hrcak mascot   Srce   HID

Izvorni znanstveni članak

The extension dimension of universal spaces

Ivan Ivanšić
Leonard R. Rubin

Puni tekst: engleski, pdf (246 KB) str. 121-127 preuzimanja: 44* citiraj
APA 6th Edition
Ivanšić, I. i Rubin, L.R. (2003). The extension dimension of universal spaces. Glasnik matematički, 38 (1), 121-127. Preuzeto s https://hrcak.srce.hr/1339
MLA 8th Edition
Ivanšić, Ivan i Leonard R. Rubin. "The extension dimension of universal spaces." Glasnik matematički, vol. 38, br. 1, 2003, str. 121-127. https://hrcak.srce.hr/1339. Citirano 17.10.2021.
Chicago 17th Edition
Ivanšić, Ivan i Leonard R. Rubin. "The extension dimension of universal spaces." Glasnik matematički 38, br. 1 (2003): 121-127. https://hrcak.srce.hr/1339
Harvard
Ivanšić, I., i Rubin, L.R. (2003). 'The extension dimension of universal spaces', Glasnik matematički, 38(1), str. 121-127. Preuzeto s: https://hrcak.srce.hr/1339 (Datum pristupa: 17.10.2021.)
Vancouver
Ivanšić I, Rubin LR. The extension dimension of universal spaces. Glasnik matematički [Internet]. 2003 [pristupljeno 17.10.2021.];38(1):121-127. Dostupno na: https://hrcak.srce.hr/1339
IEEE
I. Ivanšić i L.R. Rubin, "The extension dimension of universal spaces", Glasnik matematički, vol.38, br. 1, str. 121-127, 2003. [Online]. Dostupno na: https://hrcak.srce.hr/1339. [Citirano: 17.10.2021.]

Sažetak
Let be an infinite cardinal, denote a class of CW-complexes, the class of all compact Hausdorff spaces, the class of all metrizable spaces of weight and n 0. We shall prove that,

(a) if U is a universal metrizable space of covering dimension n and weight , then ext-dim_(, ) U = [Sn], and

(b) if U , K , dim U K, and U contains a copy of every compact metrizable space X with dim X K, then ext-dim_(, ) U = [K].

Ključne riječi
Extension theory; extension dimension; dimension; stratifiable space; subspace theorem

Hrčak ID: 1339

URI
https://hrcak.srce.hr/1339

Posjeta: 205 *