hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.55 No.2 Lipanj 2017.

Prethodno priopćenje
https://doi.org/10.17113/ftb.55.02.17.4789

Bioredukcija acetofenona pomoću korijena mrkve i tenzida Tween 20

Monique Rodrigues da Costa   ORCID icon orcid.org/0000-0002-7575-2464 ; Center for Natural Sciences and Humanities, Federal University of ABC – UFABC, Av. dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
Álvaro Takeo Omori ; Center for Natural Sciences and Humanities, Federal University of ABC – UFABC, Av. dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil

Puni tekst: engleski, pdf (343 KB) str. 231-235 preuzimanja: 56* citiraj
APA 6th Edition
Rodrigues da Costa, M. i Omori, Á.T. (2017). Tween® 20-Enhanced Bioreduction of Acetophenones Promoted by Daucus carota Root. Food Technology and Biotechnology, 55 (2), 231-235. https://doi.org/10.17113/ftb.55.02.17.4789
MLA 8th Edition
Rodrigues da Costa, Monique i Álvaro Takeo Omori. "Tween® 20-Enhanced Bioreduction of Acetophenones Promoted by Daucus carota Root." Food Technology and Biotechnology, vol. 55, br. 2, 2017, str. 231-235. https://doi.org/10.17113/ftb.55.02.17.4789. Citirano 19.07.2018.
Chicago 17th Edition
Rodrigues da Costa, Monique i Álvaro Takeo Omori. "Tween® 20-Enhanced Bioreduction of Acetophenones Promoted by Daucus carota Root." Food Technology and Biotechnology 55, br. 2 (2017): 231-235. https://doi.org/10.17113/ftb.55.02.17.4789
Harvard
Rodrigues da Costa, M., i Omori, Á.T. (2017). 'Tween® 20-Enhanced Bioreduction of Acetophenones Promoted by Daucus carota Root', Food Technology and Biotechnology, 55(2), str. 231-235. doi: https://doi.org/10.17113/ftb.55.02.17.4789
Vancouver
Rodrigues da Costa M, Omori ÁT. Tween® 20-Enhanced Bioreduction of Acetophenones Promoted by Daucus carota Root. Food Technology and Biotechnology [Internet]. 14.06.2017. [pristupljeno 19.07.2018.];55(2):231-235. doi: https://doi.org/10.17113/ftb.55.02.17.4789
IEEE
M. Rodrigues da Costa i Á.T. Omori, "Tween® 20-Enhanced Bioreduction of Acetophenones Promoted by Daucus carota Root", Food Technology and Biotechnology, vol.55, br. 2, str. 231-235, Srpanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.55.02.17.4789

Rad u XML formatu

Sažetak
U radu je ispitan utjecaj tenzida na bioredukciju acetofenona pomoću korijena mrkve (Daucus carota). Od svih ispitanih tenzida, Tween 20 je donekle poboljšao konverziju. Optimiran je udjel tenzida, a metoda je primijenjena i na druge supstituirane acetofenone, te su dobiveni optički čisti feniletanoli s visokim omjerom konverzije i velikom enantioselektivnošću.

Ključne riječi
biokataliza; korijen mrkve; tenzidi; kiralni alkoholi

Projekti
Fundação de Amparo à Pesquisa do Estado de São Paulo / FAPESP 2014/25659-8 - -

Hrčak ID: 183070

URI
https://hrcak.srce.hr/183070

Reference

1 

Omori AT, Gonçalves Lobo F, Gonçalves do Amaral AC, de Oliveira CS. Purple carrots: better biocatalysts for the enantioselective reduction of acetophenones than common orange carrots (D. carota). J Mol Catal, B Enzym. 2016;127:93–7. DOI: http://dx.doi.org/10.1016/j.molcatb.2016.02.009

2 

Blanchard N, van de Weghe P. Daucus carota L. mediated bioreduction of prochiral ketones. Org Biomol Chem. 2006;4:2348–53. DOI: http://dx.doi.org/10.1039/b605233a PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16763677

3 

Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. A green approach for the reduction of graphene oxide by wild carrot root. Carbon. 2012;50:914–21. DOI: http://dx.doi.org/10.1016/j.carbon.2011.09.053

4 

Xiong W, Wang X, Kong L. Design and application of a biphasic system that enhances productivity of Daucus carota- -catalyzed asymmetric reduction. Biotechnol Lett. 2015;37:1703–9. DOI: http://dx.doi.org/10.1007/s10529-015-1838-9 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25893325

5 

de Oliveira CS, de Andrade KT, Omori AT. One-pot chemoenzymatic synthesis of chiral disubstituted 1,2,3-triazoles in aqueous media. J Mol Catal, B Enzym. 2013;91:93–7. DOI: http://dx.doi.org/10.1016/j.molcatb.2013.03.004

6 

Majewska E, Kozłowska M. Regio- and stereoselective reduction of trans-4-phenylbut-3-en-2-one using carrot, celeriac, and beetroot enzyme systems in an organic solvent. Tetrahedron Lett. 2013;54:6331–2. DOI: http://dx.doi.org/10.1016/j.tetlet.2013.09.041

7 

Goswami A, Bezbaruah RL, Goswami J, Borthakur N, Dey D, Hazarika AK. Microbial reduction of ω-bromoacetophenones in the presence of surfactants. Tetrahedron Asymmetry. 2000;11:3701–9. DOI: http://dx.doi.org/10.1016/S0957-4166(00)00341-4

8 

Kim HS, Lee JH, Park S, Lee EY. Biocatalytic preparation of chiral epichlorohydrins using recombinant Pichia pastoris expressing epoxide hydrolase of Rhodotorula glutinis. Biotechnol Bioprocess Eng; BBE. 2004;9:62–4. DOI: http://dx.doi.org/10.1007/BF02949324

9 

Xian’ai S, Jinlei R, Yongning Y, Yanghao G, Minhua Z. Effect of surfactant on asymmetric bioreduction of 2-octanone catalyzed by whole cell of Saccharomyces cerevisiae. J Biotechnol. 2008;136:S383. DOI: http://dx.doi.org/10.1016/j.jbiotec.2008.07.882

10 

Fernandes Assis L, Kagohara E, Omori AT, Comasseto JV, Andrade LH, Porto ALM. Deracemization of (RS)-1-[(4-methylselanyl)phenyl]ethanol and (RS)-1-[(4-ethylselanyl)phenyl]ethanol by strains of Aspergillus terreus. Food Technol Biotechnol. 2007;45:415–9.

11 

Reineccius G. Source book of flavours. Dordrecht, The Netherlands: Springer Science & Business Media; 1994. pp. 73–4.

12 

Yadav JS, Nanda S, Reddy PT, Rao AB. Efficient enantioselective reduction of ketones with Daucus carota root. J Org Chem. 2002;67:3900–3. DOI: http://dx.doi.org/10.1021/jo010399p PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12027710

13 

Yang W, Xu JH, Xie Y, Xu Y, Zhao G, Lin GQ. Asymmetric reduction of ketones by employing Rhodotorula sp. AS2. 2241 and synthesis of the β-blocker (R)-nifenalol. Tetrahedron Asymmetry. 2006;17:1769–74. DOI: http://dx.doi.org/10.1016/j.tetasy.2006.05.019

14 

Singh A, Basit A, Banerjee UC. Burkholderia cenocepacia: a new biocatalyst for efficient bioreduction of ezetimibe intermediate. J Ind Microbiol Biotechnol. 2009;36:1369–74. DOI: http://dx.doi.org/10.1007/s10295-009-0622-z PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19669185

15 

Soni P, Banerjee UC. Enantioselective reduction of acetophenone and its derivatives with a new yeast isolate Candida tropicalis PBR-2 MTCC 5158. Biotechnol J. 2006;1:80–5. DOI: http://dx.doi.org/10.1002/biot.200500020 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16892228

16 

Gröger H, Hummel W, Rollmann C, Chamouleau F, Hüsken H, Werner H, et al. Preparative asymmetric reduction of ketones in a biphasic medium with an (S)-alcohol dehydrogenase under in situ-cofactor-recycling with a formate dehydrogenase. Tetrahedron. 2004;60:633–40. DOI: http://dx.doi.org/10.1016/j.tet.2003.11.066

17 

Shimada H, Nakamura A, Yoshihara T, Tobita S. Intramolecular and intermolecular hydrogen-bonding effects on photophysical properties of 2′-aminoacetophenone and its derivatives in solution. Photochem Photobiol Sci. 2005;4:367–75. DOI: http://dx.doi.org/10.1039/B416284F PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15803207

18 

Rodríguez P, Barton M, Aldabalde V, Onetto S, Panizza P, Menéndez P, et al. Are endophytic microorganisms involved in the stereoselective reduction of ketones by Daucus carota root? J Mol Catal, B Enzym. 2007;49:8–11. DOI: http://dx.doi.org/10.1016/j.molcatb.2007.06.011

[engleski]

Posjeta: 95 *