hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.55 No.2 Lipanj 2017.

Prethodno priopćenje
https://doi.org/10.17113/ftb.55.02.17.4687

Utjecaj ekstrakcije potpomognute mikrovalovima na udjel fenolnih spojeva i antioksidacijski kapacitet cvijetova trnine

Vanja Lovrić ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10 000 Zagreb, Croatia
Predrag Putnik ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10 000 Zagreb, Croatia
Danijela Bursać Kovačević   ORCID icon orcid.org/0000-0002-6829-6472 ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10 000 Zagreb, Croatia
Marijana Jukić ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10 000 Zagreb, Croatia
Verica Dragović-Uzelac ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10 000 Zagreb, Croatia

Puni tekst: engleski, pdf (336 KB) str. 243-250 preuzimanja: 136* citiraj
APA 6th Edition
Lovrić, V., Putnik, P., Bursać Kovačević, D., Jukić, M. i Dragović-Uzelac, V. (2017). Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers. Food Technology and Biotechnology, 55 (2), 243-250. https://doi.org/10.17113/ftb.55.02.17.4687
MLA 8th Edition
Lovrić, Vanja, et al. "Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers." Food Technology and Biotechnology, vol. 55, br. 2, 2017, str. 243-250. https://doi.org/10.17113/ftb.55.02.17.4687. Citirano 18.07.2018.
Chicago 17th Edition
Lovrić, Vanja, Predrag Putnik, Danijela Bursać Kovačević, Marijana Jukić i Verica Dragović-Uzelac. "Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers." Food Technology and Biotechnology 55, br. 2 (2017): 243-250. https://doi.org/10.17113/ftb.55.02.17.4687
Harvard
Lovrić, V., et al. (2017). 'Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers', Food Technology and Biotechnology, 55(2), str. 243-250. doi: https://doi.org/10.17113/ftb.55.02.17.4687
Vancouver
Lovrić V, Putnik P, Bursać Kovačević D, Jukić M, Dragović-Uzelac V. Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers. Food Technology and Biotechnology [Internet]. 14.06.2017. [pristupljeno 18.07.2018.];55(2):243-250. doi: https://doi.org/10.17113/ftb.55.02.17.4687
IEEE
V. Lovrić, P. Putnik, D. Bursać Kovačević, M. Jukić i V. Dragović-Uzelac, "Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers", Food Technology and Biotechnology, vol.55, br. 2, str. 243-250, Srpanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.55.02.17.4687

Rad u XML formatu

Sažetak
Ovo je istraživanje provedeno radi ispitivanja utjecaja parametara ekstrakcije potpomognute mikrovalovima na udjele ukupnih fenola, flavonoida, hidroksicimetnih kiselina i flavonola i određivanja antioksidacijskog kapaciteta cvijetova trnine pomoću dviju različitih metoda (DPPH i FRAP). Ispitani su sljedeći ekstrakcijski parametri: tip otapala i volumni udjel alkohola u otapalu (50 i 70 %-tna vodena otopina etanola i metanola), vrijeme ekstrakcije (5, 15 i 25 min) te temperatura ekstrakcije (40, 50 i 60 °C) održavana snagom mikrovalova od 100, 200 i 300 W. Multivarijantna analiza varijance (MANOVA) korištena je za procjenu razlika na razini pouzdanosti od 95 % (p≤0.05). Dobiveni rezultati pokazuju da je vodena otopina etanola prikladnije otapalo za ekstrakciju fenolnih spojeva (ukupnih flavonoida, hidroksicimetne kiseline i flavonola) od vodene otopine metanola. Udjel fenolnih spojeva bio je veći u 70 %-tnim vodenim otopinama etanola i metanola, dok je antioksidacijski kapacitet ekstrakata u 50 %-tnoj vodenoj otopini metanola bio veći. Viša temperatura ekstrakcije metanola povećala je udjel fenolnih spojeva i antioksidacijski kapacitet određen pomoću DPPH metode. Produljeno trajanje ekstrakcije (u intervalu od 15 do 25 min) bitno je utjecao samo na povećanje udjela ukupnih fenola, dok su udjel specifičnih fenolnih spojeva i antioksidacijski kapacitet bili najveći pri vremenu ekstrakcije od 5 min.

Ključne riječi
ekstrakcija potpomognuta mikrovalovima; cvijet trnine (Prunus spinosa L.); fenolni spojevi; antioksidacijski kapacitet

Projekti
HRZZ / IP / IP-2013-11-3035 / IT-PE-FF - Primjena inovativnih tehnologija u proizvodnji biljnih ekstrakata kao sastojaka funkcionalne hrane

Hrčak ID: 183072

URI
https://hrcak.srce.hr/183072

Reference

1 

Pleše V. Blackthorn, black thorn (Prunus spinosa L.). Hrvatske šume. 2002;65:24–5 (in Croatian).

2 

Popescu I, Caudullo G. Prunus spinosa in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, De Rigo D, Caudullo G, Houston Durrant T, Mauri A, editors. European atlas of forest tree species. Luxembourg, Luxembourg: Publication Office of the European Union; 2016. p. 145.

3 

Olszewska M, Wolbiś M. Flavonoids from the flowers of Prunus spinosa L. Acta Pol Pharm. 2001;58:367–72. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11876444

4 

Olszewska M, Głowacki R, Wolbiś M, Bald E. Quantitative determination of flavonoids in the flowers and leaves of Prunus spinosa L. Acta Pol Pharm. 2001;58:199–203. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11712737

5 

Tamas M. Study of flavones Prunus spinosa L. flowers. Farmacia. 1985;3:181–6.

6 

Olszewska M, Wolbiś M. Phenolic acids in flowers and leaves of Prunus spinosa L. Herba Pol. 2000;46:249–54.

7 

Kolodziej H, Sakar MK, Burger JFW, Engelshowe R, Ferreira D. A-type proanthocyanidins from Prunus spinosa. Phytochemistry. 1991;30:2041–7. DOI: http://dx.doi.org/10.1016/0031-9422(91)85064-7

8 

Sikora E, Bieniek MI, Borczak B. Composition and antioxidant properties of fresh and frozen stored blackthorn fruits (Prunus spinosa L.). Acta Sci Pol Technol Aliment. 2013;12:365–72.

9 

Bursać Kovačević D, Putnik P, Dragović-Uzelac V, Vahčić N, Skendrović Babojelić M, Levaj B. Influences of organically and conventionally grown strawberry cultivars on anthocyanins content and color in purees and low-sugar jams. Food Chem. 2015;181:94–100. DOI: http://dx.doi.org/10.1016/j.foodchem.2015.02.063 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25794726

10 

Ajila CM, Brar SK, Verma M, Tyagi RD, Godbout S, Valéro JR. Extraction and analysis of polyphenols: recent trends. Crit Rev Biotechnol. 2011;31:227–49. DOI: http://dx.doi.org/10.3109/07388551.2010.513677 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21073258

11 

Gupta A, Naraniwal M, Kothari V. Modern extraction methods for preparation of bioactive plant extracts. Int J Appl Nat Sci. 2012;1:8–26.

12 

Putnik P, Bursać Kovačević D, Radojčin M, Dragović-Uzelac V. Influence of acidity and extraction time on the recovery of flavonoids from grape skin pomace optimized by response surface methodology. Chem Biochem Eng Q. 2016;30:455–64. DOI: http://dx.doi.org/10.15255/CABEQ.2016.914

13 

Putnik P, Bursać Kovačević D, Dragović-Uzelac V. Optimizing acidity and extraction time for polyphenolic recovery and antioxidant capacity in grape pomace skin extracts with response surface methodology approach. J Food Process Preserv. 2016;40:1256–63. DOI: http://dx.doi.org/10.1111/jfpp.12710

14 

Bursać Kovačević D, Gajdoš Kljusurić J, Putnik P, Vukušić T, Herceg Z, Dragović-Uzelac V. Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chem. 2016;212:323–31. DOI: http://dx.doi.org/10.1016/j.foodchem.2016.05.192 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27374539

15 

Bursać Kovačević D, Putnik P, Dragović-Uzelac V, Pedisić S, Režek Jambrak A, Herceg Z. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chem. 2016;190:317–23. DOI: http://dx.doi.org/10.1016/j.foodchem.2015.05.099 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26212976

16 

Bursać Kovačević D, Putnik P, Pedisić S, Ježek D, Karlović S, Dragović-Uzelac V. High hydrostatic pressure extraction of flavonoids from freeze-dried red grape skin as winemaking by-product. Ann Nutr Metab. 2015;67 Suppl 1:521–2. DOI: http://dx.doi.org/10.1159/000440895

17 

Dragović-Uzelac V, Putnik P, Zorić Z, Ježek D, Karlović S, Bursać Kovačević D. Winery by-products: anthocyanins recovery from red grape skin by high hydrostatic pressure extraction (HHPE). Ann Nutr Metab. 2015;67 Suppl 1:522–3. DOI: http://dx.doi.org/10.1159/000440895

18 

Plazibat V, Bursać Kovačević D, Putnik P, Jukić M, Tranfić Bakić M, Dragović-Uzelac V. The effect of microwave assisted extraction (MAE) on the isolation of polyphenols from hawthorn. Ann Nutr Metab. 2015;67 Suppl 1:527–8. DOI: http://dx.doi.org/10.1159/000440895

19 

Putnik P, Bursać Kovačević D, Penić M, Fegeš M, Dragović-Uzelac V. Microwave-assisted extraction (MAE) of Dalmatian sage leafs for the optimal yield of polyphenols: HPLC- -DAD identification and quantification. Food Anal Methods. 2016;9:2385–94. DOI: http://dx.doi.org/10.1007/s12161-016-0428-3

20 

Putnik P, Bursać Kovačević D, Penić M, Dragović-Uzelac V. Optimizing microwave-assisted extraction parameters for polyphenols recovery from sage (Salvia officinalis L.). Ann Nutr Metab. 2015;67 Suppl 1:523–4. DOI: http://dx.doi.org/10.1159/000440895

21 

Elez Garofulić I, Dragović-Uzelac V, Režek Jambrak A, Jukić M. The effect of microwave assisted extraction on the isolation of anthocyanins and phenolic acids from sour cherry Marasca (Prunus cerasus var. Marasca). J Food Eng. 2013;117:437–42. DOI: http://dx.doi.org/10.1016/j.jfoodeng.2012.12.043

22 

Zhu X, Su Q, Cai J, Yang J. Optimization of microwave assisted solvent extraction for volatile organic acids in tobacco and its comparison with conventional extraction methods. Anal Chim Acta. 2006;579:88–94. DOI: http://dx.doi.org/10.1016/j.aca.2006.07.005 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17723732

23 

Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15:7313–52. DOI: http://dx.doi.org/10.3390/molecules15107313 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20966876

24 

Dragović-Uzelac V, Elez Garofulić I, Jukić M, Penić M, Dent M. The influence of microwave-assisted extraction on the isolation of sage (Salvia officinalis L.) polyphenols. Food Technol Biotechnol. 2012;50:377–83.

25 

Veggi PC, Martinez J, Meireles MAA. Fundamentals of microwave extraction. In: Chemat F, Cravotto G, editors. Food engineering series, vol 4. Microwave-assisted extraction for bioactive compounds: theory and practice. New York, NY, USA: Springer Science+Business Media; 2013. pp.15–52. https://doi.org/ DOI: http://dx.doi.org/10.1007/978-1-4614-4830-3_2

26 

Afoakwah N, Owusu J, Adomako C, Teye E. Microwave assisted extraction (MAE) of antioxidant constituents in plant materials. Glob J Bio-Science Biotechnol. 2012;1:132–40.

27 

Jain T, Jain V, Pandey R, Vyas A, Shukla SS. Microwave assisted extraction for phytoconstituents – an overview. Asian J Res Chem. 2009;2:19–25.

28 

Khoddami A, Wilkes MA, Roberts TH. Techniques for analysis of plant phenolic compounds. Molecules. 2013;18:2328–75. DOI: http://dx.doi.org/10.3390/molecules18022328 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23429347

29 

Wang L, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol. 2006;17:300–12. DOI: http://dx.doi.org/10.1016/j.tifs.2005.12.004

30 

Eskilsson CS, Björklund E. Analytical-scale microwave-assisted extraction. J Chromatogr A. 2000;902:227–50. DOI: http://dx.doi.org/10.1016/S0021-9673(00)00921-3 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11192157

31 

Shortle E, O’Grady MN, Gilroy D, Furey A, Quinn N, Kerry JP. Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates. Meat Sci. 2014;98:828–34. DOI: http://dx.doi.org/10.1016/j.meatsci.2014.07.001 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25170819

32 

Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10:178–82.

33 

Howard LR, Clark JR, Brownmiller C. Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. J Sci Food Agric. 2003;83:1238–47. DOI: http://dx.doi.org/10.1002/jsfa.1532

34 

Nuengchamnong N, Krittasilp K, Ingkaninan K. Rapid screening and identification of antioxidants in aqueous extracts of Houttuynia cordata using LC–ESI–MS coupled with DPPH assay. Food Chem. 2009;117:750–6. DOI: http://dx.doi.org/10.1016/j.foodchem.2009.04.071

35 

Fegredo JA, Wong MCY, Wiseman H, Preedy VR. Manual and robotic methods for measuring the total antioxidant capacity of beers. In: Preedy VR, editor. Beer in health and disease prevention. San Diego, CA, USA: Academic Press; 2009. pp. 991–1002.

36 

IBM SPSS. v. 20.0, IBM Corp, Armonk, NY, USA; 2011. Available from: https://www.ibm.com.

37 

Centurion S. v. 17, StatPoint Technologies, Inc, Warrenton, VA, USA; 2015. Available from: http://www.statgraphics.com.

38 

Olszewska MA, Kwapisz A. Metabolite profiling and antioxidant properties of Prunus padus L. flowers and leaves. Nat Prod Res. 2011;25:1115–31. DOI: http://dx.doi.org/10.1080/14786410903230359 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21347973

39 

Ince AE, Sahin S, Sumnu G. Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle. J Food Sci Technol. 2014;51:2776–82. DOI: http://dx.doi.org/10.1007/s13197-012-0828-3 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25328225

40 

Wang H, Helliwell K. Determination of flavonols in green and black tea leaves and green tea infusions by high-performance liquid chromatography. Food Res Int. 2001;34:223–7. DOI: http://dx.doi.org/10.1016/S0963-9969(00)00156-3

41 

Drużyńska B, Stępniewska A, Wołosiak R. The influence of time and type of solvent on efficiency of the extraction of polyphenols from green tea and antioxidant properties obtained extracts. Acta Sci Pol Technol Aliment. 2007;6:27–36.

42 

Song J, Li D, Liu C, Zhang Y. Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant properties. Innov Food Sci Emerg. 2011;12:282–7. DOI: http://dx.doi.org/10.1016/j.ifset.2011.03.001

43 

Zhang ZS, Li D, Wang LJ, Ozkan N, Chen XD, Mao ZH, et al. Optimization of ethanol-water extraction of lignans from flaxseed. Separ Purif Tech. 2007;57:17–24. DOI: http://dx.doi.org/10.1016/j.seppur.2007.03.006

44 

Thoo YY, Ng SY, Khoo MZ, Wan Aida WM, Ho CW. A binary solvent extraction system for phenolic antioxidants and its application to the estimation of antioxidant capacity in Andrographis paniculata extracts. Int Food Res J. 2013;20:1103–11.

45 

Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M. Free radical scavenging properties of wheat extracts. J Agric Food Chem. 2002;50:1619–24. DOI: http://dx.doi.org/10.1021/jf010964p PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11879046

46 

Yan MM, Liu W, Fu YJ, Zu YG, Chen CY, Luo M. Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali. Food Chem. 2010;119:1663–70. DOI: http://dx.doi.org/10.1016/j.foodchem.2009.09.021

47 

Zhang B, Yang R, Liu CZ. Microwave-assisted extraction of chlorogenic acid from flower buds of Lonicera japonica Thunb. Separ Purif Tech. 2008;62:480–3. DOI: http://dx.doi.org/10.1016/j.seppur.2008.02.013

48 

Chew KK, Khoo MZ, Ng SY, Thoo YY, Wan Aida MW, Ho CW. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts. Int Food Res J. 2011;18:1427–35.

49 

Ahmad J, Langrish TAG. Optimizations of total phenolic acids extraction from mandarin peels using microwave energy: the importance of the Maillard reaction. J Food Eng. 2012;109:162–74. DOI: http://dx.doi.org/10.1016/j.jfoodeng.2011.09.017

50 

Uttara J, Ware L, Mohini U. Microwave assisted extraction of crude drugs. Int J Pharma Bio Sci. 2010;1:330–2.

[engleski]

Posjeta: 243 *