hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.3336/gm.47.1.02

Relationship between edge Szeged and edge Wiener indices of graphs

Mohammad Javad Nadjafi-Arani   ORCID icon orcid.org/0000-0003-1754-6694 ; Department of Mathematics, Statistics and Computer Science, Faculty of Science, University of Kashan, Kashan 87317-51167, I. R. Iran
Hasan Khodashenas ; Department of Mathematics, Statistics and Computer Science, Faculty of Science, University of Kashan, Kashan 87317-51167, I. R. Iran
Ali Reza Ashrafi   ORCID icon orcid.org/0000-0002-2858-0663 ; Department of Mathematics, Statistics and Computer Science, Faculty of Science, University of Kashan, Kashan 87317-51167, I. R. Iran

Puni tekst: engleski, pdf (135 KB) str. 21-29 preuzimanja: 196* citiraj
APA 6th Edition
Nadjafi-Arani, M.J., Khodashenas, H. i Ashrafi, A.R. (2012). Relationship between edge Szeged and edge Wiener indices of graphs. Glasnik matematički, 47 (1), 21-29. https://doi.org/10.3336/gm.47.1.02
MLA 8th Edition
Nadjafi-Arani, Mohammad Javad, et al. "Relationship between edge Szeged and edge Wiener indices of graphs." Glasnik matematički, vol. 47, br. 1, 2012, str. 21-29. https://doi.org/10.3336/gm.47.1.02. Citirano 21.10.2021.
Chicago 17th Edition
Nadjafi-Arani, Mohammad Javad, Hasan Khodashenas i Ali Reza Ashrafi. "Relationship between edge Szeged and edge Wiener indices of graphs." Glasnik matematički 47, br. 1 (2012): 21-29. https://doi.org/10.3336/gm.47.1.02
Harvard
Nadjafi-Arani, M.J., Khodashenas, H., i Ashrafi, A.R. (2012). 'Relationship between edge Szeged and edge Wiener indices of graphs', Glasnik matematički, 47(1), str. 21-29. https://doi.org/10.3336/gm.47.1.02
Vancouver
Nadjafi-Arani MJ, Khodashenas H, Ashrafi AR. Relationship between edge Szeged and edge Wiener indices of graphs. Glasnik matematički [Internet]. 2012 [pristupljeno 21.10.2021.];47(1):21-29. https://doi.org/10.3336/gm.47.1.02
IEEE
M.J. Nadjafi-Arani, H. Khodashenas i A.R. Ashrafi, "Relationship between edge Szeged and edge Wiener indices of graphs", Glasnik matematički, vol.47, br. 1, str. 21-29, 2012. [Online]. https://doi.org/10.3336/gm.47.1.02

Sažetak
Let G be a connected graph and ξ(G) = Sze(G) - We(G), where We(G) denotes the edge Wiener index and Sze(G) denotes the edge Szeged index of G. In an earlier paper, it is proved that if T is a tree then Sze(T) = We(T). In this paper, we continue our work to prove that for every connected graph G, Sze(G) ≥ We(G) with equality if and only if G is a tree. We also classify all graphs with ξ(G) ≤ 5. Finally, for each non-negative integer n ≠ 1 there exists a graph G such that ξ(G) = n.

Ključne riječi
Edge Szeged index; edge Wiener index

Hrčak ID: 82568

URI
https://hrcak.srce.hr/82568

Posjeta: 422 *