hrcak mascot   Srce   HID

Original scientific paper
https://doi.org/10.31896/k.21.8

Afi no pravilan ikozaedar upisan u afi no pravilan oktaedar u GS-kvazigrupi

Zdenka Kolar-Begović   ORCID icon orcid.org/0000-0001-8710-8628 ; Odjel za matematiku Sveučilišta u Osijeku, Osijek, Hrvatska

Fulltext: english, pdf (227 KB) pages 3-5 downloads: 93* cite
APA 6th Edition
Kolar-Begović, Z. (2017). An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup. KoG, 21 (21), 3-5. https://doi.org/10.31896/k.21.8
MLA 8th Edition
Kolar-Begović, Zdenka. "An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup." KoG, vol. 21, no. 21, 2017, pp. 3-5. https://doi.org/10.31896/k.21.8. Accessed 14 Oct. 2019.
Chicago 17th Edition
Kolar-Begović, Zdenka. "An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup." KoG 21, no. 21 (2017): 3-5. https://doi.org/10.31896/k.21.8
Harvard
Kolar-Begović, Z. (2017). 'An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup', KoG, 21(21), pp. 3-5. https://doi.org/10.31896/k.21.8
Vancouver
Kolar-Begović Z. An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup. KoG [Internet]. 2017 [cited 2019 October 14];21(21):3-5. https://doi.org/10.31896/k.21.8
IEEE
Z. Kolar-Begović, "An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup", KoG, vol.21, no. 21, pp. 3-5, 2017. [Online]. https://doi.org/10.31896/k.21.8

Abstracts
Kvazigrupa zlatnog reza ili kraće GS-kvazigrupa idempotentna je kvazigrupa u kojoj vrijede identiteti a\dot (ab \dot c) \dot c = b; a\dot (a \dot bc) \dot c = b. Pojam GS-kvazigrupe uveo je VOLENEC. Razni geometrijski pojmovi mogu biti uvedeni u GS-kvazigrupi pomoću binarne operacije te kvazigrupe. Korištenjem relacija i identiteta u općoj GS-kvazigrupi u ovom je radu pokazano da se svakom afi no pravilnom oktaedru može upisati afi no pravilan ikozaedar. Geometrijski prikaz u kvazigrupi C(\frac{1}{2} (1 +\sqrt{5})) pokazuje kako geometrijske tvrdnje mogu biti posljedica potpuno algebarskih razmatranja.

Keywords
GS-kvasigrupa; GS-trapezoid; afi no pravilan ikozaedar; afi no pravilan oktaedar

Hrčak ID: 192184

URI
https://hrcak.srce.hr/192184

[english]

Visits: 183 *