hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.56 No.2 Lipanj 2018.

Pregledni rad
https://doi.org/10.17113/ftb.56.02.18.5593

Sistematika, značajke i primjena bakterija octenog vrenja u prehrambenoj industriji

Rodrigo José Gomes   ORCID icon orcid.org/0000-0002-5150-0262 ; Department of Food Science and Technology, State University of Londrina, Celso Garcia Cid (PR 445) Road, 86057-970 Londrina, PR, Brazil
Maria de Fatima Borges ; Embrapa Tropical Agroindustry, 2270 Dra. Sara Mesquita Road, 60511-110 Fortaleza, CE, Brazil
Morsyleide de Freitas Rosa ; Embrapa Tropical Agroindustry, 2270 Dra. Sara Mesquita Road, 60511-110 Fortaleza, CE, Brazil
Raúl Jorge Hernan Castro-Gómez ; Department of Food Science and Technology, State University of Londrina, Celso Garcia Cid (PR 445) Road, 86057-970 Londrina, PR, Brazil
Wilma Aparecida Spinosa   ORCID icon orcid.org/0000-0001-9532-0135 ; Department of Food Science and Technology, State University of Londrina, Celso Garcia Cid (PR 445) Road, 86057-970 Londrina, PR, Brazil

Puni tekst: hrvatski, pdf (306 KB) str. 139-151 preuzimanja: 32* citiraj
APA 6th Edition
Gomes, R.J., Borges, M.d.F., Rosa, M.d.F., Castro-Gómez, R.J.H. i Spinosa, W.A. (2018). Sistematika, značajke i primjena bakterija octenog vrenja u prehrambenoj industriji. Food Technology and Biotechnology, 56 (2), 139-151. https://doi.org/10.17113/ftb.56.02.18.5593
MLA 8th Edition
Gomes, Rodrigo José, et al. "Sistematika, značajke i primjena bakterija octenog vrenja u prehrambenoj industriji." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 139-151. https://doi.org/10.17113/ftb.56.02.18.5593. Citirano 24.09.2018.
Chicago 17th Edition
Gomes, Rodrigo José, Maria de Fatima Borges, Morsyleide de Freitas Rosa, Raúl Jorge Hernan Castro-Gómez i Wilma Aparecida Spinosa. "Sistematika, značajke i primjena bakterija octenog vrenja u prehrambenoj industriji." Food Technology and Biotechnology 56, br. 2 (2018): 139-151. https://doi.org/10.17113/ftb.56.02.18.5593
Harvard
Gomes, R.J., et al. (2018). 'Sistematika, značajke i primjena bakterija octenog vrenja u prehrambenoj industriji', Food Technology and Biotechnology, 56(2), str. 139-151. doi: https://doi.org/10.17113/ftb.56.02.18.5593
Vancouver
Gomes RJ, Borges MdF, Rosa MdF, Castro-Gómez RJH, Spinosa WA. Sistematika, značajke i primjena bakterija octenog vrenja u prehrambenoj industriji. Food Technology and Biotechnology [Internet]. 29.06.2018. [pristupljeno 24.09.2018.];56(2):139-151. doi: https://doi.org/10.17113/ftb.56.02.18.5593
IEEE
R.J. Gomes, M.d.F. Borges, M.d.F. Rosa, R.J.H. Castro-Gómez i W.A. Spinosa, "Sistematika, značajke i primjena bakterija octenog vrenja u prehrambenoj industriji", Food Technology and Biotechnology, vol.56, br. 2, str. 139-151, lipanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5593
Puni tekst: engleski, pdf (306 KB) str. 139-151 preuzimanja: 18* citiraj
APA 6th Edition
Gomes, R.J., Borges, M.d.F., Rosa, M.d.F., Castro-Gómez, R.J.H. i Spinosa, W.A. (2018). Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technology and Biotechnology, 56 (2), 139-151. https://doi.org/10.17113/ftb.56.02.18.5593
MLA 8th Edition
Gomes, Rodrigo José, et al. "Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 139-151. https://doi.org/10.17113/ftb.56.02.18.5593. Citirano 24.09.2018.
Chicago 17th Edition
Gomes, Rodrigo José, Maria de Fatima Borges, Morsyleide de Freitas Rosa, Raúl Jorge Hernan Castro-Gómez i Wilma Aparecida Spinosa. "Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications." Food Technology and Biotechnology 56, br. 2 (2018): 139-151. https://doi.org/10.17113/ftb.56.02.18.5593
Harvard
Gomes, R.J., et al. (2018). 'Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications', Food Technology and Biotechnology, 56(2), str. 139-151. doi: https://doi.org/10.17113/ftb.56.02.18.5593
Vancouver
Gomes RJ, Borges MdF, Rosa MdF, Castro-Gómez RJH, Spinosa WA. Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technology and Biotechnology [Internet]. 29.06.2018. [pristupljeno 24.09.2018.];56(2):139-151. doi: https://doi.org/10.17113/ftb.56.02.18.5593
IEEE
R.J. Gomes, M.d.F. Borges, M.d.F. Rosa, R.J.H. Castro-Gómez i W.A. Spinosa, "Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications", Food Technology and Biotechnology, vol.56, br. 2, str. 139-151, lipanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5593

Rad u XML formatu

Sažetak
Gram-negativne bakterije koje mogu oksidirati etanol u octenu kiselinu pripadaju skupini bakterija octenog vrenja. Rasprostranjene su u prirodi i imaju važnu ulogu u proizvodnji hrane i napitaka poput octa i kombuche. Zbog njihove sposobnosti oksidiranja etanola u octenu kiselinu mogu se pretjerano razmnožiti u drugim napicima kao što su vino, jabukovača, pivo, te funkcionalni napici i sokovi, što dovodi do pojave nepoželjnog kiselog okusa. Ove se bakterije također koriste u proizvodnji drugih produkata metabolizma, npr. glukonske kiseline, L-sorboze i bakterijske celuloze, a koji se mogu upotrijebiti u prehrambenoj industriji ili biomedicini. Posljednjih se godina klasifikacija bakterija octenog vrenja u zasebne rodove nekoliko puta mijenjala prema njihovim morfološkim, fiziološkim i genetskim značajkama. Stoga je fokus ovog revijalnog prikaza na povijesti taksonomije, biokemijskim aspektima i metodama izolacije, identifikacije i kvantifikacije bakterija octenog vrenja s važnim biotehnološkim svojstvima.

Ključne riječi
bakterije octenog vrenja; taksonomija; ocat; bakterijska celuloza; biotehnološki proizvodi

Hrčak ID: 203431

URI
https://hrcak.srce.hr/203431

Reference

1 

Trček J, Barja F. Updates on quick identification of acetic acid bacteria with a focus on the 16S–23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry. Int J Food Microbiol. 2015;196:137–44. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2014.12.003 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25589227

2 

Andrés-Barrao C, Benagli C, Chappuis M, Ortega Pérez R, Tonolla M, Barja F. Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. Syst Appl Microbiol. 2013;36(2):75–81. DOI: http://dx.doi.org/10.1016/j.syapm.2012.09.002 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23182036

3 

Nakano S, Fukaya M. Analysis of proteins responsive to acetic acid in Acetobacter: Molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. Int J Food Microbiol. 2008;125(1):54–9. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2007.05.015 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17920150

4 

Fernández-Pérez R, Torres C, Sanz S, Ruiz-Larrea F. Rapid molecular methods for enumeration and taxonomical identification of acetic acid bacteria responsible for submerged vinegar production. Eur Food Res Technol. 2010;231(5):813–9. DOI: http://dx.doi.org/10.1007/s00217-010-1331-6

5 

Torija MJ, Mateo E, Guillamón JM, Mas A. Identification and quantification of acetic acid bacteria in wine and vinegar by TaqMan–MGB probes. Food Microbiol. 2010;27(2):257–65. DOI: http://dx.doi.org/10.1016/j.fm.2009.10.001 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20141944

6 

Yetiman AE, Kesmen Z. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques. Int J Food Microbiol. 2015;204:9–16. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2015.03.013 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25828705

7 

Dikshit PK, Moholkar VS. Optimization of 1,3-dihydroxyacetone production from crude glycerol by immobilized Gluconobacter oxydans MTCC 904. Bioresour Technol. 2016;216:1058–65. DOI: http://dx.doi.org/10.1016/j.biortech.2016.01.100 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26873288

8 

Hattori H, Yakushi T, Matsutani M, Moonmangmee D, Toyama H, Adachi O, et al. High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher temperature. Appl Microbiol Biotechnol. 2012;95(6):1531–40. DOI: http://dx.doi.org/10.1007/s00253-012-4005-4 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22434571

9 

Hu ZC, Liu ZQ, Zheng YG, Shen YC. Production of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112. J Microbiol Biotechnol. 2010;20(2):340–5. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20208438

10 

de Oliveira ALD, Santos V Junior, Liotti RG, Zilioli E, Spinosa WA, Ribeiro-Paes JT. Study of bacteria Gluconobacter sp.: Isolation, purification, phenotypic and molecular identification. Food Sci Technol (Campinas). 2010;30(1):106–12. DOI: http://dx.doi.org/10.1590/S0101-20612010000100016

11 

Cacicedo ML, Castro MC, Servetas I, Bosnea L, Boura K, Tsafrakidou P, et al. Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol. 2016;213:172–80. DOI: http://dx.doi.org/10.1016/j.biortech.2016.02.071 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26927233

12 

Hansen EC. Research on acidifying bacteria. C R Trav Lab Carlsberg. 1894;3:182–216. [in French]

13 

Beijerinck MW. About the types of acetic acid bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II. 1898;4:209–16. [in German]

14 

Visser’t Hooft F. Biochemical studies on the genus Acetobacter [PhD Thesis]. Delft, the Netherlands: Delft University of Technology; 1925 (in Dutch).

15 

Asai T. Taxonomic studies on acetic acid bacteria and allied oxidative bacteria isolated from fruits: A new classification of the oxidative bacteria. Nippon Nogeikagaku Kaishi. 1934;10:621–9. [in Japanese] DOI: http://dx.doi.org/10.1271/nogeikagaku1924.10.621

16 

Asai T. Taxonomic studies on acetic acid bacteria and allied oxidative bacteria isolated from fruits: A new classification of the oxidative bacteria. Nippon Nogeikagaku Kaishi. 1935;11:674–708. [in Japanese] DOI: http://dx.doi.org/10.1271/nogeikagaku1924.11.8_674

17 

Frateur J. Essay on the systematics of Acetobacters. Cellule. 1950;53:287–392. [in French]

18 

Buchanan RE, Gibbons NE, editors. Bergey's manual of determinative bacteriology. Baltimore, MD, USA: Williams & Wilkins Co; 1974.

19 

Cleenwerck I, De Vos P. Polyphasic taxonomy of acetic acid bacteria: An overview of the currently applied methodology. Int J Food Microbiol. 2008;125(1):2–14. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2007.04.017 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18237808

20 

Ebner H, Follmann H. Acetic Acid. In: Rehm HJ, Reed G, editors. Biotechnology. Weinheim, Germany: Wiley-VCH; 1983. pp. 389–407.

21 

Spinosa WA. Isolation, selection, identification and kinetic parameters of acetic acid bacteria from vinegar industry [PhD Thesis]. Campinas, Brazil: State University of Campinas; 2002 (in Portuguese).

22 

Yamada Y, Aida K, Uemura T. Distribution of ubiquinone 10 and 9 in acetic acid bacteria and its relation to the classification of genera Gluconobacter and Acetobacter, especially of so-called intermediate strains. Agric Biol Chem. 1968;32(6):786–8. DOI: http://dx.doi.org/10.1271/bbb1961.32.786

23 

Yamada Y, Aida K, Uemura T. Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of genera Gluconobacter and Acetobacter, especially of the so-called intermediate strains. J Gen Appl Microbiol. 1969;15(2):181–96. DOI: http://dx.doi.org/10.2323/jgam.15.181

24 

Yamada Y, Kondo K. Gluconoacetobacter, a new subgenus comprising the acetate-oxidizing acetic acid bacteria with ubiquinone-10 in the genus Acetobacter. J Gen Appl Microbiol. 1984;30(4):297–303. DOI: http://dx.doi.org/10.2323/jgam.30.297

25 

Yamada Y, Hoshino K, Ishikawa T. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: The elevation of the subgenus Glunonoacetobacter to the generic level. Biosci Biotechnol Biochem. 1997;61(8):1244–51. DOI: http://dx.doi.org/10.1271/bbb.61.1244 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/9301103

26 

Yamada Y, Hoshino K, Ishikawa T. Gluconacetobacter nom. corrig. (Gluconoacetobacter [sic]). Validation of publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol. 1998;48(1):327–8. DOI: http://dx.doi.org/10.1099/00207713-48-1-327

27 

Yamada Y, Yukphan P. Genera and species in acetic acid bacteria. Int J Food Microbiol. 2008;125(1):15–24. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2007.11.077 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18199517

28 

Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Nakagawa Y. Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: The proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. Ann Microbiol. 2012;62(2):849–59. DOI: http://dx.doi.org/10.1007/s13213-011-0288-4

29 

Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Tanasupawat S, et al. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol. 2012;58(5):397–404. DOI: http://dx.doi.org/10.2323/jgam.58.397 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23149685

30 

Komagata K, Iino T, Yamada Y. The family Acetobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Berlin, Germany: Springer; 2014. pp. 3–78. https://doi.org/ DOI: http://dx.doi.org/10.1007/978-3-642-30197-1_396

31 

Sengun IY, Karabiyikli S. Importance of acetic acid bacteria in food industry. Food Control. 2011;22(5):647–56. DOI: http://dx.doi.org/10.1016/j.foodcont.2010.11.008

32 

Wang B, Shao Y, Chen F. Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World J Microbiol Biotechnol. 2015;31(2):255–63. DOI: http://dx.doi.org/10.1007/s11274-015-1799-0 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25575804

33 

Adachi O, Ano Y, Toyama H, Matsushita K. Biooxidation with PQQ- and FAD-dependent dehydrogenases. In: Schmid RD, Urlacher VB, editors. Modern biooxidation: Enzymes, reactions and applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2007. https://doi.org/ DOI: http://dx.doi.org/10.1002/9783527611522.ch1

34 

Chen Y, Bai Y, Li D, Wang C, Xu N, Wu S, et al. Correlation between ethanol resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Eur Food Res Technol. 2016;242(6):837–47. DOI: http://dx.doi.org/10.1007/s00217-015-2589-5

35 

Saichana N, Matsushita K, Adachi O, Frébort I, Frebortova J. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol Adv. 2015;33(6 Pt 2):1260–71. DOI: http://dx.doi.org/10.1016/j.biotechadv.2014.12.001 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25485864

36 

Yakushi T, Matsushita K. Alcohol dehydrogenase of acetic acid bacteria: Structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol. 2010;86(5):1257–65. DOI: http://dx.doi.org/10.1007/s00253-010-2529-z PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20306188

37 

Andrés-Barrao C, Saad MM, Chappuis M-L, Boffa M, Perret X, Ortega Pérez R, et al. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. J Proteomics. 2012;75(6):1701–17. DOI: http://dx.doi.org/10.1016/j.jprot.2011.11.027 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22155126

38 

Andrés-Barrao C, Saad MM, Ferrete EC, Bravo D, Chappuis ML, Ortega Pérez R, et al. Metaproteomics and ultrastructure characterization of Komagataeibacter spp. involved in high-acid spirit vinegar production. Food Microbiol. 2016;55:112–22. DOI: http://dx.doi.org/10.1016/j.fm.2015.10.012 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26742622

39 

Gullo M, Verzelloni E, Canonico M. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: Process and biotechnological aspects. Process Biochem. 2014;49(10):1571–9. DOI: http://dx.doi.org/10.1016/j.procbio.2014.07.003

40 

Raspor P, Goranovič D. Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol. 2008;28(2):101–24. DOI: http://dx.doi.org/10.1080/07388550802046749 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18568850

41 

Mas A, Torija MJ, García-Parrilla MC, Troncoso AM. Acetic acid bacteria and the production and quality of wine vinegar. ScientificWorldJournal. 2014;2014:394671. DOI: http://dx.doi.org/10.1155/2014/394671 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24574887

42 

Andrés-Barrao C, Falquet L, Calderon-Copete SP, Descombes P, Ortega Pérez R, Barja F. Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar). J Bacteriol. 2011;193(10):2670–1. DOI: http://dx.doi.org/10.1128/JB.00229-11 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21441523

43 

Trček J, Mahnič A, Rupnik M. Diversity of the microbiota involved in wine and organic apple cider submerged vinegar production as revealed by DHPLC analysis and next-generation sequencing. Int J Food Microbiol. 2016;223:57–62. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2016.02.007 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26897250

44 

Song NE, Cho SH, Baik SH. Microbial community, and biochemical and physiological properties of Korean traditional black raspberry (Robus coreanus Miquel) vinegar. J Sci Food Agric. 2016;96(11):3723–30. DOI: http://dx.doi.org/10.1002/jsfa.7560 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26676481

45 

Adachi O, Miyagawa E, Shinagawa E, Matsushita K, Ameyama M. Purification and properties of particulate alcohol dehydrogenase from Acetobacter aceti. Agric Biol Chem. 1978;42(12):2331–40. DOI: http://dx.doi.org/10.1271/bbb1961.42.2331

46 

Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M. Purification and characterization of particulate alcohol dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem. 1978;42(11):2045–56. DOI: http://dx.doi.org/10.1271/bbb1961.42.2045

47 

Bartowsky EJ, Henschke PA. Acetic acid bacteria spoilage of bottled red wine - A review. Int J Food Microbiol. 2008;125(1):60–70. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2007.10.016 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18237809

48 

Sievers M, Swings J. Family II. Acetobacteraceae. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, editors. Bergey’s manual® of systematic bacteriology, vol. 2, The proteobacteria. Part C, The alpha-, beta-, delta-, and epsilonproteobacteria. New York, NY, USA: Springer; 2005. pp. 41–95.

49 

Vegas C, Mateo E, González A, Jara C, Guillamón JM, Poblet M, et al. Population dynamics of acetic acid bacteria during traditional wine vinegar production. Int J Food Microbiol. 2010;138(1–2):130–6. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2010.01.006 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20117853

50 

Gullo M, Caggia C, De Vero L, Giudici P. Characterization of acetic acid bacteria in “traditional balsamic vinegar”. Int J Food Microbiol. 2006;106(2):209–12. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2005.06.024 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16214251

51 

Cleenwerck I, Camu N, Engelbeen K, De Winter T, Vandemeulebroecke K, De Vos P, et al. Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int J Syst Evol Microbiol. 2007;57:1647–52. DOI: http://dx.doi.org/10.1099/ijs.0.64840-0 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17625210

52 

Carr JG. Methods for identifying acetic acid bacteria. In: Gibbs BM, Shapton DA, editors. Identification methods for microbiologists. London, UK: Academic Press; 1968. pp. 1–8.

53 

Cirigliano MC. A selective medium for the isolation and differentiation of Gluconobacter and Acetobacter. J Food Sci. 1982;47(3):1038–9. DOI: http://dx.doi.org/10.1111/j.1365-2621.1982.tb12782.x

54 

Cleenwerck I, De Wachter M, González A, De Vuyst L, De Vos P. Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting: Gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii. Int J Syst Evol Microbiol. 2009;59(Pt 7):1771–86. DOI: http://dx.doi.org/10.1099/ijs.0.005157-0 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19542117

55 

Wu JJ, Ma YK, Zhang FF, Chen FS. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of ‘Shanxi aged vinegar’, a traditional Chinese vinegar. Food Microbiol. 2012;30(1):289–97. DOI: http://dx.doi.org/10.1016/j.fm.2011.08.010 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22265314

56 

Entani E, Ohmori S, Masai H, Susuki KI. Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol. 1985;31(5):475–90. DOI: http://dx.doi.org/10.2323/jgam.31.475

57 

Hestrin S, Schramm M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J. 1954;58(2):345–52. DOI: http://dx.doi.org/10.1042/bj0580345 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/13208601

58 

Gullo M, Giudici P. Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. Int J Food Microbiol. 2008;125(1):46–53. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2007.11.076 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18177968

59 

Sokollek SJ, Hammes WP. Description of a starter culture preparation for vinegar fermentation. Syst Appl Microbiol. 1997;20(3):481–91. DOI: http://dx.doi.org/10.1016/S0723-2020(97)80017-3

60 

Ohmori S, Masai H, Arima K, Beppu T. Isolation and identification of acetic acid bacteria for submerged acetic acid fermentation at high temperature. Agric Biol Chem. 1980;44(12):2901–6. DOI: http://dx.doi.org/10.1080/00021369.1980.10864432

61 

Fugelsang KC, Edwards CG. Wine microbiology: Practical applications and procedures. New York, NY, USA: Springer; 2007.

62 

Gu J, Catchmark JM. Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr Polym. 2012;88(2):547–57. DOI: http://dx.doi.org/10.1016/j.carbpol.2011.12.040 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23499095

63 

Okumura H, Uozumi T, Beppu T. Biochemical characteristics of spontaneous mutants of Acetobacter aceti deficient in ethanol oxidation. Agric Biol Chem. 1985;49(8):2485–7. DOI: http://dx.doi.org/10.1271/bbb1961.49.2485

64 

Schramm M, Hestrin S. Factors affecting production of cellulose at the air/ liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol. 1954;11:123–9. DOI: http://dx.doi.org/10.1099/00221287-11-1-123 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/13192310

65 

Valla S, Kjosbakken J. Cellulose-negative mutants of Acetobacter xylinum. J Gen Appl Microbiol. 1982;128:1401–8. DOI: http://dx.doi.org/10.1099/00221287-128-7-1401

66 

Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, et al. Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res. 2009;37(17):5768–83. DOI: http://dx.doi.org/10.1093/nar/gkp612 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19638423

67 

González Á, Guillamón JM, Mas A, Poblet M. Application of molecular methods for routine identification of acetic acid bacteria. Int J Food Microbiol. 2006;108(1):141–6. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2005.10.025 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16386324

68 

Trček J, Raspor P. Molecular characterization of acid acetic bacteria isolated from spirit vinegar. Food Technol Biotechnol. 1999;37(2):113–6.

69 

De Vero L, Giudici P. Genus-specific profile of acetic acid bacteria by 16S rDNA PCR-DGGE. Int J Food Microbiol. 2008;125(1):96–101. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2007.02.029 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17919758

70 

Franke-Whittle IH, O’Shea MG, Leonard GJ, Sly LI. Design, development, and use of molecular primers and probes for the detection of Gluconacetobacter species in the pink sugarcane mealybug. Microb Ecol. 2005;50(1):128–39. DOI: http://dx.doi.org/10.1007/s00248-004-0138-z PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16047097

71 

Sievers M, Schlegel HG, Caballero-Mellado J, Döbereiner J, Ludwig W. Phylogenetic identification of two major nitrogen-fixing bacteria associated with sugarcane. Syst Appl Microbiol. 1998;21(4):505–8. DOI: http://dx.doi.org/10.1016/S0723-2020(98)80062-3 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/9924818

72 

Teuber M, Sievers M, Andresen A. Characterization of the microflora of high acid submerged vinegar fermenters by distinct plasmid profiles. Biotechnol Lett. 1987;9(4):265–8. DOI: http://dx.doi.org/10.1007/BF01027161

73 

Wu J, Gullo M, Chen FS, Giudici P. Diversity of Acetobacter pasteurianus strains isolated from solid-state fermentation of cereal vinegars. Curr Microbiol. 2010;60(4):280–6. DOI: http://dx.doi.org/10.1007/s00284-009-9538-0 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19924479

74 

González Á, Hierro N, Poblet M, Mas A, Guillamón JM. Enumeration and detection of acetic acid bacteria by real-time PCR and nested PCR. FEMS Microbiol Lett. 2006;254(1):123–8. DOI: http://dx.doi.org/10.1111/j.1574-6968.2005.000011.x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16451189

75 

Baena-Ruano S, Jiménez-Ot C, Santos-Dueñas IM, Cantero-Moreno D, Barja F, García-García I. Rapid method for total, viable and non-viable acetic acid bacteria determination during acetification process. Process Biochem. 2006;41(5):1160–4. DOI: http://dx.doi.org/10.1016/j.procbio.2005.12.016

76 

Mesa MM, Macías M, Cantero D, Barja F. Use of the direct epifluorescent filter technique for the enumeration of viable and total acetic acid bacteria from vinegar fermentation. J Fluoresc. 2003;13(3):261–5. DOI: http://dx.doi.org/10.1023/A:1025094017265

77 

Chen Q, Liu A, Zhao J, Ouyang Q, Sun Z, Huang L. Monitoring vinegar acetic fermentation using a colorimetric sensor array. Sens Actuators B Chem. 2013;183:608–16. DOI: http://dx.doi.org/10.1016/j.snb.2013.04.033

78 

Budak NH, Aykin E, Seydim AC, Greene AK, Guzel-Seydim ZB. Functional properties of vinegar. J Food Sci. 2014;79(5):R757–64. DOI: http://dx.doi.org/10.1111/1750-3841.12434 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24811350

79 

Marques FPP, Spinosa W, Fernandes KF, de Souza Castro CF, Caliari M. Quality pattern and identity of commercial fruit and vegetable vinegar (Acetic acid fermentation). Food Sci Technol (Campinas). 2010;30(1):119–26. DOI: http://dx.doi.org/10.1590/S0101-20612010000500019

80 

Du XJ, Jia SR, Yang Y, Wang S. Genome sequence of Gluconacetobacter sp. strain SXCC-1, isolated from Chinese vinegar fermentation starter. J Bacteriol. 2011;193(13):3395–6. DOI: http://dx.doi.org/10.1128/JB.05147-11 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21551293

81 

Valera MJ, Torija MJ, Mas A, Mateo E. Acetic acid bacteria from biofilm of strawberry vinegar visualized by microscopy and detected by complementing culture-dependent and culture-independent techniques. Food Microbiol. 2015;46:452–62. DOI: http://dx.doi.org/10.1016/j.fm.2014.09.006 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25475315

82 

Marsh AJ, O’Sullivan O, Hill C, Ross RP, Cotter PD. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol. 2014;38:171–8. DOI: http://dx.doi.org/10.1016/j.fm.2013.09.003 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24290641

83 

Nguyen NK, Nguyen PB, Nguyen HT, Le PH. Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid. Lebensm Wiss Technol. 2015;64(2):1149–55. DOI: http://dx.doi.org/10.1016/j.lwt.2015.07.018

84 

Ayed L, Abid SB, Hamdi M. Development of a beverage from red grape juice fermented with the kombucha consortium. Ann Microbiol. 2017;67(1):111–21. DOI: http://dx.doi.org/10.1007/s13213-016-1242-2

85 

Cañete-Rodríguez AM, Santos-Dueñas IM, Jiménez-Hornero JE, Ehrenreich A, Liebl W, García-García I. Gluconic acid: Properties, production methods and applications – An excellent opportunity for agro-industrial by-products and waste bio-valorization. Process Biochem. 2016;51(12):1891–903. DOI: http://dx.doi.org/10.1016/j.procbio.2016.08.028

86 

Pronk JT, Levering PR, Olijve W, van Dijken JP. Role of NADP-dependent and quinoprotein glucose dehydrogenases in gluconic acid production by Gluconobacter oxydans. Enzyme Microb Technol. 1989;11(3):160–4. DOI: http://dx.doi.org/10.1016/0141-0229(89)90075-6

87 

Sainz F, Navarro D, Mateo E, Torija MJ, Mas A. Comparison of d-gluconic acid production in selected strains of acetic acid bacteria. Int J Food Microbiol. 2016;222:40–7. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2016.01.015 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26848948

88 

Mounir M, Shafiei R, Zarmehrkhorshid R, Hamouda A, Alaoui MI, Thonart P. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor. J Biosci Bioeng. 2016;121(2):166–71. DOI: http://dx.doi.org/10.1016/j.jbiosc.2015.06.005 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26253254

89 

Deppenmeier U, Hoffmeister M, Prust C. Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol. 2002;60(3):233–42. DOI: http://dx.doi.org/10.1007/s00253-002-1114-5 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12436304

90 

De Muynck C, Pereira CSS, Naessens M, Parmentier S, Soetaert W, Vandamme EJ. The genus Gluconobacter oxydans: Comprehensive overview of biochemistry and biotechnological applications. Crit Rev Biotechnol. 2007;27(3):147–71. DOI: http://dx.doi.org/10.1080/07388550701503584 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17849259

91 

Gibson LJ. The hierarchical structure and mechanics of plant materials. J R Soc Interface. 2012;9(76):2749–66. DOI: http://dx.doi.org/10.1098/rsif.2012.0341 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22874093

92 

Matthews JF, Bergenstråhle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, et al. High-temperature behavior of cellulose I. J Phys Chem B. 2011;115(10):2155–66. DOI: http://dx.doi.org/10.1021/jp1106839 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21338135

93 

Lin SP, Huang YH, Hsu KD, Lai YJ, Chen YK, Cheng KC. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice. Carbohydr Polym. 2016;151:827–33. DOI: http://dx.doi.org/10.1016/j.carbpol.2016.06.032 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27474630

94 

Mohammadkazemi F, Azin M, Ashori A. Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym. 2015;117:518–23. DOI: http://dx.doi.org/10.1016/j.carbpol.2014.10.008 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25498666

95 

Donini IAN, de Salvi DTB, Fukumoto FK, Lustri WR, da Silva Barud HS, Marchetto R, et al. Biosynthesis and recent advances in production of bacterial cellulose. Eclét Quím. 2010;35(4):165–78. DOI: http://dx.doi.org/10.1590/S0100-46702010000400021

96 

Rajwade JM, Paknikar KM, Kumbhar JV. Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol. 2015;99(6):2491–511. DOI: http://dx.doi.org/10.1007/s00253-015-6426-3 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25666681

97 

Shi Z, Zhang Y, Phillips GO, Yang G. Utilization of bacterial cellulose in food. Food Hydrocoll. 2014;35:539–45. DOI: http://dx.doi.org/10.1016/j.foodhyd.2013.07.012

98 

Ullah H, Wahid F, Santos HA, Khan T. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym. 2016;150:330–52. DOI: http://dx.doi.org/10.1016/j.carbpol.2016.05.029 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27312644

99 

Kuo CH, Chen JH, Liou BK, Lee CK. Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll. 2016;53:98–103. DOI: http://dx.doi.org/10.1016/j.foodhyd.2014.12.034

100 

Williams WS, Cannon RE. Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl Environ Microbiol. 1989;55(10):2448–52. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16348023

101 

Mamlouk D, Gullo M. Acetic acid bacteria: Physiology and carbon sources oxidation. Indian J Microbiol. 2013;53(4):377–84. DOI: http://dx.doi.org/10.1007/s12088-013-0414-z PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24426139

102 

Sengun IY, editor. Acetic acid bacteria: Fundamentals and food applications. Boca Raton, FL, USA: CRC Press; 2017.

103 

Srikanth R, Siddartha G, Reddy CHSSS, Harish BS, Ramaiah MJ, Uppuluri KB. Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohydr Polym. 2015;123:8–16. DOI: http://dx.doi.org/10.1016/j.carbpol.2014.12.079 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25843829

104 

Öner ET, Hernández L, Combie J. Review of levan polysaccharide: From a century of past experiences to future prospects. Biotechnol Adv. 2016;34(5):827–44. DOI: http://dx.doi.org/10.1016/j.biotechadv.2016.05.002 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27178733

105 

Moore JE, McCalmont M, Xu J, Millar BC, Heaney N. Asaia sp., an unusual spoilage organism of fruit-flavored bottled water. Appl Environ Microbiol. 2002;68(8):4130–1. DOI: http://dx.doi.org/10.1128/AEM.68.8.4130-4131.2002 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12147519

106 

Kregiel D, James SA, Rygala A, Berlowska J, Antolak H, Pawlikowska E. Consortia formed by yeasts and acetic acid bacteria Asaia spp. in soft drinks. Antonie van Leeuwenhoek. 2018;111(3):373–83. DOI: http://dx.doi.org/10.1007/s10482-017-0959-7 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/29058139

107 

Jia B, Chun BH, Cho GY, Kim KH, Moon JY, Yeo SH, et al. Complete genome sequences of two acetic acid-producing Acetobacter pasteurianus strains (subsp. ascendens LMG 1590T and subsp. paradoxus LMG 1591T). Front Bioeng Biotechnol. 2017;5:33. DOI: http://dx.doi.org/10.3389/fbioe.2017.00033 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/28567373

108 

Dos Santos RA, Berretta AA, da Silva Barud H, Lima Ribeiro SJ, González-García LN, Zucchi TD, et al. Draft genome sequence of Komagataeibacter rhaeticus strain AF1, a high producer of cellulose, isolated from kombucha tea. Genome Announc. 2014;2(4):e00731–14. DOI: http://dx.doi.org/10.1128/genomeA.00731-14 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25059874

109 

Dos Santos RA, Berretta AA, da Silva Barud H, Lima Ribeiro SJ, González-García LN, Zucchi TD, et al. Draft genome sequence of Komagataeibacter intermedius strain AF2, a producer of cellulose, isolated from kombucha tea. Genome Announc. 2015;3(6):e01404–15. DOI: http://dx.doi.org/10.1128/genomeA.01404-15 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26634755

110 

Ogino H, Azuma Y, Hosoyama A, Nakazawa H, Matsutani M, Hasegawa A, et al. Complete genome sequence of NBRC 3288, a unique cellulose-nonproducing strain of Gluconacetobacter xylinus isolated from vinegar. J Bacteriol. 2011;193(24):6997–8. DOI: http://dx.doi.org/10.1128/JB.06158-11 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22123756

[engleski]

Posjeta: 83 *