hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.55 No.2 Lipanj 2017.

Prethodno priopćenje
https://doi.org/10.17113/ftb.55.02.17.4883

Udjel solasonina i ekspresija gena SGT1 u različitim tkivima dvaju genotipova patlidžana (Solanum melongena L.), porijeklom iz Irana

Mahmoud Bagheri   ORCID icon orcid.org/0000-0001-6820-5318 ; Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Chamran Blvd., IR-31587-77871 Karaj, Iran
Ali Akbar Shahnejat Bushehri ; Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Chamran Blvd., IR-31587-77871 Karaj, Iran
Mohammad Reza Hassandokht ; Department of Horticultural Sciences, College of Agriculture and Natural Resources, University of Tehran, Chamran Blvd., IR-31587-77871 Karaj, Iran
Mohammad Reza Naghavi ; Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Chamran Blvd., IR-31587-77871 Karaj, Iran

Puni tekst: engleski, pdf (380 KB) str. 236-242 preuzimanja: 84* citiraj
APA 6th Edition
Bagheri, M., Shahnejat Bushehri, A.A., Hassandokht, M.R. i Naghavi, M.R. (2017). Evaluation of Solasonine Content and Expression Patterns of SGT1 Gene in Different Tissues of Two Iranian Eggplant (Solanum melongena L.) Genotypes. Food Technology and Biotechnology, 55 (2), 236-242. https://doi.org/10.17113/ftb.55.02.17.4883
MLA 8th Edition
Bagheri, Mahmoud, et al. "Evaluation of Solasonine Content and Expression Patterns of SGT1 Gene in Different Tissues of Two Iranian Eggplant (Solanum melongena L.) Genotypes." Food Technology and Biotechnology, vol. 55, br. 2, 2017, str. 236-242. https://doi.org/10.17113/ftb.55.02.17.4883. Citirano 18.07.2018.
Chicago 17th Edition
Bagheri, Mahmoud, Ali Akbar Shahnejat Bushehri, Mohammad Reza Hassandokht i Mohammad Reza Naghavi. "Evaluation of Solasonine Content and Expression Patterns of SGT1 Gene in Different Tissues of Two Iranian Eggplant (Solanum melongena L.) Genotypes." Food Technology and Biotechnology 55, br. 2 (2017): 236-242. https://doi.org/10.17113/ftb.55.02.17.4883
Harvard
Bagheri, M., et al. (2017). 'Evaluation of Solasonine Content and Expression Patterns of SGT1 Gene in Different Tissues of Two Iranian Eggplant (Solanum melongena L.) Genotypes', Food Technology and Biotechnology, 55(2), str. 236-242. doi: https://doi.org/10.17113/ftb.55.02.17.4883
Vancouver
Bagheri M, Shahnejat Bushehri AA, Hassandokht MR, Naghavi MR. Evaluation of Solasonine Content and Expression Patterns of SGT1 Gene in Different Tissues of Two Iranian Eggplant (Solanum melongena L.) Genotypes. Food Technology and Biotechnology [Internet]. 14.06.2017. [pristupljeno 18.07.2018.];55(2):236-242. doi: https://doi.org/10.17113/ftb.55.02.17.4883
IEEE
M. Bagheri, A.A. Shahnejat Bushehri, M.R. Hassandokht i M.R. Naghavi, "Evaluation of Solasonine Content and Expression Patterns of SGT1 Gene in Different Tissues of Two Iranian Eggplant (Solanum melongena L.) Genotypes", Food Technology and Biotechnology, vol.55, br. 2, str. 236-242, Srpanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.55.02.17.4883

Rad u XML formatu

Sažetak
Patlidžan (Solanum melongena L.) je jedna od najčešće konzumiranih vrsta povrća u svijetu. Glikoalkaloidi nastaju u patlidžanu kao toksični sekundarni metaboliti, a mogu štetno djelovati na zdravlje čovjeka, osobito ako je njihov udjel veći od preporučene maksimalne doze od 200 miligrama po kilogramu svježe mase. U ovom su radu ispitani udjel solasonina i ekspresija gena koji kodira za solasodin galaktoziltransferazu (SGT1) u različitim tkivima (zreli list, pupoljak, te nezreli, tehnološki zreli i fiziološki zreli plod) dvaju genotipova patlidžana (D1 i J10) uzgojenih na polju u Iranu. Najveći maseni udjel solasonina pronađen je u genotipu D1 i to u pupoljcima (135,63 μg/g), zatim u lišću (113,29 μg/g), fiziološki zrelom plodu (74,74 μg/g), nezrelom plodu (61,33 μg/g) i tehnološki zrelom plodu (21,55 μg/g). Usporedbom je genotipova utvrđeno da je plod genotipa J10, koji ima izraženiju gorčinu, sadržavao veći maseni udjel solasonina, jednog od glavnih čimbenika razvoja gorkog okusa biljaka. Aktivnost se gena SGT1 povećala u oba genotipa gotovo usporedno s povećanjem koncentracije solasonina. Transkripcija gena bila je bitno veća u genotipu J10 nego u D1. Iako se oba genotipa mogu preporučiti za konzumaciju, genotip D1 se pokazao prikladnijim za svakodnevnu uporabu.

Ključne riječi
patlidžan; ekspresija gena; glikoalkaloidi; gen SGT1

Hrčak ID: 183071

URI
https://hrcak.srce.hr/183071

Reference

1 

Simonovska B, Vovk I. High-performance thin-layer chromatographic determination of potato glycoalkaloids. J Chromatogr A. 2000;903:219–25. DOI: http://dx.doi.org/10.1016/S0021-9673(00)00900-6 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11153945

2 

Salunkhe DK, Kadam SS. Handbook of vegetable science and technology: production, compostion, storage, and processing. Boca Raton, FL, USA: CRC Press; 1998.

3 

Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S, Ohyama A, et al. Draft genome sequence of eggplant (Solanum melongena L.): the representative Solanum species indigenous to the old world. DNA Res. 2014;21:649–60. DOI: http://dx.doi.org/10.1093/dnares/dsu027 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25233906

4 

Friedman M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J Agric Food Chem. 2015;63:3323–37. DOI: http://dx.doi.org/10.1021/acs.jafc.5b00818 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25821990

5 

Distl M, Wink M. Identification and quantification of steroidal alkaloids from wild tuber-bearing Solanum species by HPLC and LC-ESI-MS. Potato Res. 2009;52:79–104. DOI: http://dx.doi.org/10.1007/s11540-008-9123-0

6 

Sucha L, Tomsik P. The steroidal glycoalkaloids from solanaceae: toxic effect, antitumour activity and mechanism of action. Planta Med. 2016;82:379–87. DOI: http://dx.doi.org/10.1055/s-0042-100810 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26845708

7 

Knuthsen P, Jensen U, Schmidt B, Larsen IK. Glycoalkaloids in potatoes: content of glycoalkaloids in potatoes for consumption. J Food Compos Anal. 2009;22:577–81. DOI: http://dx.doi.org/10.1016/j.jfca.2008.10.003

8 

Sánchez-Mata MC, Yokoyama WE, Hong YJ, Prohens J. α-Solasonine and α-solamargine contents of gboma (Solanum macrocarpon L.) and scarlet (Solanum aethiopicum L.) eggplants. J Agric Food Chem. 2010;58:5502–8. DOI: http://dx.doi.org/10.1021/jf100709g PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20397650

9 

Smith DB, Roddick JG, Jones JL. Potato glycoalkaloids: some unanswered questions. Trends Food Sci Technol. 1996;7:126–31. DOI: http://dx.doi.org/10.1016/0924-2244(96)10013-3

10 

WHO Technical Report No. 828. Evaluation of certain food additives and naturally occurring toxicants. 39th report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, Switzerland: Food and Agriculture Organization of the United Nations and World Health Organization (FAO/WHO). 1992. Available from: apps.who.int/iris/bitstream/ 10665/40033/1/WHO_TRS_828.pdf.

11 

Mariot RF, de Oliveira LA, Voorhuijzen MM, Staats M, Hutten RCB, van Dijk JP, et al. Characterization and transcriptional profile of genes involved on glycoalkaloid biosynthesis in new varieties of Solanum tuberosum L. J Agric Food Chem. 2016;64:988–96. DOI: http://dx.doi.org/10.1021/acs.jafc.5b05519 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26768994

12 

Maga JA. Glycoalkaloids in solanaceae. Food Rev Int. 1994;10:385–418. DOI: http://dx.doi.org/10.1080/87559129409541010

13 

Valkonen JPT, Keskitalo M, Vasara T, Pietilä L, Raman KV. Potato glycoalkaloids: a burden or a blessing? Crit Rev Plant Sci. 1996;15:1–20. DOI: http://dx.doi.org/10.1080/07352689609701934

14 

Yazaki K. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett. 2006;580:1183–91. DOI: http://dx.doi.org/10.1016/j.febslet.2005.12.009 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16364309

15 

De Luca V, Laflamme P. The expanding universe of alkaloid biosynthesis. Curr Opin Plant Biol. 2001;4:225–33. DOI: http://dx.doi.org/10.1016/S1369-5266(00)00165-5 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11312133

16 

Rezaei M, Naghavi MR, Hoseinzade AH, Abbasi A. Developmental accumulation of thebaine and some gene transcripts in different organs of Papaver bracteatum. Ind Crops Prod. 2016;80:262–8. DOI: http://dx.doi.org/10.1016/j.indcrop.2015.11.009

17 

Lee KR, Kozukue N, Han JS, Park JH, Chang EY, Baek EJ, et al. Glycoalkaloids and metabolites inhibit the growth of human colon (HT29) and liver (HepG2) cancer cells. J Agric Food Chem. 2004;52:2832–9. DOI: http://dx.doi.org/10.1021/jf030526d PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15137822

18 

Laurila J. Interspecific hybrids of potato: determination of glycoalkaloid aglycones and influence of bacterial infection [PhD Thesis]. Helsinki, Finland: University of Helsinki; 2004.

19 

Machado RMD, Toledo MCF, Garcia LC. Effect of light and temperature on the formation of glycoalkaloids in potato tubers. Food Control. 2007;18:503–8. DOI: http://dx.doi.org/10.1016/j.foodcont.2005.12.008

20 

Eltayeb EA, Al-Sinani SS, Khan I. Effect of illumination by fluorescent light on the accumulation of glycoalkaloids in the tubers of 7 varieties of potato (Solanum tuberosum L.) grown in Oman. Pak J Biol Sci. 2003;7:655–60. DOI: http://dx.doi.org/10.3923/pjbs.2003.655.660

21 

Papathanasiou F, Mitchell SH, Harvey BMR. Variation in glycoalkaloid concentration of potato tubers harvested from mature plants. J Sci Food Agric. 1999;79:32–6. DOI: http://dx.doi.org/10.1002/(SICI)1097-0010(199901)79:1<32::AID-JSFA162>3.0.CO;2-J

22 

Blankemeyer JT, McWilliams ML, Rayburn JR, Weissenberg M, Friedman M. Developmental toxicology of solamargine and solasonine glycoalkaloids in frog embryos. Food Chem Toxicol. 1998;36:383–9. DOI: http://dx.doi.org/10.1016/S0278-6915(97)00164-6 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/9662413

23 

Friedman M. Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem. 2006;54:8655–81. DOI: http://dx.doi.org/10.1021/jf061471t PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17090106

24 

Wan H, Zhao Z, Qian C, Sui Y, Malik AA, Chen J. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem. 2010;399:257–61. DOI: http://dx.doi.org/10.1016/j.ab.2009.12.008 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20005862

25 

Yeap WC, Loo JM, Wong YC, Kulaveerasingam H. Evaluation of suitable reference genes for qRT-PCR gene expression normalization in reproductive, vegetative tissues and during fruit development in oil palm. Plant Cell Tissue Organ Cult. 2014;116:55–66. DOI: http://dx.doi.org/10.1007/s11240-013-0382-3

26 

Nasiri J, Naghavi MR, Alizadeh H, Moghadam MRF. Seasonal-based temporal changes fluctuate expression patterns of TXS, DBAT, BAPT and DBTNBT genes alongside production of associated taxanes in Taxus baccata. Plant Cell Rep. 2016;35:1103–19. DOI: http://dx.doi.org/10.1007/s00299-016-1941-y PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26883228

27 

Goojani HG, Javaran MJ, Nasiri J, Goojani EG, Alizadeh H. Expression and large-scale production of human tissue plasminogen activator (t-PA) in transgenic tobacco plants using different signal peptides. Appl Biochem Biotechnol. 2013;169:1940–51. DOI: http://dx.doi.org/10.1007/s12010-013-0115-4 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23354501

28 

Owczarzy R, Tataurov AV, Wu Y, Manthey JA, McQuisten KA, Almabrazi HG, et al. IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res. 2008;36:W163–9. DOI: http://dx.doi.org/10.1093/nar/gkn198 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18440976

29 

Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30:e36. DOI: http://dx.doi.org/10.1093/nar/30.9.e36 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11972351

30 

Khattree R, Naik DN. Multivariate data reduction and discrimination with SAS® software. SAS Institute; 2000.

31 

Friedman M. Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem. 2002;50:5751–80. DOI: http://dx.doi.org/10.1021/jf020560c PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12358437

32 

Ranjbar M, Naghavi MR, Alizadeh H, Soltanloo H. Expression of artemisinin biosynthesis genes in eight Artemisia species at three developmental stages. Ind Crops Prod. 2015;76:836–43. DOI: http://dx.doi.org/10.1016/j.indcrop.2015.07.077

33 

Bejarano L, Mignolet E, Devaux A, Espinola N, Carrasco E, Larondelle Y. Glycoalkaloids in potato tubers: the effect of variety and drought stress on the α-solanine and α-chaconine contents of potatoes. J Sci Food Agric. 2000;80:2096–100. DOI: http://dx.doi.org/10.1002/1097-0010(200011)80:14<2096::AID-JSFA757>3.0.CO;2-6

34 

Talebi Kouyakhi E, Naghavi MR, Alayhs M. Study of the essential oil variation of Ferula gummosa samples from Iran. Chem Nat Compd. 2008;44:124–6. DOI: http://dx.doi.org/10.1007/s10600-008-0038-4

35 

Baghalian K, Haghiry A, Naghavi MR, Mohammadi A. Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L.). Sci Hortic (Amsterdam). 2008;116:437–41. DOI: http://dx.doi.org/10.1016/j.scienta.2008.02.014

36 

Koricheva J, Barton KE. Temporal changes in plant secondary metabolite production. In: Iason GR, Dicke M, Hartley SE, editors. The ecology of plant secondary metabolites: From genes to global processes. Cambridge, UK: Cambridge University Press; 2012. pp. 34–55. https://doi.org/ DOI: http://dx.doi.org/10.1017/CBO9780511675751.004

37 

Austin S, Lojkowska E, Ehlenfeldt MK, Kelman A, Helgeson JP. Fertile interspecific somatic hybrids of Solanum: a novel source of resistance to Erwinia soft rot. Phytopathology. 1988;78:1216–20. DOI: http://dx.doi.org/10.1094/Phyto-78-1216

38 

Pehu E, Gibson RW, Jones MGK, Karp A. Studies on the genetic basis of resistance to potato leaf roll virus, potato virus Y and potato virus X in Solanum brevidens using somatic hybrids of Solanum brevidens and Solanum tuberosum. Plant Sci. 1990;69:95–101. DOI: http://dx.doi.org/10.1016/0168-9452(90)90107-Y

39 

Nenaah G. Individual and synergistic toxicity of solanaceous glycoalkaloids against two coleopteran stored-product insects. J Pest Sci. 2011;84:77–86. DOI: http://dx.doi.org/10.1007/s10340-010-0329-y

40 

Dale MFB, Griffiths DW, Bain H, Todd D. Glycoalkaloid increase in Solarium tuberosum on exposure to light. Ann Appl Biol. 1993;123:411–8. DOI: http://dx.doi.org/10.1111/j.1744-7348.1993.tb04103.x

41 

Choi D, Bostock RM, Avdiushko S, Hildebrand DF. Lipid-derived signals that discriminate wound- and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc Natl Acad Sci USA. 1994;91:2329–33. DOI: http://dx.doi.org/10.1073/pnas.91.6.2329 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11607466

42 

Hashemi SM, Naghavi MR. Production and gene expression of morphinan alkaloids in hairy root culture of Papaver orientale L. using abiotic elicitors. Plant Cell Tissue Organ Cult. 2016;125:31–41. DOI: http://dx.doi.org/10.1007/s11240-015-0927-8

43 

Mennella G, Lo Scalzo R, Fibiani M, D’Alessandro A, Francese G, Toppino L, et al. Chemical and bioactive quality traits during fruit ripening in eggplant (S. melongena L.) and allied species. J Agric Food Chem. 2012;60:11821–31. DOI: http://dx.doi.org/10.1021/jf3037424 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23134376

44 

Dinan L, Harmatha J, Lafont R. Chromatographic procedures for the isolation of plant steroids. J Chromatogr A. 2001;935:105–23. DOI: http://dx.doi.org/10.1016/S0021-9673(01)00992-X PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11762770

[engleski]

Posjeta: 158 *