter_a2_55

FileReader_56

push=1

pop=0

peek =0

Copier_57

push=40

pop=1

peek =1

DUPLICATE(1)

WEIGHTED_ROUND_ROBIN(1,1,1,1,1,1,1,1)

WEIGHTED_ROUND_ROBIN(1)

FileWriter_70

push=0

pop=1

peek =1

AnonFilter_a1_61

push=1

pop=1

peek =2

AnonFilter_a1_62

push=1

pop=1

peek =2

AnonFilter_a1_63

push=1

pop=1

peek =3

AnonFilter_a1_64

push=1

pop=1

peek =4

AnonFilter_a1_65

push=1

pop=1

peek =5

AnonFilter_a1_66

push=1

pop=1

peek =6

AnonFilter_a1_67

push=1

pop=1

peek =6

AnonFilter_a1_68

push=1

pop=1

peek =7

WEIGHTED_ROUND_ROBIN(1,1,1,1,1,1,1,1)

AnonFilter_a3_69

push=1

pop=8

peek =8

Fig. 7. Audiobeam benchmark: Original stream graph

TopLevel1_FileReader__2_56_96

SplitJoin0_SplitJoin0_AnonFilter_a2_55_80_Hier_Hier_Hier_160

Copier__8_57
push=40
pop=1

peek =1

WEIGHTED_ROUND_ROBIN(8,7)

Fused_Ano_Ano_157
push=8
pop=8

peek =80
initPush=0
initPop=0

initPeek =72

Fused_Ano_Ano_158
push=7
pop=7

peek =112
initPush=0
initPop=0

initPeek =105

WEIGHTED_ROUND_ROBIN(8,7)

AnonFilter_a3__994_76
push=1
pop=15

peek =15

C++
Application code

DATA INPUT

DATA OUTPUT

C++
Application code

Host Application

Streaming Computation

Fig. 8. Audiobeam: Resulting graph for two core machine

every machine we measured the speedup of the program
that parallelizes the streaming part by spawning it to mul-
tiple threads over the single threaded version for which the
streaming computations utilize one thread of execution.
The speedup was computed as the ratio of the response
time ts of the single threaded version to tm the response
time of the multithreaded version of the program on the
same machine. Multithreaded version was obtained by se-
lecting the target number of threads for the streaming ker-
nel which resulted in the best execution time of the overall
program.

A summary of our results appears in Table 3 and Fig. 9
where we show obtained speedups using our tool. For
each program we measured the speedup obtained on the
running systems (2 Cores and 4 Cores) and the theoreti-
cal speedup bounded by the Amdahl’s law and execution
profile in Fig. 6 (2 Cores Max and 4 Cores Max). Our app-
roach yielded linear speedup improvements in execution
time compared to single threaded version for all bench-
marks except FFT. We find reason for misbehavior in this
case because of the wildly unbalanced stream graph of the
stream graph with the highly unmatched rates of neigh-
boring filters resulting in significant blocking during the
execution, which was previously reported [7]. In case of
the CBP benchmark, we obtained super–linear speedup of

AUTOMATIKA 51(2010) 4, 387–396 393

Integrating Streaming Computations for Efficient Execution on Novel Multicore Architectures J. Knezović, M. Kovač, H. Mlinarić

Table 3. Obtained speedups
Benchmark 2 Cores 2 Cores 4 Cores 4 Cores

Max Max
Fmradio 1.82 1.87 3.21 3.31

Filterbank 1.68 1.80 2.53 3.01
FFT 1.43 1.71 1.21 2.65
DCT 1.77 1.82 2.98 3.08
CBP 2.22 1.89 3.45 3.39

Audiobeam 1.73 1.83 3.11 3.15
RGB2YUV 1.92 1.96 3.72 3.77

Geom. Mean 1.78 1.84 2.74 3.18

D
C

T

C
B

P

A
ud

io
be

am

R
R

G
2Y

U
V

G
eo

m
.M

ea
n

Sp
ee

du
p

Benchmark

2 Cores
2 Cores Max
4 Cores
4Cores Max

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

Fm
ra

di
o

Fi
lte

rb
an

k

FF
T

Fig. 9. Performance results

2.22 for a two core machine, and 3.45 on a four core ma-
chine. We attribute this to the cache and data locality ef-
fects which were substantially improved for the resulting
stream graph compared to the original, fine–grained stream
graph with the nodes exhibiting low arithmetic intensity.
Geometric mean speedup of 1.78 for dual core system and
2.74 for quad core system clearly demonstrates the benefits
of our proposal.

5 CONCLUSIONS

Stream processing kernels exist in many present–day
applications such as video playback, gaming, multimedia
etc. Traditional, imperative programming languages can
not provide an efficient platform and required level of ab-
straction required for portable and scalable implementation
of these computations on novel multicore architectures.
Moreover, their parallel nature can not be efficiently ex-

pressed in such sequential model, leaving the programmer
to trade the performance for portability. On the other hand,
streaming computational model provides a natural way to
express streaming kernels as parallel computations by ex-
posing the data, pipeline and task parallelism. However,
real world applications are not easily expressed as stream
programs because of a lot of logic devoted to other non–
stream oriented tasks such as user input handling, error
checking etc. Because of that, we proposed an approach
where data intensive streaming parts of contemporary app-
lications are expressed in streaming domain and integrated
into the host application as reusable modules. In this pa-
per we demonstrate promising initial results in using this
approach in terms of both: the portability across differ-
ent computer architectures and scalability with increasing
number of cores.

Although our proposal showed promising results, there

394 AUTOMATIKA 51(2010) 4, 387–396

Integrating Streaming Computations for Efficient Execution on Novel Multicore Architectures J. Knezović, M. Kovač, H. Mlinarić

remains lot of space for improvements in terms of both
programmability and efficiency. We plan to introduce bet-
ter support in StreamIt by providing the language with
the constructs and built–in filters which will enable one–
dimensional and multidimensional data exchange between
streaming modules and the host application. Moreover, the
exchange of user–defined types aside from intrinsic types
is planned. We would also like to introduce the stream-
ing computations as part of the domain–specific foreign–
language interface and runtime which will manage parallel
resources of underlying machine more efficiently, similar
to interfaces in [23–25]. This approach should bring most
benefits in enabling efficient thread creation and reuse in-
side the streaming runtime as well as more flexible usage of
the streaming model of computation and more paralleliza-
tion opportunities by implementing the high–level pipelin-
ing of the streaming computations and the host application.

Although demonstrated on commodity multicores with
shared memory, our proposal could be extended so that the
streaming computations are executed on other computing
platforms for which there exists StreamIt compiler support
such as GPUs [26], heterogeneous multiprocessors [27]
and reconfigurable logic [28], thus extending the portabi-
lity of our approach.

REFERENCES

[1] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and
D. Shippy, “Introduction to the Cell multiprocessor,” IBM
Journal of Research and Development, vol. 49, pp. 589–
604, July–September 2005.

[2] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Ed-
wards, C. Ramey, M. Mattina, C.-C. Miao, J. F. B. III, and
A. Agarwal, “On–Chip Interconnection Architecture of the
Tile Processor,” IEEE Micro, vol. 27, pp. 15–31, Septem-
ber/October 2007.

[3] J. McGregor, “The new x86 landscape,” Microprocessor
Report, May 14 2007.

[4] K. P, A. K, and O. K, “Niagara: a 32-way multi-
threaded Sparc processor,” IEEE Micro, vol. 25, pp. 21–29,
March/April 2005.

[5] S. Chatterji, M. Narayanan, J. Duell, and L. Oliker, “Perfor-
mance evaluation of two emerging media processors: VI-
RAM and Imagine,” in Proc. Parallel and Distributed Pro-
cessing Symposium 2003, April 2003.

[6] W. Thies, M. Karczmarek, M. Gordon, D. Z. Maze,
J. Wong, H. Hoffman, M. Brown, and S. Amarasinghe,
“StreamIt: A compiler for streaming applications,” Tech.
Rep. Technical Memo LCS-TM-622, Massachusetts Insti-
tute of Technology, Cambridge, MA, Dec. 2001.

[7] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S.
Meli, C. Leger, A. A. Lamb, J. Wong, H. Hoffman,
D. Z. Maze, and S. Amarasinghe, “A Stream Compiler for
Communication-Exposed Architectures,” in Proc. ASPLOS

02 International Conference on Architectural Support for
Programming Languages and Operating Systems.

[8] J. Gummaraju, M. Erez, J. Coburn, and M. R. W. J. Dally,
“Architectural Support for the Stream Execution Model on
General-Purpose Processors,” in Proceedings of the 16th
Int’l Conference on Parallel Architectures and Compilation
Techniques PACT 07, (Brasov, Romania), September 2007.

[9] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Mike, and
H. Pat, “Brook for GPUs: Stream Computing on Graph-
ics Hardware,” ACM Transactions on Graphics, vol. 23,
pp. 777–786, August 2004.

[10] W. Thies, V. Chandrasekhar, and S. Amarasinghe, “A Prac-
tical Approach to Exploiting Coarse-Grained Pipeline Pa-
rallelism in C Programs,” in International Symposium on
Microarchitecture, (Chicago, IL), Dec 2007.

[11] C. Consel, H. Hamdi, L. Réveillière, L. Singaravelu, H. Yu,
and C. Pu, “Spidle: a DSL approach to specifying stream-
ing applications,” in GPCE ’03: Proceedings of the 2nd
international conference on Generative programming and
component engineering, (New York, NY, USA), pp. 1–17,
Springer-Verlag New York, Inc., 2003.

[12] J. Nickolls and I. Buck, “CUDA Software and GPU Paral-
lel Computing Architecture,” Microprocessor Forum, May
2007.

[13] J. Gummaraju and M. Rosenblum, “Stream Programming
on General-Purpose Processors,” in MICRO 38: Proceed-
ings of the 38th annual ACM/IEEE international sympo-
sium on Microarchitecture, (Barcelona, Spain), November
2005.

[14] M. Gordon, W. Thies, and S. Amarasinghe, “Exploiting
coarse-grained task, data, and pipeline parallelism in stream
programs,” in Proc. International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, (San Jose, CA), October 2006.

[15] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreaMIT:
A language for streaming applications,” MIT/LCS Techni-
cal Memo LCS-TM-620, Massachusetts Institute of Tech-
nology, Cambridge, MA, Aug. 2001.

[16] W. Thies, M. Karczmarek, J. Sermulins, R. Rabbah, and
S. Amarasinghe, “Teleport messaging for distributed stream
programs,” in Symposium on Principles and Practice of
Parallel Programming, (Chicago, Illinois), Jun 2005.

[17] M. Drake, D. Zhang, M. Gordon, J. Sermulins, W. Thies,
A. Dimock, R. Rabbah, and S. Amarasinghe, “Ubiquitous
stream programming to facilitate the migration to multicore
architectures,” in Proc. STMCS First Workshop on Software
Tools for Multi-Core Systems, March 2006.

[18] E. A. Lee and D. G. Messerschmitt, “Static scheduling
of synchronous data flow programs for digital signal pro-
cessing,” IEEE Transactions on Computers, vol. 36, no. 1,
pp. 24–35, 1987.

[19] M. Drake, H. Hoffman, R. Rabbah, and S. Amarasinghe,
“MPEG-2 decoding in a stream programming language,”
in Proc. International Parallel and Distributed Processing
Symposium, (Rhodes Island, Greece), 2006.

AUTOMATIKA 51(2010) 4, 387–396 395

Integrating Streaming Computations for Efficient Execution on Novel Multicore Architectures J. Knezović, M. Kovač, H. Mlinarić

[20] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Medi-
abench: a tool for evaluating and synthesizing multimedia
and communicatons systems,” in MICRO 30: Proceedings
of the 30th annual ACM/IEEE international symposium on
Microarchitecture, (Washington, DC, USA), pp. 330–335,
IEEE Computer Society, 1997.

[21] J.-L. Gaudiot, T. DeBoni, J. Feo, W. Böhm, W. Najjar, and
P. Miller, Compiler Optimizations for Scalable Parallel Sys-
tems: Languages, Compilation Techniques, and Run Time
Systems, ch. The Sisal Project: Real World Functional Pro-
gramming, pp. 45–72. Springer-Verlag New York, USA,
2001.

[22] StreamIt Benchmarks, “http://www.cag.csail.mit.edu/
streamit/shtml/benchmarks.shtml,” June 2009.

[23] J. Gaudiot, W. Bohm, T. DeBoni, J. Feo, and P. Miller, “The
Sisal Model of Functional Programming and its Implemen-
tation,” in Proceedings of pAs’97, Aizu-Wakamatsu, Japan,
March 1997.

[24] N. Marcussen-Wulff and S.-B. Scholz, “On interfacing SAC
modules with C programs,” in Proceedings of the 12th In-
ternational Workshop on the Implementation of Functional
Languages (IFL 2000) (M. Mohnen, ed.), pp. 381–386,
RWTH Aachen, 2000.

[25] Y. Yan, M. Grossman, and V. Sarkar, “JCUDA: A
Programmer-Friendly Interface for Accelerating Java Pro-
grams with CUDA,” in Proceedings Euro–Par 2009 (To ap-
pear), August 2009.

[26] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil,
“Software Pipelined Execution of Stream Programs on
GPUs,” in 2009 International Symposium on Code Genera-
tion and Optimization (CGO), (Seattle, WA), March 2009.

[27] M. Kudlur and S. Mahlke, “Orchestrating the execution of
stream programs on multicore platforms,” in Proc. ACM
SIGPLAN 2008 Conference on Programming Languages
Design and Implementation (PLDI), pp. 114–124, ACM,
June 2008.

[28] A. Hormati, D. B. Manjunath Kudlur, S. Mahlke, and
R. Rabbah, “Optimus: Efficient Realization of Streaming
Applications on FPGAs,” in Proc. International Conference
on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES)2008, (Atlanta), October 2008.

Josip Knezović received his B.Sc., M.Sc. and
Ph.D. degree in Computer Science from the Fa-
culty of Electrical Engineering and Computing,
University of Zagreb in 2001, 2005 and 2009, re-
spectively. Since 2001 he has been affiliated with
Faculty of Electrical Engineering and Computing
as a research assistant at the Department of Con-
trol and Computer Engineering. His research in-
terests include programming models for parallel

systems in multimedia, image and signal processing. He is the member
of IEEE and ACM.

Mario Kovač is full professor at the Faculty of
Electrical Engineering and Computing, Univer-
sity of Zagreb, Croatia. He is also an executive,
author and expert in the field of multimedia hard-
ware and software design, business models for
computer systems, chip architecture design and
mobile systems. He is serving as a consultant in
the area of multimedia systems and applications
and business models for large computer systems.
In 1993–94, Dr. Kovač was given a Fulbright
scholarship for computer science and engineer-

ing research that he spent in the USA. Professor Kovač served as Head of
the Dept. of Control and Computer Engineering and Vice Dean for Busi-
ness Development at the Faculty of Electrical and Computer Engineering.
Currently he is mostly involved in business relations with industry part-
ners. He is President of the Management Board of Croatian Academic
and Research Network and VP of the Supervisory Board at BICRO. Prof.
Kovač was awarded with the Medal of Honor by the President of the Re-
public of Croatia: Order of Croatian Danica with the Image of Ru�er
Bošković in 2008. He has several U.S. patents for multimedia and SC re-
lated technologies. He is senior member of the IEEE Computer Society,
the Croatian Academy of Engineering and several other societies.

Hrvoje Mlinarić received his B.Sc., M.Sc. and
Ph.D. degree in Computer Science from the Fa-
culty of Electrical Engineering and Computing,
University of Zagreb in 1996, 2002 and 2006,
respectively. Since 1997 he has been with Fa-
culty of Electrical Engineering and Computing
currently holding the assistant professorship po-
sition. He is also the vice-head of the De-
partment of Control and Computer Engineering.
His research interests include data compression,
programmable logic and advanced hardware and

software design. He is the member of Croatian Academy of Engineering.

AUTHORS’ ADDRESSES
Josip Knezović, Ph.D.
Prof. Mario Kovač, Ph.D.
Asst. Prof. Hrvoje Mlinarić, Ph.D.
Department of Control and Computer Engineering,
Faculty of Electrical Engineering and Computing,
University of Zagreb,
Unska 3, HR-10000 Zagreb, Croatia
email: josip.knezovic@fer.hr, mario.kovac@fer.hr,
hrvoje.mlinaric@fer.hr

Received: 2010-11-03
Accepted: 2011-01-28

396 AUTOMATIKA 51(2010) 4, 387–396

