hrcak mascot   Srce   HID

Izvorni znanstveni članak

Trees, Quadratic Line Graphs and the Wiener Index

Andrey A. Dobrynin   ORCID icon orcid.org/0000-0003-0074-8388 ; Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630 090, Russia
Leonid S. Mel'nikov ; Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630 090, Russia

Puni tekst: engleski, pdf (78 KB) str. 477-480 preuzimanja: 474* citiraj
APA 6th Edition
Dobrynin, A.A. i Mel'nikov, L.S. (2004). Trees, Quadratic Line Graphs and the Wiener Index. Croatica Chemica Acta, 77 (3), 477-480. Preuzeto s https://hrcak.srce.hr/102948
MLA 8th Edition
Dobrynin, Andrey A. i Leonid S. Mel'nikov. "Trees, Quadratic Line Graphs and the Wiener Index." Croatica Chemica Acta, vol. 77, br. 3, 2004, str. 477-480. https://hrcak.srce.hr/102948. Citirano 09.03.2021.
Chicago 17th Edition
Dobrynin, Andrey A. i Leonid S. Mel'nikov. "Trees, Quadratic Line Graphs and the Wiener Index." Croatica Chemica Acta 77, br. 3 (2004): 477-480. https://hrcak.srce.hr/102948
Harvard
Dobrynin, A.A., i Mel'nikov, L.S. (2004). 'Trees, Quadratic Line Graphs and the Wiener Index', Croatica Chemica Acta, 77(3), str. 477-480. Preuzeto s: https://hrcak.srce.hr/102948 (Datum pristupa: 09.03.2021.)
Vancouver
Dobrynin AA, Mel'nikov LS. Trees, Quadratic Line Graphs and the Wiener Index. Croatica Chemica Acta [Internet]. 2004 [pristupljeno 09.03.2021.];77(3):477-480. Dostupno na: https://hrcak.srce.hr/102948
IEEE
A.A. Dobrynin i L.S. Mel'nikov, "Trees, Quadratic Line Graphs and the Wiener Index", Croatica Chemica Acta, vol.77, br. 3, str. 477-480, 2004. [Online]. Dostupno na: https://hrcak.srce.hr/102948. [Citirano: 09.03.2021.]

Sažetak
The Wiener index is a topological index defined as the sum of distances between all pairs of vertices in a tree. It was introduced as a structural descriptor for molecular graphs of alkanes, which are trees with vertex degrees of four at the most (chemical trees). The line graph L(G) of a graph G has the vertex set V(L(G)) = E(G) and two distinct vertices of L(G) are adjacent if the corresponding edges of G have a common endvertex. It is known that the Wiener indices of a tree and of its line graph are always distinct. An infinite two-parameter family of growing chemical trees T with the property W(T) = W(L(L(T))) has been constructed.

Ključne riječi
topological index; Wiener index; tree; line graph

Hrčak ID: 102948

URI
https://hrcak.srce.hr/102948

Posjeta: 628 *