hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.3336/gm.48.1.11

On Snake cones, alternating cones and related constructions

Katsuya Eda ; School of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
Umed H. Karimov ; Institute of Mathematics, Academy of Sciences of Tajikistan, Ul. Ainy 299A, Dushanbe 734063, Tajikistan
Dušan Repovš   ORCID icon orcid.org/0000-0002-6643-1271 ; Faculty of Education, and Faculty of Mathematics and Physics, University of Ljubljana, P.O.Box 2964, Ljubljana 1001, Slovenia
Andreas Zastrow ; Institute of Mathematics, Gdansk University, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland

Puni tekst: engleski, pdf (274 KB) str. 115-135 preuzimanja: 205* citiraj
APA 6th Edition
Eda, K., Karimov, U.H., Repovš, D. i Zastrow, A. (2013). On Snake cones, alternating cones and related constructions. Glasnik matematički, 48 (1), 115-135. https://doi.org/10.3336/gm.48.1.11
MLA 8th Edition
Eda, Katsuya, et al. "On Snake cones, alternating cones and related constructions." Glasnik matematički, vol. 48, br. 1, 2013, str. 115-135. https://doi.org/10.3336/gm.48.1.11. Citirano 27.10.2021.
Chicago 17th Edition
Eda, Katsuya, Umed H. Karimov, Dušan Repovš i Andreas Zastrow. "On Snake cones, alternating cones and related constructions." Glasnik matematički 48, br. 1 (2013): 115-135. https://doi.org/10.3336/gm.48.1.11
Harvard
Eda, K., et al. (2013). 'On Snake cones, alternating cones and related constructions', Glasnik matematički, 48(1), str. 115-135. https://doi.org/10.3336/gm.48.1.11
Vancouver
Eda K, Karimov UH, Repovš D, Zastrow A. On Snake cones, alternating cones and related constructions. Glasnik matematički [Internet]. 2013 [pristupljeno 27.10.2021.];48(1):115-135. https://doi.org/10.3336/gm.48.1.11
IEEE
K. Eda, U.H. Karimov, D. Repovš i A. Zastrow, "On Snake cones, alternating cones and related constructions", Glasnik matematički, vol.48, br. 1, str. 115-135, 2013. [Online]. https://doi.org/10.3336/gm.48.1.11

Sažetak
We show that the Snake on a square SC(S1) is homotopy equivalent to the space AC(S1) which was investigated in the previous work by Eda, Karimov and Repovš. We also introduce related constructions CSC( - ) and CAC( - ) and investigate homotopical differences between these four constructions. Finally, we explicitly describe the second homology group of the Hawaiian tori wedge.

Ključne riječi
Noncontractible compactum; weak homotopy equivalence; trivial shape; Peano continuum; topologist sine curve; snake on a square; collapsed snake cone; collapsed alternating cone; asphericity; Hawaiian earring; Hawaiian tori

Hrčak ID: 103351

URI
https://hrcak.srce.hr/103351

Posjeta: 464 *