hrcak mascot   Srce   HID

Original scientific paper

Dendroids and preorders

Victor Neumann-Lara
Isabel Puga
Richard G. Wilson

Fulltext: english, pdf (408 KB) pages 167-176 downloads: 46* cite
APA 6th Edition
Neumann-Lara, V., Puga, I. & Wilson, R.G. (2003). Dendroids and preorders. Glasnik matematički, 38 (1), 167-176. Retrieved from
MLA 8th Edition
Neumann-Lara, Victor, et al. "Dendroids and preorders." Glasnik matematički, vol. 38, no. 1, 2003, pp. 167-176. Accessed 29 Nov. 2021.
Chicago 17th Edition
Neumann-Lara, Victor, Isabel Puga and Richard G. Wilson. "Dendroids and preorders." Glasnik matematički 38, no. 1 (2003): 167-176.
Neumann-Lara, V., Puga, I., and Wilson, R.G. (2003). 'Dendroids and preorders', Glasnik matematički, 38(1), pp. 167-176. Available at: (Accessed 29 November 2021)
Neumann-Lara V, Puga I, Wilson RG. Dendroids and preorders. Glasnik matematički [Internet]. 2003 [cited 2021 November 29];38(1):167-176. Available from:
V. Neumann-Lara, I. Puga and R.G. Wilson, "Dendroids and preorders", Glasnik matematički, vol.38, no. 1, pp. 167-176, 2003. [Online]. Available: [Accessed: 29 November 2021]

Let X be a dendroid and x* X. 0(X, x*) will denote the preordered set of arc-components of X \ {x*}, where the preorder is defined by if cl(). In this paper we investigate conditions under which there exists a pair (X,x*) such that 0(X, x*) is isomorphic to a given preordered set.

Dendroid; preordered set; partially ordered set

Hrčak ID: 1342


Visits: 219 *