hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.55 No.2 Lipanj 2017.

Kratko priopćenje
https://doi.org/10.17113/ftb.55.02.17.4732

Sinteza galaktozil derivata glukonske kiseline transglikozilacijom pomoću β-galaktozidaze

Aleksandra Wojciechowska   ORCID icon orcid.org/0000-0003-1706-082X ; Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, PL-90-924 Łódź, Poland
Robert Klewicki   ORCID icon orcid.org/0000-0003-0600-9906 ; Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, PL-90-924 Łódź, Poland
Michał Sójka ; Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, PL-90-924 Łódź, Poland
Elżbieta Klewicka ; Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, PL-90-924 Łódź, Poland

Puni tekst: engleski, pdf (597 KB) str. 258-265 preuzimanja: 107* citiraj
APA 6th Edition
Wojciechowska, A., Klewicki, R., Sójka, M. i Klewicka, E. (2017). Synthesis of the Galactosyl Derivative of Gluconic Acid With the Transglycosylation Activity of β-Galactosidase. Food Technology and Biotechnology, 55 (2), 258-265. https://doi.org/10.17113/ftb.55.02.17.4732
MLA 8th Edition
Wojciechowska, Aleksandra, et al. "Synthesis of the Galactosyl Derivative of Gluconic Acid With the Transglycosylation Activity of β-Galactosidase." Food Technology and Biotechnology, vol. 55, br. 2, 2017, str. 258-265. https://doi.org/10.17113/ftb.55.02.17.4732. Citirano 20.07.2018.
Chicago 17th Edition
Wojciechowska, Aleksandra, Robert Klewicki, Michał Sójka i Elżbieta Klewicka. "Synthesis of the Galactosyl Derivative of Gluconic Acid With the Transglycosylation Activity of β-Galactosidase." Food Technology and Biotechnology 55, br. 2 (2017): 258-265. https://doi.org/10.17113/ftb.55.02.17.4732
Harvard
Wojciechowska, A., et al. (2017). 'Synthesis of the Galactosyl Derivative of Gluconic Acid With the Transglycosylation Activity of β-Galactosidase', Food Technology and Biotechnology, 55(2), str. 258-265. doi: https://doi.org/10.17113/ftb.55.02.17.4732
Vancouver
Wojciechowska A, Klewicki R, Sójka M, Klewicka E. Synthesis of the Galactosyl Derivative of Gluconic Acid With the Transglycosylation Activity of β-Galactosidase. Food Technology and Biotechnology [Internet]. 14.06.2017. [pristupljeno 20.07.2018.];55(2):258-265. doi: https://doi.org/10.17113/ftb.55.02.17.4732
IEEE
A. Wojciechowska, R. Klewicki, M. Sójka i E. Klewicka, "Synthesis of the Galactosyl Derivative of Gluconic Acid With the Transglycosylation Activity of β-Galactosidase", Food Technology and Biotechnology, vol.55, br. 2, str. 258-265, Srpanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.55.02.17.4732

Rad u XML formatu

Sažetak
Bioničke kiseline su bioaktivni spojevi koji imaju niz zanimljivih svojstava. Najčešće se dobivaju kemijskom ili enzimskom oksidacijom disaharida. U ovom je radu ispitan galaktozil derivat glukonske kiseline, dobiven novom metodom sinteze bioničkih kiselina transglikozilacijom pomoću β-galaktozidaze uz laktozu kao supstrat. Proizvodi dobiveni ovom metodom imaju drukčiju strukturu (a time vjerojatno i svojstva) od onih dobivenih tradicionalnom oksidacijom disaharida. Svrha je ovoga rada bila odrediti utjecaj odabranih parametara (koncentracije i omjera supstrata, količine enzima, vremena, pH-vrijednosti i prisutnosti soli) na tijek reakcije katalizirane enzimskim pripravkom Lactozym, što sadržava β galaktozidazu iz kvasca Kluyveromyces lactis. Istraživanje je pokazalo da se s povećanjem udjela suhe tvari u osnovnoj otopini (do 50 % mase po volumenu) i dodatkom soli povećao prinos proizvoda. S druge strane, s povećanjem pH-vrijednosti sa 7,0 na 9,0 i dodatkom magnezijeve i manganove soli smanjio se udjel derivata. Osim toga, s povećanjem doze β-galaktozidaze na više od 35 000 jedinica u 100 g laktoze također se smanjio prinos proizvoda. Najpovoljniji molarni omjer natrijevog glukonata i laktoze bio je 2,225:0,675. Ovisno o uvjetima sinteze, koncentracija proizvoda u reakcijskoj smjesi bila je između 17,3 i 118,3 g/L, što odgovara masenom udjelu suhe tvari od 6,64 do 23,7 %. Rezultati dobiveni u ovom radu mogu poslužiti za dizajn industrijskog procesa.

Ključne riječi
glukonska kiselina; β-galaktozidaza; transglikozilacija; laktoza

Hrčak ID: 183074

URI
https://hrcak.srce.hr/183074

Reference

1 

Green BA, Yu RJ, Van Scott EJ. Clinical and cosmeceutical uses of hydroxyacids. Clin Dermatol. 2009;27:495–501. DOI: http://dx.doi.org/10.1016/j.clindermatol.2009.06.023 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19695482

2 

Alonso S, Rendueles M, Díaz M. Bio-production of lactobionic acid: current status, applications and future prospects. Biotechnol Adv. 2013;31:1275–91. DOI: http://dx.doi.org/10.1016/j.biotechadv.2013.04.010 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23651661

3 

Roldán V, González JC, Santoro M, García S, Casado N, Olivera S, et al. Kinetics and mechanism of the oxidation of disaccharides by CrVI. Can J Chem. 2002;80:1676–86. DOI: http://dx.doi.org/10.1139/v02-187

4 

Mirescu A, Prüße U. A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts. Appl Catal B. 2007;70:644–52. DOI: http://dx.doi.org/10.1016/j.apcatb.2006.01.017

5 

Borodina VG, Mirgorod YA. Catalytic synthesis lactobionic acid. J Nano-Electron Phys. 2014;6:03052.

6 

Gutiérrez LF, Bazinet L, Hamoudi S, Belkacemi K. Production of lactobionic acid by means of a process comprising the catalytic oxidation of lactose and bipolar membrane electrodialysis. Separ Purif Tech. 2013;109:23–32. DOI: http://dx.doi.org/10.1016/j.seppur.2013.02.017

7 

Nishizuka Y, Hayaishi O. Enzymic formation of lactobionic acid from lactose. J Biol Chem. 1962;237:2721–8. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/14480005

8 

Kiryu T, Yamauchi K, Masuyama A, Ooe K, Kimura T, Kiso T, et al. Optimization of lactobionic acid production by Acetobacter orientalis isolated from Caucasian fermented milk, ‘Caspian Sea yogurt’. Biosci Biotechnol Biochem. 2012;76:361–3. DOI: http://dx.doi.org/10.1271/bbb.110608 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22313756

9 

Alonso S, Rendueles M, Díaz M. Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens. Bioresour Technol. 2013;134:134–42. DOI: http://dx.doi.org/10.1016/j.biortech.2013.01.145 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23500570

10 

Affertsholt-Allen T. Market developments and industry challenges for lactose and lactose derivatives. Presentation from IDF Symposium ‘Lactose and its Derivatives’, Moscow, Russia; 2007. Available from: http://lactose.ru/present/1Tage_Affertsholt-Allen.pdf

11 

Sumimoto R, Kamada N. Lactobionate as the most important component in UW solution for liver preservation. Transplant Proc. 1990;22:2198–9. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/2219342

12 

Zakeri-Milani P, Mousavian-Fathi N, Ghanbarzadeh S, Zarrintan MH, Valizadeh H. Application of lactobionic acid and nonionic surfactants as solubilizing agents for parenteral formulation of clarithromycin. Adv Pharm Bull. 2012;2:37–42. DOI: http://dx.doi.org/10.5681/apb.2012.006 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24312769

13 

Cavallo G, Stagni M, Sodo E. Ophthalmic composition based on lactobionic acid useful for reducing corneal edema and inflammation. European patent EP 2494954 B1. 2014.

14 

Autuori M, Bosi D, Lapini SA, Marchi E. New low molecular weight complexes between iron and maltobionic acid, use thereof for intramuscular or subcutaneous administration in the treatment of anemic states, and new pharmaceutical compositions adapted for these uses. European patent EP 2580227 B1. 2014.

15 

Nielsen PM. Production of maltobionate. European patent EP2185717 B1. 2011.

16 

Ruiz Matute AI, Cardelle-Cobas A, García-Bermejo AB, Montilla A, Olano A, Corzo N. Synthesis, characterization and functional properties of galactosylated derivatives of chitosan through amide formation. Food Hydrocoll. 2013;33:245–55. DOI: http://dx.doi.org/10.1016/j.foodhyd.2013.03.016

17 

Oe K, Kimura T. Aging inhibitor for bread. Japanese patent JP 2011177121 A. 2011.

18 

Lynglev GB, Koka R, Mehnert DW, Fritsch RJ. Method for producing a fermented dairy product. European patent EP 1443827 B1. 2007.

19 

Nielsen PM. Meat based food product comprising lactobionic acid. European patent EP 1718169 B1. 2012.

20 

Oe K, Kimura T. Recalcification promoter. Japanese patent JP2010006728 A. 2010.

21 

Schaafsma G. Lactose and lactose derivatives as bioactive ingredients in human nutrition. Int Dairy J. 2008;18:458–65. DOI: http://dx.doi.org/10.1016/j.idairyj.2007.11.013

22 

Guerrero C, Vera C, Conejeros R, Illanes A. Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme Microb Technol. 2015;70:9–17. DOI: http://dx.doi.org/10.1016/j.enzmictec.2014.12.006 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25659627

23 

Giacomini C, Irazoqui G, Gonzalez P, Batista-Viera F, Brena BM. Enzymatic synthesis of galactosyl–xylose by Aspergillus oryzae β-galactosidase. J Mol Catal, B Enzym. 2002;19-20:159–65. DOI: http://dx.doi.org/10.1016/S1381-1177(02)00163-7

24 

Klewicki R. Formation of gal-sorbitol during lactose hydrolysis with β-galactosidase. Food Chem. 2007;100:1196–201. DOI: http://dx.doi.org/10.1016/j.foodchem.2005.10.064

25 

Wei W, Qi D, Zhao H, Lu Z, Lv F, Bie X. Synthesis and characterisation of galactosyl glycerol by β-galactosidase catalysed reverse hydrolysis of galactose and glycerol. Food Chem. 2013;141:3085–92. DOI: http://dx.doi.org/10.1016/j.foodchem.2013.05.145 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23871063

26 

Carević M, Veličković D, Stojanović M, Milosavić N, Rogniaux H, Ropartz D, et al. Insight in the regioselective enzymatic transgalactosylation of salicin catalyzed by β-galactosidase from Aspergillus oryzae. Process Biochem. 2015;50:782–8. DOI: http://dx.doi.org/10.1016/j.procbio.2015.01.028

27 

Lactozym. Product Sheet. Bagsvaerd, Denmark: Novozymes A/S; 2001;08279–01.

28 

Torres DPM, Gonçalves MDPF, Teixeira JA, Rodrigues LR. Galacto-oligosaccharides, production, properties, applications, and significance as prebiotics. Compr Rev Food Sci Food Saf. 2010;9:438–54. DOI: http://dx.doi.org/10.1111/j.1541-4337.2010.00119.x

29 

Shen Q, Yang R, Hua X, Ye F, Wang H, Zhao W, et al. Enzymatic synthesis and identification of oligosaccharides obtained by transgalactosylation of lactose in the presence of fructose using β-galactosidase from Kluyveromyces lactis. Food Chem. 2012;135:1547–54. DOI: http://dx.doi.org/10.1016/j.foodchem.2012.05.115 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22953892

30 

Iwasaki K, Nakajima M, Nakao S. Galacto-oligosaccharide production from lactose by an enzymic batch reaction using β-galactosidase. Process Biochem. 1996;31:69–76. DOI: http://dx.doi.org/10.1016/0032-9592(94)00067-0

31 

Klewicki R. Effect of selected parameters of lactose hydrolysis in the presence of β-galactosidase from various sources on the synthesis of galactosyl-polyol derivatives. Eng Life Sci. 2007;7:268–74. DOI: http://dx.doi.org/10.1002/elsc.200620185

32 

Martínez-Villaluenga C, Cardelle-Cobas A, Corzo N, Olano A, Villamiel M. Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem. 2008;107:258–64. DOI: http://dx.doi.org/10.1016/j.foodchem.2007.08.011

33 

Zhou QZK, Chen XD. Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Biochem Eng J. 2001;9:33–40. DOI: http://dx.doi.org/10.1016/S1369-703X(01)00118-8

34 

Fortun Y, Colas B. Lithium chloride effect on phenylethyl-β- -d-galactoside synthesis by Aspergillus oryzae β-d-galactosidase in the presence of high lactose concentration. Biotechnol Lett. 1991;13:863–6. DOI: http://dx.doi.org/10.1007/BF01022087

35 

Rauter M, Schwarz M, Becker K, Baronian K, Bode R, Kunze G, et al. Synthesis of benzyl β-d-galactopyranoside by transgalactosylation using a β-galactosidase produced by the over expression of the Kluyveromyces lactis LAC4 gene in Arxula adeninivorans. J Mol Catal, B Enzym. 2013;97:319–27. DOI: http://dx.doi.org/10.1016/j.molcatb.2013.06.017

36 

Pawlak-Szukalska A, Wanarska M, Popinigis AT, Kur J. A novel cold-active β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB – Gene cloning, purification and characterization. Process Biochem. 2014;49:2122–33. DOI: http://dx.doi.org/10.1016/j.procbio.2014.09.018

37 

Iliev I, Vasileva T. Study of the transgalactosylation activity of β-galactosidase from a new strain Kluyveromyces lactis 3. J Biosci Biotechnol. 2012;1:149–53.

38 

Goderska K, Juzwa W, Szwengiel A, Czarnecki Z. Lactobionic acid production by glucose–fructose oxidoreductase from Zymomonas mobilis expressed in Escherichia coli. Biotechnol Lett. 2015;37:2047–53. DOI: http://dx.doi.org/10.1007/s10529-015-1887-0 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26091863

39 

Mäki-Arvela P, Murzina EV, Campo B, Heikkilä T, Leino AR, Kordas K, et al. The effect of palladium dispersion and promoters on lactose oxidation kinetics. Res Chem Intermed. 2010;36:423–42. DOI: http://dx.doi.org/10.1007/s11164-010-0143-4

[engleski]

Posjeta: 162 *