hrcak mascot   Srce   HID

Izvorni znanstveni članak

HYPERSPACES OF H-CLOSED SPACES

Ivan Lončar

Puni tekst: hrvatski, pdf (3 MB) str. 197-205 preuzimanja: 97* citiraj
APA 6th Edition
Lončar, I. (1989). HIPERPROSTORI H-ZATVORENIH PROSTORA HYPERSPACES OF H-CLOSED SPACES. Radovi Zavoda za znanstveni rad Varaždin, (3), 197-205. Preuzeto s https://hrcak.srce.hr/134070
MLA 8th Edition
Lončar, Ivan. "HIPERPROSTORI H-ZATVORENIH PROSTORA HYPERSPACES OF H-CLOSED SPACES." Radovi Zavoda za znanstveni rad Varaždin, vol. , br. 3, 1989, str. 197-205. https://hrcak.srce.hr/134070. Citirano 14.12.2019.
Chicago 17th Edition
Lončar, Ivan. "HIPERPROSTORI H-ZATVORENIH PROSTORA HYPERSPACES OF H-CLOSED SPACES." Radovi Zavoda za znanstveni rad Varaždin , br. 3 (1989): 197-205. https://hrcak.srce.hr/134070
Harvard
Lončar, I. (1989). 'HIPERPROSTORI H-ZATVORENIH PROSTORA HYPERSPACES OF H-CLOSED SPACES', Radovi Zavoda za znanstveni rad Varaždin, (3), str. 197-205. Preuzeto s: https://hrcak.srce.hr/134070 (Datum pristupa: 14.12.2019.)
Vancouver
Lončar I. HIPERPROSTORI H-ZATVORENIH PROSTORA HYPERSPACES OF H-CLOSED SPACES. Radovi Zavoda za znanstveni rad Varaždin [Internet]. 1989 [pristupljeno 14.12.2019.];(3):197-205. Dostupno na: https://hrcak.srce.hr/134070
IEEE
I. Lončar, "HIPERPROSTORI H-ZATVORENIH PROSTORA HYPERSPACES OF H-CLOSED SPACES", Radovi Zavoda za znanstveni rad Varaždin, vol., br. 3, str. 197-205, 1989. [Online]. Dostupno na: https://hrcak.srce.hr/134070. [Citirano: 14.12.2019.]

Sažetak
HYPERSPACES OF H-CLOSED SPACES
Let X be a topological space. By Exp(X) we denote the set of all closed subset of X with the Vietoris topology. The properties of Exp(X) in the case of compact X are wellknown. For proving the analogous properties of Exp(X) for H-closed X we firstly generalize
Alexander's lema for H-closed and for nearly compact spaces. For this purpose the notion of n ~ subbase is introduced.
In Section Two we prove that the subbase of exponential topology is P) - subbase (Lemma 2.8.). The Alexander's lema is generaUzed in Theorem 2.9. Finally, the main Theorem of this Section (Theorem 2.10.) i.e. theorem "X is QHC iff Exp(X) is QHC" is proved. Let us recal that X is QHC if each open cover t/ of X has a finite subfamily
{Ui,...,Un} such that X = CI Ui fl ••• fl CI Un. Section Three contains the analogous theorems on Exp(X) for nearly compact spaces
(Theorems 3.4. and 3.6.).

Hrčak ID: 134070

URI
https://hrcak.srce.hr/134070

[hrvatski]

Posjeta: 174 *