hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.19279/TVZ.PD.2017-5-4-03

FEATURE EXTRACTION ON X-RAY IMAGES

Željko Knok   ORCID icon orcid.org/0000-0003-0289-0994 ; Međimursko veleučilište u Čakovcu, Čakovec, Hrvatska
Klaudio Pap ; Grafički fakultet u Zagrebu, Zagreb
Mihael Kukec ; Međimursko veleučilište u Čakovcu, Čakovec, Hrvatska

Puni tekst: hrvatski, pdf (588 KB) str. 263-266 preuzimanja: 123* citiraj
APA 6th Edition
Knok, Ž., Pap, K. i Kukec, M. (2017). IZDVAJANJE ZNAČAJKI RENDGENSKIH SNIMAKA. Polytechnic and design, 5 (4), 263-266. https://doi.org/10.19279/TVZ.PD.2017-5-4-03
MLA 8th Edition
Knok, Željko, et al. "IZDVAJANJE ZNAČAJKI RENDGENSKIH SNIMAKA." Polytechnic and design, vol. 5, br. 4, 2017, str. 263-266. https://doi.org/10.19279/TVZ.PD.2017-5-4-03. Citirano 24.06.2021.
Chicago 17th Edition
Knok, Željko, Klaudio Pap i Mihael Kukec. "IZDVAJANJE ZNAČAJKI RENDGENSKIH SNIMAKA." Polytechnic and design 5, br. 4 (2017): 263-266. https://doi.org/10.19279/TVZ.PD.2017-5-4-03
Harvard
Knok, Ž., Pap, K., i Kukec, M. (2017). 'IZDVAJANJE ZNAČAJKI RENDGENSKIH SNIMAKA', Polytechnic and design, 5(4), str. 263-266. https://doi.org/10.19279/TVZ.PD.2017-5-4-03
Vancouver
Knok Ž, Pap K, Kukec M. IZDVAJANJE ZNAČAJKI RENDGENSKIH SNIMAKA. Polytechnic and design [Internet]. 2017 [pristupljeno 24.06.2021.];5(4):263-266. https://doi.org/10.19279/TVZ.PD.2017-5-4-03
IEEE
Ž. Knok, K. Pap i M. Kukec, "IZDVAJANJE ZNAČAJKI RENDGENSKIH SNIMAKA", Polytechnic and design, vol.5, br. 4, str. 263-266, 2017. [Online]. https://doi.org/10.19279/TVZ.PD.2017-5-4-03

Sažetak
Analysis of X-ray imaging in medical practice has
an important place in the diagnosis of fractures.
The authors presented in this paper the extraction
of image features on the example of x-ray images
for the purposes of a more accurate diagnosis. It
is necessary to extract the features of the image
that can serve as a basis for interpretation or
detection of fractures. The simplest procedure for
identifying fractures would be a pixel-by-pixel
comparison of the x-ray images made before and
after fracture, obtained from a digital image by the
means of segmentation.
Moreover, the mentioned is not possible due to
the lack of x-ray images before the fracture. More
image features are selected in order to obtain best
results as possible. Features which can describe
images, used in recognition of parts of the images
are Euler`s number, distribution of white pixels
density, edges counting. Aforementioned features
can serve for better analysis of images and do not
represent the final solution for determining the
fracture point on an x-ray image.

Ključne riječi
Image features; the MATLAB; diagnostics

Hrčak ID: 195170

URI
https://hrcak.srce.hr/195170

[hrvatski]

Posjeta: 271 *