hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.55 No.2 Lipanj 2017.

Prethodno priopćenje
https://doi.org/10.17113/ftb.55.02.17.4378

Iskorištenje pivarskog otpada za proizvodnju proteaze pomoću mliječno-kiselog vrenja

Thiago Rocha dos Santos Mathias ; Laboratory of Fermentation Technology, Federal Institute of Education, Science and Technology of Rio de Janeiro, Senador Furtado Street 121, BR-20270-021 Rio de Janeiro, RJ, Brazil
Paula Fernandes de Aguiar ; Institute of Chemistry, Federal University of Rio de Janeiro, Athos da Silveira Ramos 149, BR-21941-909 Rio de Janeiro, RJ, Brazil
João Batista de Almeida e Silva ; Pilot Plant of Beverages, Department of Biotechnology, Engineering School of Lorena, University of São Paulo, BR-12602-810 Lorena, São Paulo, Brazil
Pedro Paulo Moretzsohn de Mello ; Technology Center of Food and Beverage – SENAI, Nilo Peçanha Street 85, BR-27700-000 Vassouras, RJ, Brazil
Eliana Flávia Camporese Sérvulo ; Laboratory of Industrial Microbiology, Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Athos da Silveira Ramos 149, BR-21941-909 Rio de Janeiro, RJ, Brazil

Puni tekst: engleski, pdf (393 KB) str. 218-224 preuzimanja: 128* citiraj
APA 6th Edition
Mathias, T.R.d.S., Fernandes de Aguiar, P., de Almeida e Silva, J.B., Moretzsohn de Mello, P.P. i Camporese Sérvulo, E.F. (2017). Brewery Waste Reuse for Protease Production by Lactic Acid Fermentation. Food Technology and Biotechnology, 55 (2), 218-224. https://doi.org/10.17113/ftb.55.02.17.4378
MLA 8th Edition
Mathias, Thiago Rocha dos Santos, et al. "Brewery Waste Reuse for Protease Production by Lactic Acid Fermentation." Food Technology and Biotechnology, vol. 55, br. 2, 2017, str. 218-224. https://doi.org/10.17113/ftb.55.02.17.4378. Citirano 19.07.2018.
Chicago 17th Edition
Mathias, Thiago Rocha dos Santos, Paula Fernandes de Aguiar, João Batista de Almeida e Silva, Pedro Paulo Moretzsohn de Mello i Eliana Flávia Camporese Sérvulo. "Brewery Waste Reuse for Protease Production by Lactic Acid Fermentation." Food Technology and Biotechnology 55, br. 2 (2017): 218-224. https://doi.org/10.17113/ftb.55.02.17.4378
Harvard
Mathias, T.R.d.S., et al. (2017). 'Brewery Waste Reuse for Protease Production by Lactic Acid Fermentation', Food Technology and Biotechnology, 55(2), str. 218-224. doi: https://doi.org/10.17113/ftb.55.02.17.4378
Vancouver
Mathias TRdS, Fernandes de Aguiar P, de Almeida e Silva JB, Moretzsohn de Mello PP, Camporese Sérvulo EF. Brewery Waste Reuse for Protease Production by Lactic Acid Fermentation. Food Technology and Biotechnology [Internet]. 14.06.2017. [pristupljeno 19.07.2018.];55(2):218-224. doi: https://doi.org/10.17113/ftb.55.02.17.4378
IEEE
T.R.d.S. Mathias, P. Fernandes de Aguiar, J.B. de Almeida e Silva, P.P. Moretzsohn de Mello i E.F. Camporese Sérvulo, "Brewery Waste Reuse for Protease Production by Lactic Acid Fermentation", Food Technology and Biotechnology, vol.55, br. 2, str. 218-224, Srpanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.55.02.17.4378

Rad u XML formatu

Sažetak
U radu je ispitana mogućnost uporabe tri vrste čvrstog pivarskog otpada: pivskog tropa, toplog taloga i ostatka pivskog kvasca, kao podloga za uzgoj bakterija mliječno-kiselog vrenja, te je procijenjen njihov potencijal za proizvodnju proteolitičkih enzima. Prvo je upotrijebljen eksperimentalni plan slijedeći metodologiju dizajna smjese za procjenu utjecaja svake vrste otpada te njihovih smjesa s udjelom proteina od 4 % na proizvodnju enzima. U predodređenim vremenskim razmacima odvajane su kruta i tekuća komponenta, te je određena aktivnost izvanstaničnih proteolitičkih enzima. Nakon odabira najboljih uvjeta, u drugom je dijelu istraživanja razvijen faktorijalni plan pokusa za procjenu optimalnog udjela proteina u podlozi (od 1 do 7 %) i optimalnog dodatka fermentabilnih šećera (glukoze, od 1 do 7 %). Ostatak pivskog kvasca imao je najveći potencijal za proizvodnju izvanstaničnih enzima, a dobiveni proteolitički ekstrakt je za 3 sata imao aktivnost od 2,6 jedinica po mililitru. Međutim, dodatak glukoze je također imao pozitivan učinak zbog malog udjela fermentabilnih šećera u podlozi, povećavajući proteolitičku aktivnost na 4,9 jedinica po mililitru. Planovi pokusa su uspoređeni ponavljanjem najboljih uvjeta, a enzimi su odvojeni taloženjem pomoću etanola. Primjenom najbolje podloge proizveden je protein, koji je nakon taloženja imao proteolitičku aktivnost od 145,5 jedinica po gramu.

Ključne riječi
pivarski otpad; iskorištenje otpada; mliječno-kiselo vrenje; proteolitički enzimi

Hrčak ID: 183068

URI
https://hrcak.srce.hr/183068

Reference

1 

Mathias TRS, de Mello PPM, Sérvulo EFC. Solid wastes in brewing process: a review. J Brew Distilling. 2014;5:1–9. DOI: http://dx.doi.org/10.5897/JBD2014.0043

2 

Fillaudeau L, Blanpain-Avet P, Daufin G. Water, wastewater and waste management in brewing industries. J Clean Prod. 2006;14:463–71. DOI: http://dx.doi.org/10.1016/j.jclepro.2005.01.002

3 

Briggs DE, Boulton CA, Brookes PA, Stevens R. Brewing science and practice. Cambridge, UK: Woodhead Publishing Limited and Boca Raton, FL, USA: CRC Press LLC; 2004.

4 

Aliyu S, Bala M. Brewer’s spent grain: a review of its potentials and applications. Afr J Biotechnol. 2011;103:324–31. DOI: http://dx.doi.org/10.5897/AJBx10.006

5 

Yamada EA, Alvim ID, Santucci MCC, Sgarbieri VC. Centesimal composition and protein nutritive value of yeast from ethanol fermentation and of yeast derivatives. Rev Nutr. 2003;16:423–32. DOI: http://dx.doi.org/10.1590/S1415-52732003000400006

6 

Pandey A, Soccol CR, Nigam P, Soccol VT. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol. 2000;74:69–80. DOI: http://dx.doi.org/10.1016/S0960-8524(99)00142-X

7 

Mathias TRS, Alexandre VMF, Cammarota MC, de Mello PPM, Sérvulo EFC. Characterization and determination of brewer’s solid wastes composition. J Inst Brew. 2015;121:400–4. DOI: http://dx.doi.org/10.1002/jib.229

8 

Walstra P, Wouters JTM, Geurts TJ. Dairy science and technology. Boca Raton, FL, USA: CRC Press; 2006.

9 

Panesar PS, Kennedy JF, Gandhi DN, Bunko K. Bioutilization of whey for lactic acid production. Food Chem. 2007;105:1–14. DOI: http://dx.doi.org/10.1016/j.foodchem.2007.03.035

10 

Savijoki K, Ingmer H, Varmanen P. Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol. 2006;71:394–406. DOI: http://dx.doi.org/10.1007/s00253-006-0427-1 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16628446

11 

Kabadjova-Hristova P, Bakalova S, Gocheva B, Moncheva P. Evidence for proteolytic activity of lactobacilli isolated from kefir grains. Biotechnol Biotechnol Equip. 2006;20:89–94. DOI: http://dx.doi.org/10.1080/13102818.2006.10817347

12 

Kirilov N, Petkova T, Atransova J, Danova S, Iliev I, Popov Y, et al. Proteolytic activity in lactic acid bacteria from Iraq, Armenia and Bulgaria. Biotechnol Biotechnol Equip. 2009;23:643–6. DOI: http://dx.doi.org/10.1080/13102818.2009.10818506

13 

Takafuji S, Iwasaki T, Sasaki M, Tan PST. Proteolytic enzymes of lactic acid bacteria. In: Charlambous G, editor. Developments in food science, vol. 37: Food flavors: generation, analysis and process influence. Amsterdam, The Netherlands: Elsevier Science; 1995. https://doi.org/ DOI: http://dx.doi.org/10.1016/S0167-4501(06)80194-9

14 

Abasiekong SF. Effects of fermentation on crude protein content of brewers dried grains and spent sorghum grains. Bioresour Technol. 1991;35:99–102. DOI: http://dx.doi.org/10.1016/0960-8524(91)90088-2

15 

Aguirre L, Garro MS, de Giori GS. Enzymatic hydrolysis of soybean protein using lactic acid bacteria. Food Chem. 2008;111:976–82. DOI: http://dx.doi.org/10.1016/j.foodchem.2008.05.018

16 

Di Cagno R, De Angelis M, Lavermicocca P, De Vicenzi M, Giovannini C, Faccia M, et al. Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol. 2002;68:623–33. DOI: http://dx.doi.org/10.1128/AEM.68.2.623-633.2002 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11823200

17 

Lowe DP, Arendt EK, Soriano AM, Ulmer HM. The influence of lactic acid bacteria on the quality of malt. J Inst Brew. 2005;11:42–50. DOI: http://dx.doi.org/10.1002/j.2050-0416.2005.tb00647.x

18 

Official Method AOAC. 935.28–29. Moisture in malt: gravimetric method. Rockville, MD, USA: AOAC International; 1990.

19 

Official Method AOAC. 923.03. Ash of flour: direct method. Rockville, MD, USA: AOAC International; 1990.

20 

Analytica-EBC. 7th ed. Sections 3.3.1 and 4.3.1. European Brewery Convention (EBC). Nürnberg, Germany: Fachverlag Hans Carl; 2008.

21 

Wort-12. Free amino nitrogen (international method). St. Paul, MN, USA: American Society of Brewing Chemists (ASBC); 1976.

22 

Moshlehishad M, Mirdamadi S, Ehsani MR, Ezzatpanah H, Moosavi-Movahedi AA. The proteolytic activity of selected lactic acid bacteria in fermenting cow’s and camel’s milk and the resultant sensory characteristics of the products. Int J Dairy Technol. 2013;66:279–85. DOI: http://dx.doi.org/10.1111/1471-0307.12017

23 

Moulay M, Aggad H, Benmechernene Z, Guessas B, Henni DE, Kihal M. Cultivable lactic acid bacteria isolated from Algerian raw goat’s milk and their proteolytic activity. World J Dairy Food Sci. 2006;1:12–8.

24 

Nguyen CM, Kim JS, Nguyen TN, Kim SK, Choi GJ, Choi YH, et al. Production of l-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation. Bioresour Technol. 2013;146:35–43. DOI: http://dx.doi.org/10.1016/j.biortech.2013.07.035 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23911815

25 

Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey’s manual of determinative bacteriology. Baltimore, MD, USA: Williams & Wilkins; 1994. https://doi.org/ DOI: http://dx.doi.org/10.1001/jama.1924.02650280079041

26 

Cornell JA. Experiments with mixtures: design models and the analysis of mixture data. New York, NY, USA: John Willey & Sons, Inc.; 1990. https://doi.org/ DOI: http://dx.doi.org/10.1002/9781118204221

27 

González L, Sacristán N, Arenas R, Fresno JM, Tornadijo ME. Enzymatic activity of lactic acid bacteria (with antimicrobial properties) isolated from a traditional Spanish cheese. Food Microbiol. 2010;27:592–7. DOI: http://dx.doi.org/10.1016/j.fm.2010.01.004 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20510776

28 

Bajaj BK, Sharma N, Singh S. Enhanced production of fibrinolytic protease from Bacillus cereus NS-2 using cotton seed cake as nitrogen source. Biocatal Agric Biotechnol. 2013;2:204–9. DOI: http://dx.doi.org/10.1016/j.bcab.2013.04.003

29 

Dincer S, Ozdenefe MS, Unal MU, Arkut A, Mercimek HA, Kayis F. Optimization of medium components for alkaline protease production by Bacillus megaterium from waste breads. J Biotechnol. 2014;185:S69. DOI: http://dx.doi.org/10.1016/j.jbiotec.2014.07.235

30 

Rathod MG, Pathak AP. Wealth from waste: optimized alcaline protease production from agro-industrial residues by Bacillus alcalophilus LW8 and its biotechnological applications. J Taibah Univ Sci. 2014;8:307–14. DOI: http://dx.doi.org/10.1016/j.jtusci.2014.04.002

31 

Charney J, Tomarelli RM. A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem. 1947;171:501–5. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20272088

32 

Waglay A, Karboune S, Alli I. Potato protein isolates: recovery and characterization of their properties. Food Chem. 2014;142:373–82. DOI: http://dx.doi.org/10.1016/j.foodchem.2013.07.060 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24001855

33 

Maghsoodi V, Kazemi A, Nahid P, Yaghmaei S, Sabzevari MA. Alkaline protease production by immobilized cells using B. licheniformis. Sci Iran. 2013;20:607–10. DOI: http://dx.doi.org/10.1016/j.scient.2013.01.007

34 

Pant G, Prakash A, Pavani JVP, Bera S, Deviram GVNS, Kumar A, et al. Production, optimization and partial purification of protease from Bacillus subtilis. J Taibah Univ Sci. 2015;9:50–5. DOI: http://dx.doi.org/10.1016/j.jtusci.2014.04.010

35 

de Castro RJS, Sato HH. Production and biochemical characterization of protease from Aspergillus oryzae: an evaluation of the physical-chemical parameters using agroindustrial wastes as supports. Biocatal Agric Biotechnol. 2014;3:20–5. DOI: http://dx.doi.org/10.1016/j.bcab.2013.12.002

36 

de Castro RJS, Sato HH. Synergistic effects of agroindustrial wastes on simultaneous production of protease and α-amylase under solid state fermentation using a simplex centroid mixture design. Ind Crops Prod. 2013;49:813–21. DOI: http://dx.doi.org/10.1016/j.indcrop.2013.07.002

37 

Piraino P, Zotta T, Ricciardi A, McSweeney PLH, Parente E. Acid production, proteolysis, autolytic and inhibitory properties of lactic acid bacteria isolated from pasta filata cheeses: a multivariate screening study. Int Dairy J. 2008;18:81–92. DOI: http://dx.doi.org/10.1016/j.idairyj.2007.06.002

38 

Djukić-Vukvić AP, Mojović LV, Jokić BM, Nikolić SB, Pejin JD. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite. Bioresour Technol. 2013;135:454–8. DOI: http://dx.doi.org/10.1016/j.biortech.2012.10.066 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23186681

39 

Mussato SI, Fernandes M, Mancilha IM, Roberto IC. Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain. Biochem Eng J. 2008;40:437–44. DOI: http://dx.doi.org/10.1016/j.bej.2008.01.013

40 

Kopsahelis N, Agouridis N, Bekatorou A, Kanellaki M. Comparative study of spent grains and deligniwed spent grains as yeast supports for alcohol production from molasses. Bioresour Technol. 2007;98:1440–7. DOI: http://dx.doi.org/10.1016/j.biortech.2006.03.030 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17157001

41 

Plessas S, Trantallidi M, Bekatorou A, Kanellaki M, Nigam P, Koutinas AA. Immobilization of kefir and Lactobacillus casei on brewery spent grains for use in sourdough wheat bread making. Food Chem. 2007;105:187–94. DOI: http://dx.doi.org/10.1016/j.foodchem.2007.03.065

42 

Vieira E, Brandão T, Ferreira IMPLVO. Evaluation of brewer’s spent yeast to produce flavor enhancer nucleotides: influence of serial repitching. J Agric Food Chem. 2013;61:8724–9. DOI: http://dx.doi.org/10.1021/jf4021619 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24004163

43 

Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, et al. Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci. 2014;7:222–9. DOI: http://dx.doi.org/10.1016/j.jrras.2014.03.002

44 

Castillo Martinez FA, Balciunas EM, Salgado JM, Domínguez González JM, Converti A, Oliveira RPS. Lactic acid properties, applications and production: a review. Trends Food Sci Technol. 2013;30:70–83. DOI: http://dx.doi.org/10.1016/j.tifs.2012.11.007

[engleski]

Posjeta: 209 *