# Glasnik matematički,Vol. 38 No. 1, 2003.

Izvorni znanstveni članak

Near squares in linear recurrence sequences

P. G. Walsh

 Puni tekst: engleski, pdf (250 KB) str. 11-18 preuzimanja: 44* citiraj APA 6th EditionWalsh, P.G. (2003). Near squares in linear recurrence sequences. Glasnik matematički, 38 (1), 11-18. Preuzeto s https://hrcak.srce.hr/1331 MLA 8th EditionWalsh, P. G.. "Near squares in linear recurrence sequences." Glasnik matematički, vol. 38, br. 1, 2003, str. 11-18. https://hrcak.srce.hr/1331. Citirano 22.10.2021. Chicago 17th EditionWalsh, P. G.. "Near squares in linear recurrence sequences." Glasnik matematički 38, br. 1 (2003): 11-18. https://hrcak.srce.hr/1331 HarvardWalsh, P.G. (2003). 'Near squares in linear recurrence sequences', Glasnik matematički, 38(1), str. 11-18. Preuzeto s: https://hrcak.srce.hr/1331 (Datum pristupa: 22.10.2021.) VancouverWalsh PG. Near squares in linear recurrence sequences. Glasnik matematički [Internet]. 2003 [pristupljeno 22.10.2021.];38(1):11-18. Dostupno na: https://hrcak.srce.hr/1331 IEEEP.G. Walsh, "Near squares in linear recurrence sequences", Glasnik matematički, vol.38, br. 1, str. 11-18, 2003. [Online]. Dostupno na: https://hrcak.srce.hr/1331. [Citirano: 22.10.2021.]

Sažetak
Let T > 1 denote a positive integer. Let Un denote the linear recurrence sequence defined by U0 = 0, U1 = 1, and Uk+1 = 2TUk - Uk-1 for k 1. In recent years there have been some improvements on the determination of solutions to the Diophantine equation Un = cx2, where c is a given positive integer. In this paper we use a result of Bennett and the author to determine precisely the integer solutions to the related equation Un = cx2 1, where c is a given even positive integer.

Ključne riječi
Linear recurrence sequence; diophantine equation; Pell equation

Hrčak ID: 1331

Posjeta: 223 *