hrcak mascot   Srce   HID

Izvorni znanstveni članak

Forcing Independence

Craig Larson ; Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, 1015 Floyd Avenue, Richmond, VA 23284, USA
Nico Van Cleemput ; Department of Applied Mathematics, Computer Science & Statistics, Ghent University, Krijgslaan 281, S9, 9000 Ghent, Belgium

Puni tekst: engleski, pdf (1 MB) str. 469-475 preuzimanja: 673* citiraj
APA 6th Edition
Larson, C. i Cleemput, N.V. (2013). Forcing Independence. Croatica Chemica Acta, 86 (4), 469-475.
MLA 8th Edition
Larson, Craig i Nico Van Cleemput. "Forcing Independence." Croatica Chemica Acta, vol. 86, br. 4, 2013, str. 469-475. Citirano 24.06.2021.
Chicago 17th Edition
Larson, Craig i Nico Van Cleemput. "Forcing Independence." Croatica Chemica Acta 86, br. 4 (2013): 469-475.
Larson, C., i Cleemput, N.V. (2013). 'Forcing Independence', Croatica Chemica Acta, 86(4), str. 469-475.
Larson C, Cleemput NV. Forcing Independence. Croatica Chemica Acta [Internet]. 2013 [pristupljeno 24.06.2021.];86(4):469-475.
C. Larson i N.V. Cleemput, "Forcing Independence", Croatica Chemica Acta, vol.86, br. 4, str. 469-475, 2013. [Online].

An independent set in a graph is a set of vertices which are pairwise non-adjacent. An independ-ent set of vertices F is a forcing independent set if there is a unique maximum independent set I such that F ⊆ I. The forcing independence number or forcing number of a maximum independent set I is the cardi-nality of a minimum forcing set for I. The forcing number f of a graph is the minimum cardinality of the forcing numbers for the maximum independent sets of the graph. The possible values of f are determined and characterized. We investigate connections between these concepts, other structural concepts, and chemical applications. (doi: 10.5562/cca2295)

Ključne riječi
forcing; independent set; independence number; benzenoids

Hrčak ID: 112780


Posjeta: 991 *