APA 6th Edition Krehula, S. i Musić, S. (2011). Hydrothermal Synthesis of Platinum Group Metal Nanoparticles. Croatica Chemica Acta, 84 (4), 465-468. https://doi.org/10.5562/cca1856
MLA 8th Edition Krehula, Stjepko i Svetozar Musić. "Hydrothermal Synthesis of Platinum Group Metal Nanoparticles." Croatica Chemica Acta, vol. 84, br. 4, 2011, str. 465-468. https://doi.org/10.5562/cca1856. Citirano 25.02.2021.
Chicago 17th Edition Krehula, Stjepko i Svetozar Musić. "Hydrothermal Synthesis of Platinum Group Metal Nanoparticles." Croatica Chemica Acta 84, br. 4 (2011): 465-468. https://doi.org/10.5562/cca1856
Harvard Krehula, S., i Musić, S. (2011). 'Hydrothermal Synthesis of Platinum Group Metal Nanoparticles', Croatica Chemica Acta, 84(4), str. 465-468. https://doi.org/10.5562/cca1856
Vancouver Krehula S, Musić S. Hydrothermal Synthesis of Platinum Group Metal Nanoparticles. Croatica Chemica Acta [Internet]. 2011 [pristupljeno 25.02.2021.];84(4):465-468. https://doi.org/10.5562/cca1856
IEEE S. Krehula i S. Musić, "Hydrothermal Synthesis of Platinum Group Metal Nanoparticles", Croatica Chemica Acta, vol.84, br. 4, str. 465-468, 2011. [Online]. https://doi.org/10.5562/cca1856
Sažetak A novel route for the synthesis of platinum group metal nanoparticles has been reported. The
synthesis is based on the addition of tetramethylammonium hydroxide (TMAH) to the aqueous PtCl4,
IrCl3 or Rh(NO3)3 solution followed by the hydrothermal treatment of these precipitation systems at
160 ºC. The mean size of nanoparticles was 9.2 nm for platinum, 21 nm for iridium, and 28 nm for rhodium.
The average crystallite size was estimated at 7.4 nm for platinum, 3.1 nm for iridium and 3.5 nm for
rhodium. The possible mechanism of platinum group metal nanoparticles formation is briefly discussed.
(doi: 10.5562/cca1856)