hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.55 No.2 Lipanj 2017.

Izvorni znanstveni članak
https://doi.org/10.17113/ftb.55.02.17.5080

Proizvodnja bioplina iz pivskog kvasca u anaerobnom sekvencijskom kotlastom reaktoru

Gregor Drago Zupančič ; Sustainable Technologies Development Centre Ltd, Dragutina Golika 63, HR-10000 Zagreb, Croatia
Mario Panjičko ; Sustainable Technologies Development Centre Ltd, Dragutina Golika 63, HR-10000 Zagreb, Croatia
Bruno Zelić ; University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia

Puni tekst: engleski, pdf (728 KB) str. 187-196 preuzimanja: 144* citiraj
APA
Zupančič, G.D., Panjičko, M., Zelić, B. (2017). Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor. Food Technology and Biotechnology, 55(2). doi:10.17113/ftb.55.02.17.5080

Rad u XML formatu

Sažetak
Upotreba obnovljivih izvora energije u proizvodnji pića i prehrambenoj industriji postaje sve značajnija. U pivarskoj industriji znatan postotak neiskorištenih sirovina proizvodnog procesa postaje sekundarna sirovina ili se zbrinjava kao otpad. Do nedavno se mali broj istraživača bavio anaerobnom digestijom pivskog kvasca. Osnovni razlog tome je iskorištavanje pivskog kvasca kao sekundarne sirovine u prehrambenoj industriji te kao stočne hrane. Osim toga, tržišna vrijednost pivskog kvasca veća je od njegove energetske vrijednosti. S druge strane, zbog povećanja cijene energije, pivski kvasac postaje sve zanimljiviji energetski izvor, unatoč teškoj razgradljivosti u anaerobnim uvjetima. U radu je istražena anaerobna razgradnja pivskog kvasca i otpadnih voda pivarske industrije u poluindustrijskom anaerobnom sekvencijskom kotlastom reaktoru (ASBR reaktor) uz primjenu granulirane biomase. Provedeni pokusi bili su uspješni, a proces je bio stabilan pri stupnju organskog opterećenja do 8,0 kg/(m3·dan), dok je maksimalni stupanj organskog opterećenja u jednom ciklusu bio 13,6 kg/(m3·dan). Postignuta je specifična proizvodnja bioplina od 0,430 m3/kg i učinkovitost uklanjanja ukupnog organskog opterećenja od preko 90 %. Ovo istraživanje je pokazalo da se pivski kvasac može učinkovito anaerobno razgraditi u ASBR reaktoru ako je volumni udjel pivskog kvasca u smjesi s otpadnim vodama pivarske industrije manji od 8 %. Osim toga, anaerobnom razgradnjom pivskog kvasca u ASBR reaktoru može se povećati proizvodnja bioplina iz otpadnih voda pivarske industrije za 50 %.

Ključne riječi
anaerobna razgradnja; ASBR reaktor; bioplin; pivski kvasac

Hrčak ID: 183065

URI
https://hrcak.srce.hr/183065

Reference

1 

Bocken NMP, Allwood JM. Strategies to reduce the carbon footprint of consumer goods by influencing stakeholders. J Clean Prod. 2012;35:118–29. DOI: http://dx.doi.org/10.1016/j.jclepro.2012.05.031

2 

McHugh S, O’Reilly C, Mahony T, Colleran E, O’Flaherty V. Anaerobic granular sludge bioreactor technology. Rev Environ Sci Biotechnol. 2003;2:225–45. DOI: http://dx.doi.org/10.1023/B:RESB.0000040465.45300.97

3 

Connaughton S, Collins G, O’Flaherty V. Psychrophilic and mesophilic anaerobic digestion of brewery effluent: a comparative study. Water Res. 2006;40:2503–10. DOI: http://dx.doi.org/10.1016/j.watres.2006.04.044 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16814840

4 

Baloch MI, Akunna JC, Collier PJ. The performance of a phase separated granular bed bioreactor treating brewery wastewater. Bioresour Technol. 2007;98:1849–55. DOI: http://dx.doi.org/10.1016/j.biortech.2006.06.014 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16949280

5 

Zoutberg GR, de Been P. The Biobed® EGSB (Expanded Granular Sludge Bed) system covers shortcomings of the upflow anaerobic sludge blanket reactor in the chemical industry. Water Sci Technol. 1997;35:183–7. DOI: http://dx.doi.org/10.1016/S0273-1223(97)00268-0

6 

Shao X, Peng D, Teng Z, Ju X. Treatment of brewery wastewater using anaerobic sequencing batch reactor (ASBR). Bioresour Technol. 2008;99:3182–6. DOI: http://dx.doi.org/10.1016/j.biortech.2007.05.050 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17659870

7 

Mahmoud N, Zeeman G, Gijzen H, Lettinga G. Solids removal in up-flow anaerobic reactors, a review. Bioresour Technol. 2003;90:1–9. DOI: http://dx.doi.org/10.1016/S0960-8524(03)00095-6 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12835050

8 

Kormelinck VG. Optimum wastewater treatment at Paulaner Munich. Brauwelt Int. 2003;6:387–90.

9 

Agler MT, Aydinkaya Z, Cummings TA, Beers AR, Angenent LT. Anaerobic digestion of brewery primary sludge to enhance bioenergy generation: a comparison between low- and high-rate solids treatment and different temperatures. Bioresour Technol. 2010;101:5842–51. DOI: http://dx.doi.org/10.1016/j.biortech.2010.03.023 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20356733

10 

Bocher BT, Agler MT, Garcia ML, Beers AR, Angenent LT. Anaerobic digestion of secondary residuals from an anaerobic bioreactor at a brewery to enhance bioenergy generation. J Ind Microbiol Biotechnol. 2008;35:321–9. DOI: http://dx.doi.org/10.1007/s10295-007-0295-4 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18188623

11 

Mussatto SI, Dragone G, Roberto IC. Brewers’ spent grain: generation, characteristics and potential applications. J Cereal Sci. 2006;43:1–14. DOI: http://dx.doi.org/10.1016/j.jcs.2005.06.001

12 

Neira K, Jeison D. Anaerobic co-digestion of surplus yeast and wastewater to increase energy recovery in breweries. Water Sci Technol. 2010;61:1129–35. DOI: http://dx.doi.org/10.2166/wst.2010.052 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20220234

13 

Zupančič GD, Škrjanec I, Marinšek-Logar R. Anaerobic co-digestion of excess brewery yeast in a granular biomass reactor to enhance the production of biomethane. Bioresour Technol. 2012;124:328–37. DOI: http://dx.doi.org/10.1016/j.biortech.2012.08.064 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22989661

14 

Zupančič GD, Roš M, Klemenčič M, Oset M, Marinšek-Logar R. Biogas production from brewery yeast in an EGSB reactor. Brauwelt Int. 2016;34:108–13.

15 

Standard methods for the examination of water and wastewater, 21st edition. Washington, DC, USA: American Public Health Association (APHA). Denver, CO, USA: American Water Works Association (AWWA). Alexandria, VA, USA: Water Environment Fedration (WEF); 2005.

16 

ISO 6060:1989. Water quality – Determination of the chemical oxygen demand. Geneva, Switzerland: International Organization for Standardization (ISO); 1989.

17 

Holdeman LV, Cato EP, Moore WEC. Anaerobe laboratory manual. Blacksburg, VA, USA: Virginia Polytechnic Institute; 1977. pp. 1–156.

18 

Drolc A, Cotman M, Ros M, Majcen N. Measurement traceability and its role in proficiency testing schemes – a case study for wastewater analysis in Slovenia. Accredit Qual Assur. 2006;11:455–61. DOI: http://dx.doi.org/10.1007/s00769-006-0112-1

19 

Drolc A, Cotman M, Roš M. Uncertainty of chemical oxygen demand determination in wastewater samples. Accredit Qual Assur. 2003;8:138–45. DOI: http://dx.doi.org/10.1007/s00769-002-0565-9

20 

JCGM 100:2008: Evaluation of measurement data – Guide to the expression of uncertainty in measurement. Geneva, Switzerland: International Organization for Standardization (ISO); 2008.

21 

Zupančič GD, Stražiščar M, Roš M. Treatment of brewery slurry in thermophilic anaerobic sequencing batch reactor. Bioresour Technol. 2007;98:2714–22. DOI: http://dx.doi.org/10.1016/j.biortech.2006.09.044 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17126547

22 

Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresour Technol. 2008;99:4044–64. DOI: http://dx.doi.org/10.1016/j.biortech.2007.01.057 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17399981

[engleski]

Posjeta: 197 *