Buckling analysis of telescopic boom: theoretical and numerical verification of sliding pads
Ana Pavlovic
orcid.org/0000-0003-2158-1820
; Alma Mater Studiorum University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
Cristiano Fragassa
; Alma Mater Studiorum University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
Giangiacomo Minak
orcid.org/0000-0003-4961-0961
; Alma Mater Studiorum University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
APA 6th Edition Pavlovic, A., Fragassa, C. i Minak, G. (2017). Buckling analysis of telescopic boom: theoretical and numerical verification of sliding pads. Tehnički vjesnik, 24 (3), 729-735. https://doi.org/10.17559/TV-20160510143822
MLA 8th Edition Pavlovic, Ana, et al. "Buckling analysis of telescopic boom: theoretical and numerical verification of sliding pads." Tehnički vjesnik, vol. 24, br. 3, 2017, str. 729-735. https://doi.org/10.17559/TV-20160510143822. Citirano 27.02.2021.
Chicago 17th Edition Pavlovic, Ana, Cristiano Fragassa i Giangiacomo Minak. "Buckling analysis of telescopic boom: theoretical and numerical verification of sliding pads." Tehnički vjesnik 24, br. 3 (2017): 729-735. https://doi.org/10.17559/TV-20160510143822
Harvard Pavlovic, A., Fragassa, C., i Minak, G. (2017). 'Buckling analysis of telescopic boom: theoretical and numerical verification of sliding pads', Tehnički vjesnik, 24(3), str. 729-735. https://doi.org/10.17559/TV-20160510143822
Vancouver Pavlovic A, Fragassa C, Minak G. Buckling analysis of telescopic boom: theoretical and numerical verification of sliding pads. Tehnički vjesnik [Internet]. 2017 [pristupljeno 27.02.2021.];24(3):729-735. https://doi.org/10.17559/TV-20160510143822
IEEE A. Pavlovic, C. Fragassa i G. Minak, "Buckling analysis of telescopic boom: theoretical and numerical verification of sliding pads", Tehnički vjesnik, vol.24, br. 3, str. 729-735, 2017. [Online]. https://doi.org/10.17559/TV-20160510143822
APA 6th Edition Pavlovic, A., Fragassa, C. i Minak, G. (2017). Analiza izvijanja teleskopske dizalice: teorijska i numerička procjena kliznih oslonaca. Tehnički vjesnik, 24 (3), 729-735. https://doi.org/10.17559/TV-20160510143822
MLA 8th Edition Pavlovic, Ana, et al. "Analiza izvijanja teleskopske dizalice: teorijska i numerička procjena kliznih oslonaca." Tehnički vjesnik, vol. 24, br. 3, 2017, str. 729-735. https://doi.org/10.17559/TV-20160510143822. Citirano 27.02.2021.
Chicago 17th Edition Pavlovic, Ana, Cristiano Fragassa i Giangiacomo Minak. "Analiza izvijanja teleskopske dizalice: teorijska i numerička procjena kliznih oslonaca." Tehnički vjesnik 24, br. 3 (2017): 729-735. https://doi.org/10.17559/TV-20160510143822
Harvard Pavlovic, A., Fragassa, C., i Minak, G. (2017). 'Analiza izvijanja teleskopske dizalice: teorijska i numerička procjena kliznih oslonaca', Tehnički vjesnik, 24(3), str. 729-735. https://doi.org/10.17559/TV-20160510143822
Vancouver Pavlovic A, Fragassa C, Minak G. Analiza izvijanja teleskopske dizalice: teorijska i numerička procjena kliznih oslonaca. Tehnički vjesnik [Internet]. 2017 [pristupljeno 27.02.2021.];24(3):729-735. https://doi.org/10.17559/TV-20160510143822
IEEE A. Pavlovic, C. Fragassa i G. Minak, "Analiza izvijanja teleskopske dizalice: teorijska i numerička procjena kliznih oslonaca", Tehnički vjesnik, vol.24, br. 3, str. 729-735, 2017. [Online]. https://doi.org/10.17559/TV-20160510143822
Sažetak With the aim at improving the highest performances, materials in mechanical structures are constantly pushed closer and closer to their critical limits. Consider, for example, how the progressive reduction in thickness may lead to unforeseen effects in the instability of metal sheets, until the rapid collapse of the whole structure. This risk is specially known by designers of telescopic booms, used for moving aerial platforms. In this paper, by a numerical approach and ANSYS code, structural resistance and stability of a telescopic boom were verified. After a preliminary theoretical analysis, different loads and boundary configurations were considered in accordance with the most common conditions of real utilisation. As general result, it was confirmed that stresses were under the elastic limit of materials, except in a very limited number of contact zones, where specific connecting solutions have to be installed to prevent failures. Furthermore, linear buckling techniques showed that critical loads and corresponding buckling modes were higher than the most extreme working conditions; thus, structural stability was also confirmed. Finally, the large adoption of FEM simulations permitted to reduce the experiments, offering a fast methodology for improvements in design.