hrcak mascot   Srce   HID

Izvorni znanstveni članak

A generalization of a result on maximum modulus of polynomials

V. K. Jain

Puni tekst: engleski, pdf (140 KB) str. 269-272 preuzimanja: 37* citiraj
APA 6th Edition
Jain, V.K. (2003). A generalization of a result on maximum modulus of polynomials. Glasnik matematički, 38 (2), 269-272. Preuzeto s https://hrcak.srce.hr/1320
MLA 8th Edition
Jain, V. K.. "A generalization of a result on maximum modulus of polynomials." Glasnik matematički, vol. 38, br. 2, 2003, str. 269-272. https://hrcak.srce.hr/1320. Citirano 20.10.2021.
Chicago 17th Edition
Jain, V. K.. "A generalization of a result on maximum modulus of polynomials." Glasnik matematički 38, br. 2 (2003): 269-272. https://hrcak.srce.hr/1320
Harvard
Jain, V.K. (2003). 'A generalization of a result on maximum modulus of polynomials', Glasnik matematički, 38(2), str. 269-272. Preuzeto s: https://hrcak.srce.hr/1320 (Datum pristupa: 20.10.2021.)
Vancouver
Jain VK. A generalization of a result on maximum modulus of polynomials. Glasnik matematički [Internet]. 2003 [pristupljeno 20.10.2021.];38(2):269-272. Dostupno na: https://hrcak.srce.hr/1320
IEEE
V.K. Jain, "A generalization of a result on maximum modulus of polynomials", Glasnik matematički, vol.38, br. 2, str. 269-272, 2003. [Online]. Dostupno na: https://hrcak.srce.hr/1320. [Citirano: 20.10.2021.]

Sažetak
For an arbitrary entire function f(z)$, let M(f,d) = max|z|=d |f(z)|. It is known that if the geometric mean of the moduli of the zeros of a polynomial p(z) of degree n is at least 1, and M(p,1) = 1, then for R > 1, M(p,R) R/2 + 1/2 if n = 1,

M(p,R) Rn/2 + (3+22)Rn-2/2 if n 2.

We have obtained a generalization of this result, by assuming the geometric mean of the moduli of the zeros of the polynomial to be at least k, (k > 0).

Ključne riječi
Polynomials; zeros; geometric mean; maximum modulus

Hrčak ID: 1320

URI
https://hrcak.srce.hr/1320

Posjeta: 210 *