hrcak mascot   Srce   HID

Original scientific paper
https://doi.org/10.3336/gm.48.1.09

Bounded injectivity and Haagerup tensor product

Mohammad Asadi ; School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran
Alireza Medghalchi ; Faculty of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani Avenue, Tehran, Iran
Hamed Nikpey ; Faculty of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani Avenue, Tehran, Iran

Fulltext: english, pdf (99 KB) pages 97-102 downloads: 278* cite
APA 6th Edition
Asadi, M., Medghalchi, A. & Nikpey, H. (2013). Bounded injectivity and Haagerup tensor product. Glasnik matematički, 48 (1), 97-102. https://doi.org/10.3336/gm.48.1.09
MLA 8th Edition
Asadi, Mohammad, et al. "Bounded injectivity and Haagerup tensor product." Glasnik matematički, vol. 48, no. 1, 2013, pp. 97-102. https://doi.org/10.3336/gm.48.1.09. Accessed 6 Dec. 2021.
Chicago 17th Edition
Asadi, Mohammad, Alireza Medghalchi and Hamed Nikpey. "Bounded injectivity and Haagerup tensor product." Glasnik matematički 48, no. 1 (2013): 97-102. https://doi.org/10.3336/gm.48.1.09
Harvard
Asadi, M., Medghalchi, A., and Nikpey, H. (2013). 'Bounded injectivity and Haagerup tensor product', Glasnik matematički, 48(1), pp. 97-102. https://doi.org/10.3336/gm.48.1.09
Vancouver
Asadi M, Medghalchi A, Nikpey H. Bounded injectivity and Haagerup tensor product. Glasnik matematički [Internet]. 2013 [cited 2021 December 06];48(1):97-102. https://doi.org/10.3336/gm.48.1.09
IEEE
M. Asadi, A. Medghalchi and H. Nikpey, "Bounded injectivity and Haagerup tensor product", Glasnik matematički, vol.48, no. 1, pp. 97-102, 2013. [Online]. https://doi.org/10.3336/gm.48.1.09

Abstracts
In this paper, we prove that if V ⊆ B(H) is an injective operator system on a separable Hilbert space H, then V ⊗hW is b-injective for any operator system W if and only if V is finite dimensional.

Keywords
Operator system; injective operator space; bounded injective operator space; Haagerup tensor product

Hrčak ID: 103318

URI
https://hrcak.srce.hr/103318

Visits: 506 *