hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.56 No.2 Lipanj 2018.

Pregledni rad
https://doi.org/10.17113/ftb.56.02.18.5547

Recent Trends in Biodiesel and Biogas Production

Arijana Bušić ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
Semjon Kundas ; Belarussian National Technical University, Power Plant Construction and Engineering Services Faculty, Nezavisimosti Ave. 150, BY-220013 Minsk, Belarus
Galina Morzak ; Belarussian National Technical University, Mining Engineering and Engineering Ecology Faculty, Nezavisimosti Ave. 65, BY-220013 Minsk, Belarus
Halina Belskaya ; Belarussian National Technical University, Mining Engineering and Engineering Ecology Faculty, Nezavisimosti Ave. 65, BY-220013 Minsk, Belarus
Nenad Marđetko   ORCID icon orcid.org/0000-0002-3857-9818 ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
Mirela Ivančić Šantek   ORCID icon orcid.org/0000-0002-5935-6672 ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
Draženka Komes ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
Srđan Novak ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
Božidar Šantek   ORCID icon orcid.org/0000-0001-9583-534X ; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

Puni tekst: engleski, pdf (567 KB) str. 152-173 preuzimanja: 123* citiraj
APA 6th Edition
Bušić, A., Kundas, S., Morzak, G., Belskaya, H., Marđetko, N., Ivančić Šantek, M., ... Šantek, B. (2018). Recent Trends in Biodiesel and Biogas Production. Food Technology and Biotechnology, 56 (2), 152-173. https://doi.org/10.17113/ftb.56.02.18.5547
MLA 8th Edition
Bušić, Arijana, et al. "Recent Trends in Biodiesel and Biogas Production." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 152-173. https://doi.org/10.17113/ftb.56.02.18.5547. Citirano 21.11.2018.
Chicago 17th Edition
Bušić, Arijana, Semjon Kundas, Galina Morzak, Halina Belskaya, Nenad Marđetko, Mirela Ivančić Šantek, Draženka Komes, Srđan Novak i Božidar Šantek. "Recent Trends in Biodiesel and Biogas Production." Food Technology and Biotechnology 56, br. 2 (2018): 152-173. https://doi.org/10.17113/ftb.56.02.18.5547
Harvard
Bušić, A., et al. (2018). 'Recent Trends in Biodiesel and Biogas Production', Food Technology and Biotechnology, 56(2), str. 152-173. doi: https://doi.org/10.17113/ftb.56.02.18.5547
Vancouver
Bušić A, Kundas S, Morzak G, Belskaya H, Marđetko N, Ivančić Šantek M i sur. Recent Trends in Biodiesel and Biogas Production. Food Technology and Biotechnology [Internet]. 2018 [pristupljeno 21.11.2018.];56(2):152-173. doi: https://doi.org/10.17113/ftb.56.02.18.5547
IEEE
A. Bušić, et al., "Recent Trends in Biodiesel and Biogas Production", Food Technology and Biotechnology, vol.56, br. 2, str. 152-173, 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5547
Puni tekst: hrvatski, pdf (567 KB) str. 152-173 preuzimanja: 24* citiraj
APA 6th Edition
Bušić, A., Kundas, S., Morzak, G., Belskaya, H., Marđetko, N., Ivančić Šantek, M., ... Šantek, B. (2018). Novi trendovi u proizvodnji biodizela i bioplina. Food Technology and Biotechnology, 56 (2), 152-173. https://doi.org/10.17113/ftb.56.02.18.5547
MLA 8th Edition
Bušić, Arijana, et al. "Novi trendovi u proizvodnji biodizela i bioplina." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 152-173. https://doi.org/10.17113/ftb.56.02.18.5547. Citirano 21.11.2018.
Chicago 17th Edition
Bušić, Arijana, Semjon Kundas, Galina Morzak, Halina Belskaya, Nenad Marđetko, Mirela Ivančić Šantek, Draženka Komes, Srđan Novak i Božidar Šantek. "Novi trendovi u proizvodnji biodizela i bioplina." Food Technology and Biotechnology 56, br. 2 (2018): 152-173. https://doi.org/10.17113/ftb.56.02.18.5547
Harvard
Bušić, A., et al. (2018). 'Novi trendovi u proizvodnji biodizela i bioplina', Food Technology and Biotechnology, 56(2), str. 152-173. doi: https://doi.org/10.17113/ftb.56.02.18.5547
Vancouver
Bušić A, Kundas S, Morzak G, Belskaya H, Marđetko N, Ivančić Šantek M i sur. Novi trendovi u proizvodnji biodizela i bioplina. Food Technology and Biotechnology [Internet]. 2018 [pristupljeno 21.11.2018.];56(2):152-173. doi: https://doi.org/10.17113/ftb.56.02.18.5547
IEEE
A. Bušić, et al., "Novi trendovi u proizvodnji biodizela i bioplina", Food Technology and Biotechnology, vol.56, br. 2, str. 152-173, 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5547

Rad u XML formatu

Sažetak
Biodiesel and biogas are two very important sources of renewable energy worldwide, and particularly in the EU countries. While biodiesel is almost exclusively used as transportation fuel, biogas is mostly used for production of electricity and heat. The application of more sophisticated purification techniques in production of pure biomethane from biogas allows its delivery to natural gas grid and its subsequent use as transportation fuel. While biogas is produced mostly from waste materials (landfills, manure, sludge from wastewater treatment, agricultural waste), biodiesel in the EU is mostly produced from rapeseed or other oil crops that are used as food, which raises the ‘food or fuel’ concerns. To mitigate this problem, considerable efforts have been made to use non-food feedstock for biodiesel production. These include all kinds of waste oils and fats, but recently more attention has been devoted to production of microbial oils by cultivation of microorganisms that are able to accumulate high amounts of lipids in their biomass. Promising candidates for microbial lipid production can be found among different strains of filamentous fungi, yeast, bacteria and microalgae. Feedstocks of interest are agricultural waste rich in carbohydrates as well as different lignocellulosic raw materials where some technical issues have to be resolved. In this work, recovery and purification of biodiesel and biogas are also considered.

Ključne riječi
biodiesel; biogas; microbial lipids; transesterification; anaerobic digestion; recovery and purification

Projekti
EC / H2020 / 690925 / Phoenix - People for tHe eurOpean bioENergy mIX
HRZZ / IP / IP-2013-11-9158 / SPECH-LRM - Održiva proizvodnja bioetanola i biokemikalija iz otpadnih poljoprivrednih lignoceluloznih sirovina

Hrčak ID: 203441

URI
https://hrcak.srce.hr/203441

Reference

1 

Bhaskar T, Bhavya B, Singh R, Naik DV, Kumar A, Goyal HB. Thermochemical conversion of biomass to biofuels. In: Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E, editors. Biofuels – Alternative feedstocks and conversion processes. Oxford, UK: Academic Press; 2011. pp. 51–77. https://doi.org/ DOI: http://dx.doi.org/10.1016/B978-0-12-385099-7.00003-6

2 

Cherubini F, Strømman AH. Principles of biorefining. In: Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E, editors. Biofuels – Alternative feedstocks and conversion processes. Oxford, UK: Academic Press; 2011. pp. 3–24. https://doi.org/ DOI: http://dx.doi.org/10.1016/B978-0-12-385099-7.00001-2

3 

Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, et al. Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al., editors. Climate change 2007: The physical science basis. Cambridge, UK: Cambridge University Press; 2007. pp. 129–234.

4 

Khanal SK, editor. Anaerobic biotechnology for bioenergy production: Principles and applications. Ames, IA, USA: Wiley–Blackwell; 2008. https://doi.org/ DOI: http://dx.doi.org/10.1002/9780813804545

5 

Kummamuru B. WBA global bioenergy statistics 2016. Stockholm, Sweden: World Bioenergy Association; 2016. Available from: www.worldbioenergy.org.

6 

Huang GH, Chen F, Wei D, Zhang XW, Chen G. Biodiesel production by microalgal biotechnology. Appl Energy. 2010;87(1):38–46. DOI: http://dx.doi.org/10.1016/j.apenergy.2009.06.016

7 

Christopher LP, Kumar H, Zambare VP. Enzymatic biodiesel: Challenges and opportunities. Appl Energy. 2014;119:497–520. DOI: http://dx.doi.org/10.1016/j.apenergy.2014.01.017

8 

Ramadhas AS, Jayaraj S, Muraleedharan C. Biodiesel production from high FFA rubber seed oils. Fuel. 2005;84(4):335–40. DOI: http://dx.doi.org/10.1016/j.fuel.2004.09.016

9 

Demirbas A. Recent developments in biodiesel fuels. Int J Green Energy. 2007;4(1):15–26. DOI: http://dx.doi.org/10.1080/15435070601015395

10 

Madras G, Kolluru C, Kumar R. Synthesis of biodiesel in supercritical fluids. Fuel. 2004;83(14-15):2029–33. DOI: http://dx.doi.org/10.1016/j.fuel.2004.03.014

11 

Demirbas A. Production of biofuels with special emphasis on biodiesel. In: Pandey A, editor. Handbook of plant-based biofuels. Boca Raton, FL, USA: CRC Press; 2009. pp. 45-54. https://doi.org/ DOI: http://dx.doi.org/10.1201/9780789038746.ch4

12 

Cao P, Dubé MA, Tremblay AY. High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor. Biomass Bioenergy. 2008;32(11):1028–36. DOI: http://dx.doi.org/10.1016/j.biombioe.2008.01.020

13 

Lam MK, Lee KT. Mixed methanol-ethanol technology to produce greener biodiesel from waste cooking oil: A breakthrough for SO42-/SnO2-SiO2 catalyst. Fuel Process Technol. 2011;92(8):1639–45. DOI: http://dx.doi.org/10.1016/j.fuproc.2011.04.012

14 

Schober S, Seidl I, Mittelbach M. Ester content evaluation in biodiesel from animal fats and lauric oils. Eur J Lipid Sci Technol. 2006;108(4):309–14. DOI: http://dx.doi.org/10.1002/ejlt.200500324

15 

Koller M, Braunegg G. Biomediated production of structurally diverse poly(hydroxyalkanoates) from surplus streams of the animal processing industry. Polimery. 2015;60(5):298–308. DOI: http://dx.doi.org/10.14314/polimery.2015.298

16 

Shahzad K, Narodoslawsky M, Sagir M, Ali N, Ali S, Rashid MI, et al. Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production. Waste Manag. 2017;67:73–85. DOI: http://dx.doi.org/10.1016/j.wasman.2017.05.047 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/28595804

17 

Nebel BA, Mittelbach M. Biodiesel from extracted fat out of meat and bone meal. Eur J Lipid Sci Technol. 2006;108(5):398–403. DOI: http://dx.doi.org/10.1002/ejlt.200500329

18 

Biofuels Annual EU. 2015. GAIN report number NL5028. The Hague, The Netherlands: United States Department of Agriculture-Foreign Agriculture Service (USDA-FAS), Global Agricultural Information Network (GAIN); 2015. Available from: http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_The%20Hague_EU-28_7-15-2015.pdf.

19 

Demirbas A. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Convers Manage. 2009;50(4):923–7. DOI: http://dx.doi.org/10.1016/j.enconman.2008.12.023

20 

Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G. Current biodiesel production technologies: A comparative review. Energy Convers Manage. 2012;63:138–48. DOI: http://dx.doi.org/10.1016/j.enconman.2012.02.027

21 

Juan JC, Kartika DA, Wu TY, Hin TYY. Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: An overview. Bioresour Technol. 2011;102(2):452–60. DOI: http://dx.doi.org/10.1016/j.biortech.2010.09.093 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21094045

22 

Borges ME, Díaz L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renew Sustain Energy Rev. 2012;16(5):2839–49. DOI: http://dx.doi.org/10.1016/j.rser.2012.01.071

23 

Ma F, Hanna MA. Biodiesel production: A review. Bioresour Technol. 1999;70(1):1–15. DOI: http://dx.doi.org/10.1016/S0960-8524(99)00025-5

24 

Ali Y, Hanna MA, Cuppett SL. Fuel properties of tallow and soybean oil esters. J Am Oil Chem Soc. 1995;72(12):1557–64. DOI: http://dx.doi.org/10.1007/BF02577854

25 

Tan KT, Lee KT, Mohamed AR. Production of FAME by palm oil transesterification via supercritical methanol technology. Biomass Bioenergy. 2009;33(8):1096–9. DOI: http://dx.doi.org/10.1016/j.biombioe.2009.04.003

26 

Schuchardt U, Sercheli R, Vargas RM. Transesterification of vegetable oils: A review. J Braz Chem Soc. 1998;9(1):199–210. DOI: http://dx.doi.org/10.1590/S0103-50531998000300002

27 

Atadashi IM, Aroua MK, Aziz ARA, Sulaiman NMN. The effects of catalysts in biodiesel production: A review. J Ind Eng Chem. 2013;19(1):14–26. DOI: http://dx.doi.org/10.1016/j.jiec.2012.07.009

28 

Cerveró JM, Coca J, Luque S. Production of biodiesel from vegetable oils. Grasas Aceites. 2008;59(1):76–83. DOI: http://dx.doi.org/10.3989/gya.2008.v59.i1.494

29 

Kawashima A, Matsubara K, Honda K. Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresour Technol. 2009;100(2):696–700. DOI: http://dx.doi.org/10.1016/j.biortech.2008.06.049 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18684617

30 

Lotero E, Goodwin JG Jr, Bruce DA, Suwannakarn K, Liu Y, Lopez DE. The catalysis of biodiesel synthesis. In: Spivey JJ, Rosley KM, editors. Catalysis, vol. 19. London, UK: RSC Publishing; 2006. pp. 41–83. https://doi.org/ DOI: http://dx.doi.org/10.1039/978184-7555229-00041

31 

Demirbas A. Progress and recent trends in biofuels. Pror Energy Combust Sci. 2007;33(1):1–18. DOI: http://dx.doi.org/10.1016/j.pecs.2006.06.001

32 

Tan KT, Lee KT. A review on supercritical fluids (SCF) technology in sustainable biodiesel production: Potential and challenges. Renew Sustain Energy Rev. 2011;15(5):2452–6. DOI: http://dx.doi.org/10.1016/j.rser.2011.02.012

33 

Kondamudi N, Mohapatra SK, Misra M. Quintinite as a bifunctional heterogeneous catalyst for biodiesel synthesis. Appl Catal A. 2011;393(1-2):36–43. DOI: http://dx.doi.org/10.1016/j.apcata.2010.11.025

34 

Aransiola EF, Betiku E, Ikhuomoregbe DIO, Ojumu TV. Production of biodiesel from crude neem oil feedstock and its emissions from internal combustion engines. Afr J Biotechnol. 2012;11(22):6178–86. DOI: http://dx.doi.org/10.5897/AJB11.2301

35 

Çaylı G, Küsefoğlu S. Increased yields in biodiesel production from used cooking oils by a two step process: Comparison with one step process by using TGA. Fuel Process Technol. 2008;89(2):118–22. DOI: http://dx.doi.org/10.1016/j.fuproc.2007.06.020

36 

Singh AK, Fernando SD. Reaction kinetics of soybean oil transesterification using heterogeneous metal oxide catalysts. Chem Eng Technol. 2007;30(12):1716–20. DOI: http://dx.doi.org/10.1002/ceat.200700274

37 

Aransiola EF, Ojumu TV, Oyekola OO, Madzimbamuto TF, Ikhu-Omoregbe DIO. A review of current technology for biodiesel production: State of the art. Biomass Bioenergy. 2014;61:276–97. DOI: http://dx.doi.org/10.1016/j.biombioe.2013.11.014

38 

Magalhães Antunes W, de Oliveira Veloso C, Assumpção Henriques C. Transesterification of soybean oil with methanol catalyzed by basic solids. Catal Today. 2008;133-135:548–54. DOI: http://dx.doi.org/10.1016/j.cattod.2007.12.055

39 

Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel. 2008;87(12):2798–806. DOI: http://dx.doi.org/10.1016/j.fuel.2007.10.019

40 

Ji J, Wang J, Li Y, Yu Y, Xu Z. Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics. 2006;44:e411–4. DOI: http://dx.doi.org/10.1016/j.ultras.2006.05.020 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16797656

41 

Mootabadi H, Salamatinia B, Bhatia S, Abdullah AZ. Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel. 2010;89(8):1818–25. DOI: http://dx.doi.org/10.1016/j.fuel.2009.12.023

42 

Brun N, Babeau-Garcia A, Achard MF, Sanchez C, Durand F, Laurent G, et al. Enzyme-based biohybrid foams designed for continuous flow heterogeneous catalysis and biodiesel production. Energy Environ Sci. 2011;4(11):2840–4. DOI: http://dx.doi.org/10.1039/c1ee01295a

43 

Akoh CC, Chang SW, Lee GC, Shaw JF. Enzymatic approach to biodiesel production. J Agric Food Chem. 2007;55(22):8995–9005. DOI: http://dx.doi.org/10.1021/jf071724y PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17902621

44 

Ozmen EY, Yilmaz M. Pretreatment of Candida rugosa lipase with soybean oil before immobilization on β-cyclodextrin-based polymer. Colloids Surf B Biointerfaces. 2009;69(1):58–62. DOI: http://dx.doi.org/10.1016/j.colsurfb.2008.10.021 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19091527

45 

Lee DH, Kim JM, Shin HY, Kim SW. Optimization of lipase pretreatment prior to lipase immobilization to prevent loss of activity. J Microbiol Biotechnol. 2007;17(4):650–4. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18051278

46 

Al-Zuhair S. Production of biodiesel by lipase-catalyzed transesterification of vegetable oils: A kinetics study. Biotechnol Prog. 2005;21(5):1442–8. DOI: http://dx.doi.org/10.1021/bp050195k PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16209548

47 

Bornscheuer UT. Microbial carboxyl esterases: Classification, properties and application in biocatalysis. FEMS Microbiol Rev. 2002;26(1):73–81. DOI: http://dx.doi.org/10.1111/j.1574-6976.2002.tb00599.x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12007643

48 

Fjerbaek L, Christensen KV, Norddahl B. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng. 2009;102(5):1298–315. DOI: http://dx.doi.org/10.1002/bit.22256 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19215031

49 

Gog A, Roman M, Toşa M, Paizs C, Irimie FD. Biodiesel production using enzymatic transesterification – Current state and perspectives. Renew Energy. 2012;39(1):10–6. DOI: http://dx.doi.org/10.1016/j.renene.2011.08.007

50 

Nielsen PM, Brask J, Fjerbaek L. Enzymatic biodiesel production: Technical and economical considerations. Eur J Lipid Sci Technol. 2008;110(8):692–700. DOI: http://dx.doi.org/10.1002/ejlt.200800064

51 

Spahn C, Minteer SD. Enzyme immobilization in biotechnology. Recent Pat Eng. 2008;2(3):195–200. DOI: http://dx.doi.org/10.2174/187221208786306333

52 

Al-Zuhair S, Hasan M, Ramachandran KB. Kinetics of the enzymatic hydrolysis of palm oil by lipase. Process Biochem. 2003;38(8):1155–63. DOI: http://dx.doi.org/10.1016/S0032-9592(02)00279-0

53 

Ganesan D, Rajendran A, Thangavelu V. An overview on the recent advances in the transesterification of vegetable oils for biodiesel production using chemical and biocatalysts. Rev Environ Sci Biotechnol. 2009;8:367–94. DOI: http://dx.doi.org/10.1007/s11157-009-9176-9

54 

Salis A, Pinna M, Monduzzi M, Solinas V. Biodiesel production from triolein and short chain alcohols through biocatalysis. J Biotechnol. 2005;119(3):291–9. DOI: http://dx.doi.org/10.1016/j.jbiotec.2005.04.009 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15950307

55 

Dizge N, Keskinler B, Tanriseven A. Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene-divinylbenzene copolymer. Biochem Eng J. 2009;44(2-3):220–5. DOI: http://dx.doi.org/10.1016/j.bej.2008.12.008

56 

Li L, Du W, Liu D, Wang L, Li Z. Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal, B Enzym. 2006;43(1-4):58–62. DOI: http://dx.doi.org/10.1016/j.molcatb.2006.06.012

57 

Kreiner M, Fernandes JFA, O’Farrell N, Halling PJ, Parker MC. Stability of protein-coated microcrystals in organic solvents. J Mol Catal, B Enzym. 2005;33(3-6):65–72. DOI: http://dx.doi.org/10.1016/j.molcatb.2005.03.002

58 

Cao L, van Langen L, Sheldon RA. Immobilised enzymes: Carrier-bound or carrier-free? Curr Opin Biotechnol. 2003;14(4):387–94. DOI: http://dx.doi.org/10.1016/S0958-1669(03)00096-X PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12943847

59 

Kumari V, Shah S, Gupta MN. Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energy Fuels. 2007;21(1):368–72. DOI: http://dx.doi.org/10.1021/ef0602168

60 

Sheldon RA, Schoevaart R, Van Langen LM. Cross-linked enzyme aggregates (CLEAs): A novel and versatile method for enzyme immobilization (a review). Biocatal Biotransform. 2005;23(3-4):141–7. DOI: http://dx.doi.org/10.1080/10242420500183378

61 

Kartal F, Kilinc A. Crosslinked aggregates of Rhizopus oryzae lipase as industrial biocatalysts: Preparation, optimization, characterization, and application for enantioselective resolution reactions. Biotechnol Prog. 2012;28(4):937–45. DOI: http://dx.doi.org/10.1002/btpr.1571 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22685034

62 

Kreiner M, Amorim Fernandes JF, O’Farrell N, Halling PJ, Parker MC. Stability of protein-coated microcrystals in organic solvents. J Mol Catal, B Enzym. 2005;33(3-6):65–72. DOI: http://dx.doi.org/10.1016/j.molcatb.2005.03.002

63 

Gaur R, Gupta G, Vamsikrishnan M, Khare SK. Protein-coated microcrystals of Pseudomonas aeruginosa PseA lipase. Appl Biochem Biotechnol. 2008;151(2-3):160–6. DOI: http://dx.doi.org/10.1007/s12010-008-8163-x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18690417

64 

Ban K, Kaieda M, Matsumoto T, Kondo A, Fukuda H. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J. 2001;8(1):39–43. DOI: http://dx.doi.org/10.1016/S1369-703X(00)00133-9 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11356369

65 

Tamalampudi S, Talukder MR, Hama S, Numata T, Kondo A, Fukuda H. Enzymatic production of biodiesel from Jatropha oil: A comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J. 2008;39(1):185–9. DOI: http://dx.doi.org/10.1016/j.bej.2007.09.002

66 

Demirbas A. Current technologies in biodiesel production. In: Demirbas A, editor. Biodiesel. London, UK: Springer; 2008. pp. 161–73. https://doi.org/ DOI: http://dx.doi.org/10.1007/978-1-84628-995-8_7

67 

Song ES, Lim JW, Lee HS, Lee YW. Transesterification of RBD palm oil using supercritical methanol. J Supercrit Fluids. 2008;44(3):356–63. DOI: http://dx.doi.org/10.1016/j.supflu.2007.09.010

68 

Bunyakiat K, Makmee S, Sawangkeaw R, Ngamprasertsith S. Continuous production of biodiesel via transesterification from vegetable oils in supercritical methanol. Energy Fuels. 2006;20(2):812–7. DOI: http://dx.doi.org/10.1021/ef050329b

69 

Geuens J, Kremsner JM, Nebel BA, Schober S, Dommisse RA, Mittelbach M, et al. Microwave-assisted catalyst-free transesterification of triglycerides with 1-butanol under supercritical conditions. Energy Fuels. 2008;22(1):643–5. DOI: http://dx.doi.org/10.1021/ef700617q

70 

Huynh LH, Kasim NS, Ju YH. Biodiesel production from waste oils. In: Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E, editors. Biofuels – Alternative feedstocks and conversion processes. Oxford, UK: Academic Press; 2011. pp. 375–96. https://doi.org/ DOI: http://dx.doi.org/10.1016/B978-0-12-385099-7.00017-6

71 

Predojević ZJ. The production of biodiesel from waste frying oils: A comparison of different purification steps. Fuel. 2008;87(17-18):3522–8. DOI: http://dx.doi.org/10.1016/j.fuel.2008.07.003

72 

Sabudak T, Yildiz M. Biodiesel production from waste frying oils and its quality control. Waste Manag. 2010;30(5):799–803. DOI: http://dx.doi.org/10.1016/j.wasman.2010.01.007 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20100653

73 

Wang Y, Ou S, Liu P, Xue F, Tang S. Comparison of two different processes to synthesize biodiesel by waste cooking oil. J Mol Catal Chem. 2006;252(1-2):107–12. DOI: http://dx.doi.org/10.1016/j.molcata.2006.02.047

74 

Fairley P. Introduction: Next generation biofuels. Nature. 2011;474:S2–5. DOI: http://dx.doi.org/10.1038/474S02a PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21697838

75 

Li Q, Wang MY. Use food industry wastes to produce microbial oil. Sci Technol Food Ind. 1997;6:65–9.

76 

Ma YL. Microbial oils and its research advance. Shengwu Jiagong Guocheng. 2006;4:7–11.

77 

Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol. 2002;51:1–51. DOI: http://dx.doi.org/10.1016/S0065-2164(02)51000-5 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12236054

78 

Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M. Biodiesel production from oleaginous microorganisms. Renew Energy. 2009;34(1):1–5. DOI: http://dx.doi.org/10.1016/j.renene.2008.04.014

79 

Subramaniam R, Dufreche S, Zappi M, Bajpai R. Microbial lipids from renewable resources: Production and characterization. J Ind Microbiol Biotechnol. 2010;37(12):1271–87. DOI: http://dx.doi.org/10.1007/s10295-010-0884-5 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21086103

80 

Ratledge C, Cohen Z. Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? Lipid Technol. 2008;20(7):155–60. DOI: http://dx.doi.org/10.1002/lite.200800044

81 

Beopoulos A, Chardot T, Nicaud JM. Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie. 2009;91(6):692–6. DOI: http://dx.doi.org/10.1016/j.biochi.2009.02.004 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19248816

82 

Christophe G, Kumar V, Nouaille R, Gaudet G, Fontanille P, Pandey A, et al. Recent developments in microbial oils production: A possible alternative to vegetable oils for biodiesel without competition with human food? Braz Arch Biol Technol. 2012;55(1):29–46. DOI: http://dx.doi.org/10.1590/S1516-89132012000100004

83 

Ghanem KM, Sabry SA, Yusef HH. Some physiological factors influencing lipid production by Rhodotorula glutinis from Egyptian beet molasses. Med J Islamic World Acad Sci. 1990;3(4):305–9.

84 

El-Fadaly HA, El-Naggar NEA, Marwan ESM. Single cell oil production by an oleaginous yeast strain in a low cost cultivation medium. Res J Microbiol. 2009;4(8):301–13. DOI: http://dx.doi.org/10.3923/jm.2009.301.313

85 

Alvarez RM, Rodríguez B, Romano JM, Díaz AO, Gómez E, Miró D, et al. Lipid accumulation in Rhodotorula glutinis on sugar cane molasses in single-stage continuous culture. World J Microbiol Biotechnol. 1992;8(2):214–5. DOI: http://dx.doi.org/10.1007/BF01195853 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24425415

86 

Gouda MK, Omar SH, Aouad LM. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol. 2008;24:1703. DOI: http://dx.doi.org/10.1007/s11274-008-9664-z

87 

Xu J, Du W, Zhao X, Zhang G, Liu D. Microbial oil production from various carbon sources and its use for biodiesel preparation. Biofuels Bioprod Biorefin. 2013;7(1):65–77. DOI: http://dx.doi.org/10.1002/bbb.1372

88 

Zhao ZB. Toward cheaper microbial oil for biodiesel oil. Chin Biotechnol. 2005;25(2):8–11.

89 

Jin M, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, et al. Microbial lipid-based lignocellulosic biorefinery: Feasibility and challenges. Trends Biotechnol. 2015;33(1):43–54. DOI: http://dx.doi.org/10.1016/j.tibtech.2014.11.005 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25483049

90 

Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur J Lipid Sci Technol. 2011;113(8):1031–51. DOI: http://dx.doi.org/10.1002/ejlt.201100014

91 

Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol. 2008;80(5):749–56. DOI: http://dx.doi.org/10.1007/s00253-008-1625-9 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18690426

92 

Papanikolaou S, Komaitis M, Aggelis G. Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol. 2004;95(3):287–91. DOI: http://dx.doi.org/10.1016/j.biortech.2004.02.016 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15288271

93 

Aki T, Nagahata Y, Ishihara K, Tanaka Y, Morinaga T, Higashiyama K, et al. Production of arachidonic acid by filamentous fungus, Mortierella alliacea strain YN-15. J Am Oil Chem Soc. 2001;78(6):599–604. DOI: http://dx.doi.org/10.1007/s11746-001-0311-2

94 

Zabeti N, Bonin P, Volkman JK, Guasco S, Rontani JF. Fatty acid composition of bacterial strains associated with living cells of the haptophyte Emiliania huxleyi. Org Geochem. 2010;41(7):627–36. DOI: http://dx.doi.org/10.1016/j.orggeochem.2010.04.009

95 

Roche CM, Glass NL, Blanch HW, Clark DS. Engineering the filamentous fungus Neurospora crassa for lipid production from lignocellulosic biomass. Biotechnol Bioeng. 2014;111(6):1097–107. DOI: http://dx.doi.org/10.1002/bit.25211 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24700367

96 

Verma NM, Mehrotra S, Shukla A, Mishra BN. Prospective of biodiesel production utilizing microalgae as the cell factories: A comprehensive discussion. Afr J Biotechnol. 2010;9(10):1402–11. DOI: http://dx.doi.org/10.5897/AJBx09.071

97 

Chen YF, Wu Q. Production of biodiesel from algal biomass: Current perspectives and future. In: Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E, editors. Biofuels – Alternative feedstocks and conversion processes. Oxford, UK: Academic Press; 2011. pp. 399–413. https://doi.org/ DOI: http://dx.doi.org/10.1016/B978-0-12-385099-7.00018-8

98 

Guil-Guerrero JL, Navarro-Juárez R, López-Martínez JC, Campra-Madrid P, Rebolloso-Fuentes MM. Functional properties of the biomass of three microalgal species. J Food Eng. 2004;65(4):511–7. DOI: http://dx.doi.org/10.1016/j.jfoodeng.2004.02.014

99 

Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87–96. DOI: http://dx.doi.org/10.1263/jbb.101.87 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16569602

100 

Pieber S, Schober S, Mittelbach M. Pressurized fluid extraction of polyunsaturated fatty acids from the microalga Nannochloropsis oculata. Biomass Bioenergy. 2012;47:474–82. DOI: http://dx.doi.org/10.1016/j.biombioe.2012.10.019

101 

Hidalgo P, Toro C, Ciudad G, Schober S, Mittelbach M, Navia R. Evaluation of different operational strategies for biodiesel production by direct transesterification of microalgal biomass. Energy Fuels. 2014;28(6):3814–20. DOI: http://dx.doi.org/10.1021/ef500259z

102 

Hidalgo P, Ciudad G, Schober S, Mittelbach M, Navia R. Improving the FAME yield of in situ transesterification from microalgal biomass through particle size reduction and cosolvent incorporation. Energy Fuels. 2015;29(2):823–32. DOI: http://dx.doi.org/10.1021/ef5023303

103 

Li Y, Zhao ZK, Bai F. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol. 2007;41(3):312–7. DOI: http://dx.doi.org/10.1016/j.enzmictec.2007.02.008

104 

Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol. 2002;58(3):308–12. DOI: http://dx.doi.org/10.1007/s00253-001-0897-0 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11935181

105 

Gao J, Chen L, Yan Z, Wang L. Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes). Bioresour Technol. 2013;132:361–4. DOI: http://dx.doi.org/10.1016/j.biortech.2012.10.136 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23186677

106 

Veloso V, Reis A, Gouveia L, Fernandes HL, Empis JA, Novais JM. Lipid production by Phaeodactylum tricornutum. Bioresour Technol. 1991;38(2-3):115–9. DOI: http://dx.doi.org/10.1016/0960-8524(91)90141-6

107 

Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol. 2009;100(2):833–8. DOI: http://dx.doi.org/10.1016/j.biortech.2008.06.061 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18722767

108 

Hsieh CH, Wu WT. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol. 2009;100(17):3921–6. DOI: http://dx.doi.org/10.1016/j.biortech.2009.03.019 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19362823

109 

Feng Y, Li C, Zhang D. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol. 2011;102(1):101–5. DOI: http://dx.doi.org/10.1016/j.biortech.2010.06.016 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20620053

110 

Zhang J, Fang X, Zhu XL, Li Y, Xu HP, Zhao BF, et al. Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass Bioenergy. 2011;35(5):1906–11. DOI: http://dx.doi.org/10.1016/j.biombioe.2011.01.024

111 

Chang YH, Chang KS, Hsu CL, Chuang LT, Chen CY, Huang FY, et al. A comparative study on batch and fed-batch cultures of oleaginous yeast Cryptococcus sp. in glucose-based media and corncob hydrolysate for microbial oil production. Fuel. 2013;105:711–7. DOI: http://dx.doi.org/10.1016/j.fuel.2012.10.033

112 

Papanikolaou S, Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol. 2002;82(1):43–9. DOI: http://dx.doi.org/10.1016/S0960-8524(01)00149-3 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11848376

113 

Ivančić Šantek M, Miškulin E, Petrović M, Beluhan S, Šantek B. Effect of carbon and nitogen source concentrations on the growth and lipid accumulation of yeast Trichosporon oleaginosus in continuous and batch culture. J Chem Technol Biotechnol. 2017;92(7):1620–9. DOI: http://dx.doi.org/10.1002/jctb.5156

114 

Ahmad FB, Zhang Z, Doherty WOS, O’Hara IM. Microbial oil production from sugarcane bagasse hydrolysates by oleaginous yeast and filamentous fungi. In: Bruce RC, editor. Proceedings of the 38th Annual Conference of the Australian Society of Sugar Cane Technologists; 2016 April 27-29; Mackay, Australia: Australian Society of Sugar Cane Technologists; 2016. pp. 251–9.

115 

Tang D, Han W, Li PL, Miao X, Zhong J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol. 2011;102(3):3071–6. DOI: http://dx.doi.org/10.1016/j.biortech.2010.10.047 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21041075

116 

Fei Q, Chang HN, Shang L, Choi J. Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus. Biotechnol Bioprocess Eng; BBE. 2011;16(3):482–7. DOI: http://dx.doi.org/10.1007/s12257-010-0370-y

117 

Wild R, Patil S, Popović M, Zappi M, Dufreche S, Bajpai R. Lipids from Lipomyces starkeyi. Food Technol Biotechnol. 2010;48:329–35.

118 

Huang C, Chen XF, Yang XY, Xiong L, Lin XQ, Yang J, et al. Bioconversion of corncob acid hydrolysate into microbial oil by the oleaginous yeast Lipomyces starkeyi. Appl Biochem Biotechnol. 2014;172(4):2197–204. DOI: http://dx.doi.org/10.1007/s12010-013-0651-y PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24343368

119 

Gao J, Chen L, Yan Z, Wang L. Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes). Bioresour Technol. 2013;132:361–4. DOI: http://dx.doi.org/10.1016/j.biortech.2012.10.136 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23186677

120 

Zeng J, Zheng Y, Yu X, Yu L, Gao D, Chen S. Lignocellulosic biomass as a carbohydrate source for lipid production by Mortierella isabellina. Bioresour Technol. 2013;128:385–91. DOI: http://dx.doi.org/10.1016/j.biortech.2012.10.079 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23201519

121 

Economou CN, Aggelis G, Pavlou S, Vayenas DV. Single cell oil production from rice hulls hydrolysate. Bioresour Technol. 2011;102(20):9737–42. DOI: http://dx.doi.org/10.1016/j.biortech.2011.08.025 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21875786

122 

Ruan Z, Zanotti M, Zhong Y, Liao W, Ducey C, Liu Y. Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation. Biotechnol Bioeng. 2013;110(4):1039–49. DOI: http://dx.doi.org/10.1002/bit.24773 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23124976

123 

Ruan Z, Zanotti M, Archer S, Liao W, Liu Y. Oleaginous fungal lipid fermentation on combined acid- and alkali-pretreated corn stover hydrolysate for advanced biofuel production. Bioresour Technol. 2014;163:12–7. DOI: http://dx.doi.org/10.1016/j.biortech.2014.03.095 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24768942

124 

Jiang L, Luo S, Fan X, Yang Z, Guo R. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy. 2011;88(10):3336–41. DOI: http://dx.doi.org/10.1016/j.apenergy.2011.03.043

125 

Wei Z, Zeng G, Huang F, Kosa M, Sun Q, Meng X, et al. Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates. Appl Microbiol Biotechnol. 2015;99(17):7369–77. DOI: http://dx.doi.org/10.1007/s00253-015-6752-5 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26142385

126 

Zhao H, Baker GA, Cowins JV. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Biotechnol Prog. 2010;26(1):127–33. DOI: http://dx.doi.org/10.1002/btpr.331 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19918908

127 

Fei Q, O’Brien M, Nelson R, Chen X, Lowell A, Dowe N. Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnol Biofuels. 2016;9:130. DOI: http://dx.doi.org/10.1186/s13068-016-0542-x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27340432

128 

Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T. Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem. 2011;46(1):210–8. DOI: http://dx.doi.org/10.1016/j.procbio.2010.08.009

129 

Ho SH, Chen WM, Chang JS. Scenedesmus obliquus CNW–N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol. 2010;101(22):8725–30. DOI: http://dx.doi.org/10.1016/j.biortech.2010.06.112 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20630743

130 

Papanikolaou S, Diamantopoulou P, Chatzifragkou A, Philippoussis A, Aggelis G. Suitability of low-cost sugars as substrates for lipid production by the fungus Thamnidium elegans. Energy Fuels. 2010;24(7):4078–86. DOI: http://dx.doi.org/10.1021/ef1004804

131 

Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresour Technol. 2009;100(22):5478–84. DOI: http://dx.doi.org/10.1016/j.biortech.2008.12.046 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19217772

132 

Weiland P. Biogas production: Current state and perspectives. Appl Microbiol Biotechnol. 2010;85(4):849–60. DOI: http://dx.doi.org/10.1007/s00253-009-2246-7 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19777226

133 

Ryckebosch E, Drouillon M, Vervaeren H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy. 2011;35(5):1633–45. DOI: http://dx.doi.org/10.1016/j.biombioe.2011.02.033

134 

Harikishan S. Pretreatment of high-solids wastes/residues to enhance bioenergy recovery. In: Khanal SK, editor. Anaerobic biotechnology for bioenergy production: Principles and applications. Iowa, USA: Wiley Blackwell; 2008. pp. 247–65. https://doi.org/ DOI: http://dx.doi.org/10.1002/9780813804545.ch11

135 

WBA global bioenergy statistics 2017. Stockholm, Sweden: World Bioenergy Association (WBA); 2017. Available from: http://worldbioenergy.org/uploads/WBA%20GBS%202017_hq.pdf.

136 

Statistical report 2017. European Biogas Association (EBA); 2017. Brussels, Belgium. Available from: https://european-biogas.eu/wp-content/uploads/2017/12/Statistical-report-of-the-European-Biogas-Association_excerpt-web.pdf.

137 

Flach B, Leiberz S, Rossetti A, Phillips S. EU biofuels annual 2017. Washington, DC, USA: USDA Foreign Agricultural Service. Available from: https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_The%20Hague_EU-28_6-19-2017.pdf.

138 

Frigon JC, Guiot SR. Biomethane production from starch and lignocellulosic crops: A comparative review. Biofuels Bioprod Biorefin. 2010;4(4):447–58. DOI: http://dx.doi.org/10.1002/bbb.229

139 

Zheng Y, Zhao J, Xu F, Li Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Pror Energy Combust Sci. 2014;42:35–53. DOI: http://dx.doi.org/10.1016/j.pecs.2014.01.001

140 

Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev. 1997;61(2):262–80. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/9184013

141 

Bischoff M. Knowledge in the use of additives and excipients as well as trace elements in biogas plants; VDI Reports no. 2057: 'Biogas 2009 – Energy source of the future'. Düsseldorf, Gremany: VDI Verlag; 2009. pp. S111–23 (in German).

142 

Mao C, Feng Y, Wang X, Ren G. Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev. 2015;45:540–55. DOI: http://dx.doi.org/10.1016/j.rser.2015.02.032

143 

Zhao J. Enhancement of methane production from solid-state anaerobic digestion of yard trimmings by biological pretreatment [MSc Thesis]. Columbus, OH, USA: The Ohio State University; 2013.

144 

Parawira W, Read JS, Mattiasson B, Björnsson L. Energy production from agricultural residues: High methane yields in a pilot-scale two-stage anaerobic digestion. Biomass Bioenergy. 2008;32(1):44–50. DOI: http://dx.doi.org/10.1016/j.biombioe.2007.06.003

145 

Angelidaki I, Ellegaard L, Ahring BK. Application of the anaerobic digestion process. In: Ahring BK, Andelidaki I, Dolfing J, Euegaard L, Gavala HN, Haagensen F, et al., editors. Biomethanation II: Advances in Biochemical Engineering/Biotechnology, vol. 82. Heidelberg, Germany: Springer; 2003. pp. 1–33. https://doi.org/ DOI: http://dx.doi.org/10.1007/3-540-45838-7_1

146 

Weiland P. The state of the art in dry fermentation. Gülzower Fachgespräche. 2006;24:22–38. [in German]

147 

Heiermann M, Linke B, Kessler U, Loock R. Biogas from renewable resources through dry anaerobic digestion. Landtechnik. 2007;62:14–5.

148 

Lehtomäki A, Björnsson L. Two-stage anaerobic digestion of energy crops: Methane production, nitrogen mineralisation and heavy metal mobilisation. Environ Technol. 2006;27(2):209–18. DOI: http://dx.doi.org/10.1080/09593332708618635 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16506517

149 

Weiland P, Verstraete W, van Haandel A. Biomass digestion to methane in agriculture: A successful pathway for the energy production and waste treatment worldwide. In: Soetaert W, Vandamme EJ, editors. Biofuels. Chichester, UK: John Wiley & Sons, Ltd; 2009. pp. 171–95. https://doi.org/ DOI: http://dx.doi.org/10.1002/9780470754108.ch10

150 

De Baere L, Mattheeuws B. State-of-the-art 2008 – Anaerobic digestion of solid waste. Waste Manage World. 2008;9(4):1–6.

151 

Brown D, Shi J, Li Y. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol. 2012;124:379–86. DOI: http://dx.doi.org/10.1016/j.biortech.2012.08.051 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22995169

152 

Zhu J, Zheng Y, Xu F, Li Y. Solid-state anaerobic co-digestion of hay and soybean processing waste for biogas production. Bioresour Technol. 2014;154:240–7. DOI: http://dx.doi.org/10.1016/j.biortech.2013.12.045 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24398152

153 

Kaparaju P, Serrano M, Angelidaki I. Effect of reactor configuration on biogas production from wheat straw hydrolysate. Bioresour Technol. 2009;100(24):6317–23. DOI: http://dx.doi.org/10.1016/j.biortech.2009.06.101 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19647428

154 

Chen L, Gu Y, Cao C, Zhang J, Ng JW, Tang C. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment. Water Res. 2014;50:114–23. DOI: http://dx.doi.org/10.1016/j.watres.2013.12.009 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24374126

155 

Bo T, Zhu X, Zhang L, Tao Y, He X, Li D, et al. A new upgraded biogas production process: Coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor. Electrochem Commun. 2014;45:67–70. DOI: http://dx.doi.org/10.1016/j.elecom.2014.05.026

156 

Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int J Mol Sci. 2008;9(9):1621–51. DOI: http://dx.doi.org/10.3390/ijms9091621 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19325822

157 

Mirahmadi K, Kabir MM, Jeihanipour A, Karimi K, Taherzadeh M. Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources. 2010;5(2):928–38.

158 

O-Thong S. Boe K, Angelidaki I. Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Appl Energy. 2012;93:648–54. DOI: http://dx.doi.org/10.1016/j.apenergy.2011.12.092

159 

Salehian P, Karimi K. Alkali pretreatment for improvement of biogas and ethanol production from different waste parts of pine tree. Ind Eng Chem Res. 2013;52(2):972–8. DOI: http://dx.doi.org/10.1021/ie302805c

160 

Song Z, Yang G, Guo Y, Zhang T. Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources. 2012;7(3):3223–36.

161 

Monlau F, Latrille E, Carvalho Da Costa A, Steyer JP, Carrère H. Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment. Appl Energy. 2013;102:1105–13. DOI: http://dx.doi.org/10.1016/j.apenergy.2012.06.042

162 

Monlau F, Barakat A, Steyer JP, Carrère H. Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour Technol. 2012;120:241–7. DOI: http://dx.doi.org/10.1016/j.biortech.2012.06.040 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22820113

163 

Cuissinat C, Navard P. Swelling and dissolution of cellulose part 1: Free floating cotton and wood fibers in N-methylmorpholine-N-oxide–water mixtures. Macromol Symp. 2006;244(1):1–18. DOI: http://dx.doi.org/10.1002/masy.200651201

164 

Kabir MM, Niklasson C, Taherzadeh MJ, Horváth IS. Biogas production from lignocelluloses by N-methylmorpholine-N-oxide (NMMO) pretreatment: Effects of recovery and reuse of NMMO. Bioresour Technol. 2014;161:446–50. DOI: http://dx.doi.org/10.1016/j.biortech.2014.03.107 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24736089

165 

Goshadrou A, Karimi K, Taherzadeh MJ. Ethanol and biogas production from birch by NMMO pretreatment. Biomass Bioenergy. 2013;49:95–101. DOI: http://dx.doi.org/10.1016/j.biombioe.2012.12.013

166 

Kabir MM, del Pilar Castillo M, Taherzadeh MJ, Sárvári Horváth I. Effect of the N-methylmorpholine-N-oxide (NMMO) pretreatment on anaerobic digestion of forest residues. BioResources. 2013;8(4):5409–23. DOI: http://dx.doi.org/10.15376/biores.8.4.5409-5423

167 

Teghammar A, Karimi K, Sárvári Horváth I, Taherzadeh MJ. Enhanced biogas production from rice straw, triticale straw and softwood spruce by NMMO pretreatment. Biomass Bioenergy. 2012;36:116–20. DOI: http://dx.doi.org/10.1016/j.biombioe.2011.10.019

168 

Petersson A, Thomsen MH, Hauggaard-Nielsen H, Thomsen AB. Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy. 2007;31(11-12):812–9. DOI: http://dx.doi.org/10.1016/j.biombioe.2007.06.001

169 

Sapci Z. The effect of microwave pretreatment on biogas production from agricultural straws. Bioresour Technol. 2013;128:487–94. DOI: http://dx.doi.org/10.1016/j.biortech.2012.09.094 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23201904

170 

Jackowiak D, Bassard D, Pauss A, Ribeiro T. Optimisation of a microwave pretreatment of wheat straw for methane production. Bioresour Technol. 2011;102(12):6750–6. DOI: http://dx.doi.org/10.1016/j.biortech.2011.03.107 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21524906

171 

Cesaro A, Naddeo V, Amodio V, Belgiorno V. Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis. Ultrason Sonochem. 2012;19(3):596–600. DOI: http://dx.doi.org/10.1016/j.ultsonch.2011.09.002 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21962478

172 

Hjorth M, Gränitz K, Adamsen APS, Møller HB. Extrusion as a pretreatment to increase biogas production. Bioresour Technol. 2011;102(8):4989–94. DOI: http://dx.doi.org/10.1016/j.biortech.2010.11.128 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21339066

173 

Mackuľak T, Prousek J, Švorc L, Drtil M. Increase of biogas production from pretreated hay and leaves using wood-rotting fungi. Chem Pap. 2012;66(7):649–53. DOI: http://dx.doi.org/10.2478/s11696-012-0171-1

174 

Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J, et al. Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour Technol. 2011;102(19):8899–906. DOI: http://dx.doi.org/10.1016/j.biortech.2011.06.061 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21763132

175 

Ziemiński K, Romanowska I, Kowalska M. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag. 2012;32(6):1131–7. DOI: http://dx.doi.org/10.1016/j.wasman.2012.01.016 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22342637

176 

Carlsson AS, van Beilen JB, Möller R, Clayton D. Micro- and macro-algae: Utility for industrial applications. In: Bowles D, editor. Outputs from the EPOBIO project, September 2007. Newburry, UK: CPL Press; 2007. Available from: http://www.etipbioenergy.eu/images/epobio_aquatic_report.pdf.

177 

Koller M, Muhr A, Braunegg G. Microalgae as versatile cellular factories for valued products. Algal Res. 2014;6(Pt A):52–63. DOI: http://dx.doi.org/10.1016/j.algal.2014.09.002

178 

Sigot L, Ducom G, Benadda B, Labouré C. Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell. Environ Technol. 2016;37(1):86–95. DOI: http://dx.doi.org/10.1080/09593330.2015.1063707 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26183696

179 

Micoli L, Bagnasco G, Turco MH. 2S removal from biogas for fuelling MCFCs: New adsorbing materials. Int J Hydrogen Energy. 2014;39(4):1783–7. DOI: http://dx.doi.org/10.1016/j.ijhydene.2013.10.126

180 

Krayzelova L, Bartacek J, Kolesarova N, Jenicek P. Microaeration for hydrogen sulfide removal in UASB reactor. Bioresour Technol. 2014;172:297–302. DOI: http://dx.doi.org/10.1016/j.biortech.2014.09.056 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25270045

181 

Dolejš P, Poštulka V, Sedláková Z, Jandová V, Vejražka J, Esposito E, et al. Simultaneous hydrogen sulphide and carbon dioxide removal from biogas by water–swollen reverse osmosis membrane. Separ Purif Tech. 2014;131:108–16. DOI: http://dx.doi.org/10.1016/j.seppur.2014.04.041

182 

Li Q, Fan S, Wang Y, Lang X, Chen J. CO2 removal from biogas based on hydrate formation with tetra-n-butylammonium bromide solution in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate. Energy Fuels. 2015;29(5):3143–8. DOI: http://dx.doi.org/10.1021/acs.energyfuels.5b00061

183 

Xiao Y, Yuan H, Pang Y, Chen S, Zhu B, Zou D, et al. CO2 removal from biogas by water washing system. Chin J Chem Eng. 2014;22(8):950–3. DOI: http://dx.doi.org/10.1016/j.cjche.2014.06.001

[hrvatski]

Posjeta: 218 *