# Osječki matematički list,Vol. 17 No. 1, 2017

Professional paper

Ranking websites

Damir Horvat ; Fakultet organizacije i informatike, Varaždin, Hrvatska
Dušan Munđar ; akultet organizacije i informatike, Varaždin, Hrvatska

 Fulltext: croatian, pdf (226 KB) pages 51-62 downloads: 344* cite APA 6th EditionHorvat, D. & Munđar, D. (2017). Rangiranje web stranica. Osječki matematički list, 17 (1), 51-62. Retrieved from https://hrcak.srce.hr/186508 MLA 8th EditionHorvat, Damir and Dušan Munđar. "Rangiranje web stranica." Osječki matematički list, vol. 17, no. 1, 2017, pp. 51-62. https://hrcak.srce.hr/186508. Accessed 21 Jun. 2021. Chicago 17th EditionHorvat, Damir and Dušan Munđar. "Rangiranje web stranica." Osječki matematički list 17, no. 1 (2017): 51-62. https://hrcak.srce.hr/186508 HarvardHorvat, D., and Munđar, D. (2017). 'Rangiranje web stranica', Osječki matematički list, 17(1), pp. 51-62. Available at: https://hrcak.srce.hr/186508 (Accessed 21 June 2021) VancouverHorvat D, Munđar D. Rangiranje web stranica. Osječki matematički list [Internet]. 2017 [cited 2021 June 21];17(1):51-62. Available from: https://hrcak.srce.hr/186508 IEEED. Horvat and D. Munđar, "Rangiranje web stranica", Osječki matematički list, vol.17, no. 1, pp. 51-62, 2017. [Online]. Available: https://hrcak.srce.hr/186508. [Accessed: 21 June 2021]

Abstracts
In this paper we describe the mathematical foundations of the Google’s
PageRank algorithm. We explain two methods used by the algorithm.
The first one, the method of powers, is an iterative method.
The second method is founded on solving a system of linear equations.
Both methods are related to the problem of finding an eigenvector of
the dominant eigenvalue of the corresponding matrix. Functioning of
the algorithm is illustrated on a small example of four web pages.

Hrčak ID: 186508

Visits: 752 *