Pristup igre nulte-sume za H∞ robusno reguliranje jedinstveno perturbiranih bilinearnih kvadratnih sustava
Ning Bin
; School of Management, Guangdong University of Technology, No. 161, Yinglong Road, Tianhe District, Guangzhou 510520, P. R. China
Cheng-ke Zhang
; School of Commerce & Economics, Guangdong University of Technology, No. 161, Yinglong Road, Tianhe District, Guangzhou 510520, P. R. China
Huai-nian Zhu
; School of Commerce & Economics, Guangdong University of Technology, No. 161, Yinglong Road, Tianhe District, Guangzhou 510520, P. R. China
Ming Cao
; School of Management, Guangdong University of Technology, No. 161, Yinglong Road, Tianhe District, Guangzhou 510520, P. R. China
Feng Hu
; School of Management, Guangdong University of Technology, No. 161, Yinglong Road, Tianhe District, Guangzhou 510520, P. R. China
APA 6th Edition Bin, N., Zhang, C., Zhu, H., Cao, M. i Hu, F. (2017). Pristup igre nulte-sume za H∞ robusno reguliranje jedinstveno perturbiranih bilinearnih kvadratnih sustava. Tehnički vjesnik, 24 (3), 777-782. https://doi.org/10.17559/TV-20161112172344
MLA 8th Edition Bin, Ning, et al. "Pristup igre nulte-sume za H∞ robusno reguliranje jedinstveno perturbiranih bilinearnih kvadratnih sustava." Tehnički vjesnik, vol. 24, br. 3, 2017, str. 777-782. https://doi.org/10.17559/TV-20161112172344. Citirano 04.03.2021.
Chicago 17th Edition Bin, Ning, Cheng-ke Zhang, Huai-nian Zhu, Ming Cao i Feng Hu. "Pristup igre nulte-sume za H∞ robusno reguliranje jedinstveno perturbiranih bilinearnih kvadratnih sustava." Tehnički vjesnik 24, br. 3 (2017): 777-782. https://doi.org/10.17559/TV-20161112172344
Harvard Bin, N., et al. (2017). 'Pristup igre nulte-sume za H∞ robusno reguliranje jedinstveno perturbiranih bilinearnih kvadratnih sustava', Tehnički vjesnik, 24(3), str. 777-782. https://doi.org/10.17559/TV-20161112172344
Vancouver Bin N, Zhang C, Zhu H, Cao M, Hu F. Pristup igre nulte-sume za H∞ robusno reguliranje jedinstveno perturbiranih bilinearnih kvadratnih sustava. Tehnički vjesnik [Internet]. 2017 [pristupljeno 04.03.2021.];24(3):777-782. https://doi.org/10.17559/TV-20161112172344
IEEE N. Bin, C. Zhang, H. Zhu, M. Cao i F. Hu, "Pristup igre nulte-sume za H∞ robusno reguliranje jedinstveno perturbiranih bilinearnih kvadratnih sustava", Tehnički vjesnik, vol.24, br. 3, str. 777-782, 2017. [Online]. https://doi.org/10.17559/TV-20161112172344
APA 6th Edition Bin, N., Zhang, C., Zhu, H., Cao, M. i Hu, F. (2017). A zero-sum game approach for H∞ robust control of singularly perturbed bilinear quadratic systems. Tehnički vjesnik, 24 (3), 777-782. https://doi.org/10.17559/TV-20161112172344
MLA 8th Edition Bin, Ning, et al. "A zero-sum game approach for H∞ robust control of singularly perturbed bilinear quadratic systems." Tehnički vjesnik, vol. 24, br. 3, 2017, str. 777-782. https://doi.org/10.17559/TV-20161112172344. Citirano 04.03.2021.
Chicago 17th Edition Bin, Ning, Cheng-ke Zhang, Huai-nian Zhu, Ming Cao i Feng Hu. "A zero-sum game approach for H∞ robust control of singularly perturbed bilinear quadratic systems." Tehnički vjesnik 24, br. 3 (2017): 777-782. https://doi.org/10.17559/TV-20161112172344
Harvard Bin, N., et al. (2017). 'A zero-sum game approach for H∞ robust control of singularly perturbed bilinear quadratic systems', Tehnički vjesnik, 24(3), str. 777-782. https://doi.org/10.17559/TV-20161112172344
Vancouver Bin N, Zhang C, Zhu H, Cao M, Hu F. A zero-sum game approach for H∞ robust control of singularly perturbed bilinear quadratic systems. Tehnički vjesnik [Internet]. 2017 [pristupljeno 04.03.2021.];24(3):777-782. https://doi.org/10.17559/TV-20161112172344
IEEE N. Bin, C. Zhang, H. Zhu, M. Cao i F. Hu, "A zero-sum game approach for H∞ robust control of singularly perturbed bilinear quadratic systems", Tehnički vjesnik, vol.24, br. 3, str. 777-782, 2017. [Online]. https://doi.org/10.17559/TV-20161112172344
Sažetak A zero-sum game approach for H∞ robust control of continuous-time singularly perturbed bilinear quadratic systems with an additive disturbance input is presented. By regarding the stochastic disturbance (or the uncertainty) as "the nature player", the H∞ robust control problem is transformed into a two-person zero-sum dynamic game model. By utilizing the singular perturbation decomposition method to solve the composite saddle-point equilibrium strategy of the system, the H∞ robust control strategy of the original singularly perturbed bilinear quadratic systems is obtained. A numerical example of a chemical reactor model is considered to verify the efficiency of the proposed algorithm.