hrcak mascot   Srce   HID

Original scientific paper
https://doi.org/10.3336/gm.47.2.05

On the number of divisors of n! and of the Fibonacci numbers

Florian Luca ; Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, México
Paul Thomas Young ; Department of Mathematics, College of Charleston, Charleston, SC 29424, USA

Fulltext: english, pdf (119 KB) pages 285-293 downloads: 313* cite
APA 6th Edition
Luca, F. & Young, P.T. (2012). On the number of divisors of n! and of the Fibonacci numbers. Glasnik matematički, 47 (2), 285-293. https://doi.org/10.3336/gm.47.2.05
MLA 8th Edition
Luca, Florian and Paul Thomas Young. "On the number of divisors of n! and of the Fibonacci numbers." Glasnik matematički, vol. 47, no. 2, 2012, pp. 285-293. https://doi.org/10.3336/gm.47.2.05. Accessed 3 Dec. 2021.
Chicago 17th Edition
Luca, Florian and Paul Thomas Young. "On the number of divisors of n! and of the Fibonacci numbers." Glasnik matematički 47, no. 2 (2012): 285-293. https://doi.org/10.3336/gm.47.2.05
Harvard
Luca, F., and Young, P.T. (2012). 'On the number of divisors of n! and of the Fibonacci numbers', Glasnik matematički, 47(2), pp. 285-293. https://doi.org/10.3336/gm.47.2.05
Vancouver
Luca F, Young PT. On the number of divisors of n! and of the Fibonacci numbers. Glasnik matematički [Internet]. 2012 [cited 2021 December 03];47(2):285-293. https://doi.org/10.3336/gm.47.2.05
IEEE
F. Luca and P.T. Young, "On the number of divisors of n! and of the Fibonacci numbers", Glasnik matematički, vol.47, no. 2, pp. 285-293, 2012. [Online]. https://doi.org/10.3336/gm.47.2.05

Abstracts
Let d(m) be the number of divisors of the positive integer m. Here, we show that if n {3,5}, then d(n!) is a divisor of n!. We also show that the only positive integers n such that d(Fn) divides Fn, where Fn is the nth Fibonacci number, are n {1,2,3,6,24,48}.

Keywords
Divisors; factorials; Fibonacci numbers

Hrčak ID: 93943

URI
https://hrcak.srce.hr/93943

Visits: 536 *